A Decade of Weather Technology Delivered to America's Space Program by the Applied Meteorology Unit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Worldwide Marine Radiofacsimile Broadcast Schedules
WORLDWIDE MARINE RADIOFACSIMILE BROADCAST SCHEDULES U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC and ATMOSPHERIC ADMINISTRATION NATIONAL WEATHER SERVICE January 14, 2021 INTRODUCTION Ships....The U.S. Voluntary Observing Ship (VOS) program needs your help! If your ship is not participating in this worthwhile international program, we urge you to join. Remember, the meteorological agencies that do the weather forecasting cannot help you without input from you. ONLY YOU KNOW THE WEATHER AT YOUR POSITION!! Please report the weather at 0000, 0600, 1200, and 1800 UTC as explained in the National Weather Service Observing Handbook No. 1 for Marine Surface Weather Observations. Within 300 nm of a named hurricane, typhoon or tropical storm, or within 200 nm of U.S. or Canadian waters, also report the weather at 0300, 0900, 1500, and 2100 UTC. Your participation is greatly appreciated by all mariners. For assistance, contact a Port Meteorological Officer (PMO), who will come aboard your vessel and provide all the information you need to observe, code and transmit weather observations. This publication is made available via the Internet at: https://weather.gov/marine/media/rfax.pdf The following webpage contains information on the dissemination of U.S. National Weather Service marine products including radiofax, such as frequency and scheduling information as well as links to products. A listing of other recommended webpages may be found in the Appendix. https://weather.gov/marine This PDF file contains links to http pages and FTPMAIL commands. The links may not be compatible with all PDF readers and e-mail systems. The Internet is not part of the National Weather Service's operational data stream and should never be relied upon as a means to obtain the latest forecast and warning data. -
NOTICE: This Publication Is Available At
Department of Commerce • National Oceanic & Atmospheric Administration • National Weather Service NATIONAL WEATHER SERVICE INSTRUCTION 10-807 OCTOBER 5, 2017 Operations and Services Aviation Weather Services, NWSPD 10-8 INTERNATIONAL SERVICE AGREEMENTS NOTICE: This publication is available at: http://www.nws.noaa.gov/directives/. OPR: W/AFS24 (M. Graf) Certified by: W/AFS24 (W. Bauman) Type of Issuance: Routine SUMMARY OF REVISIONS: This directive supersedes NWSI 10-807, “International Service Agreements,” dated May 19, 2009. Changes were made to reflect the NWS Headquarters reorganization effective on April 1, 2015. No content changes were made. Signed 9/21/2017 Andrew D. Stern Date Director Analyze, Forecast, and Support Office NWSI 10-807 OCTOBER 5, 2017 International Service Agreements Table of Contents Page 1. Purpose. ..................................................................................................................................... 2 2. Background. ............................................................................................................................... 2 3. Definition of Unique Terms. ................................................................................................................ 3 4. General ............................................................................................................................................ 3 5. Correspondence with Foreign Meteorological Services. ................................................................. 4 6. Services Provided. -
Dealing with Inconsistent Weather Warnings: Effects on Warning Quality and Intended Actions
Research Collection Journal Article Dealing with inconsistent weather warnings: effects on warning quality and intended actions Author(s): Weyrich, Philippe; Scolobig, Anna; Patt, Anthony Publication Date: 2019-10 Permanent Link: https://doi.org/10.3929/ethz-b-000291292 Originally published in: Meteorological Applications 26(4), http://doi.org/10.1002/met.1785 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Received: 11 July 2018 Revised: 12 December 2018 Accepted: 31 January 2019 Published on: 28 March 2019 DOI: 10.1002/met.1785 RESEARCH ARTICLE Dealing with inconsistent weather warnings: effects on warning quality and intended actions Philippe Weyrich | Anna Scolobig | Anthony Patt Climate Policy Group, Department of Environmental Systems Science, Swiss Federal In the past four decades, the private weather forecast sector has been developing Institute of Technology (ETH Zurich), Zurich, next to National Meteorological and Hydrological Services, resulting in additional Switzerland weather providers. This plurality has led to a critical duplication of public weather Correspondence warnings. For a specific event, different providers disseminate warnings that are Philippe Weyrich, Climate Policy Group, Department of Environmental Systems Science, more or less severe, or that are visualized differently, leading to inconsistent infor- Swiss Federal Institute of Technology (ETH mation that could impact perceived warning quality and response. So far, past Zurich), 8092 Zurich, Switzerland. research has not studied the influence of inconsistent information from multiple Email: [email protected] providers. This knowledge gap is addressed here. -
List of Participants
WMO Sypmposium on Impact Based Forecasting and Warning Services Met Office, United Kingdom 2-4 December 2019 LIST OF PARTICIPANTS Name Organisation 1 Abdoulaye Diakhete National Agency of Civil Aviation and Meteorology 2 Angelia Guy National Meteorological Service of Belize 3 Brian Golding Met Office Science Fellow - WMO HIWeather WCRP Impact based Forecast Team, Korea Meteorological 4 Byungwoo Jung Administration 5 Carolina Gisele Cerrudo National Meteorological Service Argentina 6 Caroline Zastiral British Red Cross 7 Catalina Jaime Red Cross Climate Centre Directorate for Space, Security and Migration Chiara Proietti 8 Disaster Risk Management Unit 9 Chris Tubbs Met Office, UK 10 Christophe Isson Météo France 11 Christopher John Noble Met Service, New Zealand 12 Dan Beardsley National Weather Service NOAA/National Weather Service, International Affairs Office 13 Daniel Muller 14 David Rogers World Bank GFDRR 15 Dr. Frederiek Sperna Weiland Deltares 16 Dr. Xu Tang Weather & Disaster Risk Reduction Service, WMO National center for hydro-meteorological forecasting, Viet Nam 17 Du Duc Tien 18 Elizabeth May Webster South African Weather Service 19 Elizabeth Page UCAR/COMET 20 Elliot Jacks NOAA 21 Gerald Fleming Public Weather Service Delivery for WMO 22 Germund Haugen Met No 23 Haleh Kootval World Bank Group 24 Helen Bye Met Office, UK 25 Helene Correa Météo-France Impact based Forecast Team, Korea Meteorological 26 Hyo Jin Han Administration Impact based Forecast Team, Korea Meteorological 27 Inhwa Ham Administration Meteorological Service -
HURRICANE TEDDY (AL202020) 12–23 September 2020
r d NATIONAL HURRICANE CENTER TROPICAL CYCLONE REPORT HURRICANE TEDDY (AL202020) 12–23 September 2020 Eric S. Blake National Hurricane Center 28 April 2021 NASA TERRA MODIS VISIBLE SATELLITE IMAGE OF HURRICANE TEDDY AT 1520 UTC 22 SEPTEMBER 2020. Teddy was a classic, long-lived Cape Verde category 4 hurricane on the Saffir- Simpson Hurricane Wind Scale. It passed northeast of the Leeward Islands and became extremely large over the central Atlantic, eventually making landfall in Nova Scotia as a 55-kt extratropical cyclone. There were 3 direct deaths in the United States due to rip currents. Hurricane Teddy 2 Hurricane Teddy 12–23 SEPTEMBER 2020 SYNOPTIC HISTORY Teddy originated from a strong tropical wave that moved off the west coast of Africa on 10 September, accompanied by a large area of deep convection. The wave was experiencing moderate northeasterly shear, but a broad area of low pressure and banding features still formed on 11 September a few hundred n mi southwest of the Cabo Verde Islands. Convection decreased late that day, as typically happens in the evening diurnal minimum period, but increased early on 12 September. This convection led to the development of a well-defined surface center, confirmed by scatterometer data, and the formation of a tropical depression near 0600 UTC 12 September about 500 n mi southwest of the Cabo Verde Islands. The “best track” chart of the tropical cyclone’s path is given in Fig. 1, with the wind and pressure histories shown in Figs. 2 and 3, respectively. The best track positions and intensities are listed in Table 1.1 After the depression formed, further development was slow during the next couple of days due to a combination of northeasterly shear, dry air in the mid-levels and the large size and radius of maximum winds of the system. -
Papua New Guinea Meteorological Service Country Report
PAPUA NEW GUINEA METEOROLOGICAL SERVICE COUNTRY REPORT Reporting on National Priority Actions of the Pacific Islands Meteorological Strategy (PIMS) 2012-2021 This Report is presented to the Fourth Pacific Meteorological Council (PMC-4) Meeting held in Honiara from 14-18 August 2017 SAMUEL MAIHA [email protected] Table of Contents 1.0 Summary .................................................................................................................................................................................................................. 3 2.0 Background Information .......................................................................................................................................................................................... 5 2.1 Institutional Setup ................................................................................................................................................................................................ 5 [This subsection will cover an UPDATE of the brief on the institutional arrangement of the NMHS as well as its linkages to the Ministry. Make mention of the legislation or any Acts to support the NMS.] .................................................................................................................................... 5 2.2 Staffing ................................................................................................................................................................................................................. 8 -
Objective Mixed and Manually Controlled Data Base OMG
EMS Annual Meeting Abstracts, 9th UROPEAN EMS Annual Meeting 9TH E ON Vol. 6, EMS2009-115, 2009 CONFERENCE Applications of Meteorology 9th EMS / 9th ECAM High resolution meteorology © Author(s) 2009 - applications and services Objective Mixed and Manually Controlled Data Base OMG T. Kratzsch and Dr. M. Rohn German National Weather Service, Deutscher Wetterdienst (DWD), Offenbach, Germany ([email protected], 069-8062 2254 Many customers of Deutscher Wetterdienst get forecast products (different deterministic meteorological pa- rameters) as so-called Point-Time-Prognoses (PTPs). There’s the need for data of high resolution in space (several kilometers, cities) and time (hourly up to forecast-day 7, updated each hour). Those interpretations of the numerical models have been designed by different methods, called DMO, Model Output Statistics (MOS), Kalman filtering. Because of different model results and different methods there are between five and ten different PTPs for the same location. While a forecaster, based on his experience, can choose between that different interpretations, an automatic customers supply can’t do so. Because updates of those interpretations are only available for each new model run, there’s also the need for more actual forecast data, using nowcasting methods as well as controlling and modifying mechanisms for the forecasters. A process “Objective Optimization” has been implemented which automatically combines the available PTP data, nowcasting products and observations at all required locations. A frequent update of this optimization process every 30 minutes ensures that the OOG is based on the latest available model, nowcasting, and observational information. The resulting so-called “Objectively Optimized Guidance” (OOG) passes an interactive quality control step to produce a “Man Modified output” (MMO). -
Service Assessment Hurricane Irene, August
Service Assessment Hurricane Irene, August 21–30, 2011 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service Silver Spring, Maryland Cover Photographs: Top Left - NOAA GOES 13 visible image of Hurricane Irene taken at 12:32 UTC (8:32 a.m. EDT) on August 27, 2011, as it was moving northward along the east coast. Map of total storm rainfall for Hurricane Irene (NCEP/HPC) overlaid with photos of Hurricane Irene’s impacts. Clockwise from top right: • Damage to bridge over the Pemigewasset River/East Branch in Lincoln, NH (NH DOT) • Trees across road and utility lines in Guilford, CT (CT DEP) • Damage to homes from storm surge at Cosey Beach, East Haven, CT (CT DEP) • Flooding of Delaware River closes Rt. 29 in Trenton, NJ (State of New Jersey, Office of the Governor) • Damage from storm surge on North Carolina’s Outer Banks (USGS) • Damage to home from an EF1 tornado in Lewes, DE (Sussex County, DE EOC) • River flooding on Schoharie Creek near Lexington, NY (USGS) • Flood damage to historic covered bridge and road in Quechee, VT (FEMA) ii Service Assessment Hurricane Irene, August 21–30, 2011 September 2012 National Oceanic and Atmospheric Administration Dr. Jane Lubchenco, Administrator National Weather Service Laura Furgione, Acting Assistant Administrator for Weather Services iii Preface On August 21-29, 2011, Hurricane Irene left a devastating imprint on the Caribbean and U.S. East Coast. The storm took the lives of more than 40 people, caused an estimated $6.5 billion in damages, unleashed major flooding, downed trees and power lines, and forced road closures, evacuations, and major rescue efforts. -
Meteorological Office
RURAL AFFAIRS AND ENVIRONMENT COMMITTEE SUBMISSION FROM THE METEOROLOGICAL OFFICE Introduction The Met Office is a Trading Fund Agency owned by MOD. It is a world leading organisation, both in the field of weather forecasting and climate prediction1, operating on a 24/7 basis with the highest standards of operational resilience. Responsible for providing forecasts on all timescales (from an hour ahead to 100+ yrs), the Met Office is uniquely positioned to support the Scottish Government’s response to changing incidence of severe weather events due to climate change. It is responsible - through its Public Weather Service - for providing the National Severe Weather Warning Service (NSWWS) for the whole of the UK. Unlike many other nations in Europe where weather and flood forecasting and warning are integrated into a single meteorological and hydrological agency, the Met Office has no direct responsibility for river or coastal flood forecasting. In Scotland, river (fluvial) flood forecasting is provided by the Scottish Environment Protection Agency (SEPA), with whom the Met Office works closely, providing daily rainfall and general weather forecast inputs, together with rainfall radar data for the Flooding Early Warning System (FEWS). The Met Office also provides storm tide and surge warnings for the coastal flood watch service introduced by SEPA in 2007. The historical data required by SEPA to develop an effective coastal flood warning system is not available though it is understood that investment in this initiative would allow development of the modelling capability required. Currently no agency provides warnings of localised flash flooding (also known as pluvial flooding), although the Met Office will give an indication of such risks alongside its weather forecasts. -
Ront November-Ddecember, 2002 National Weather Service Central Region Volume 1 Number 6
The ront November-DDecember, 2002 National Weather Service Central Region Volume 1 Number 6 Technology at work for your safety In this issue: Conceived and deployed as stand alone systems for airports, weather sensors and radar systems now share information to enhance safety and efficiency in the National Airspace System. ITWS - Integrated Jim Roets, Lead Forecaster help the flow of air traffic and promote air Terminal Aviation Weather Center safety. One of those modernization com- Weather System The National Airspace System ponents is the Automated Surface (NAS) is a complex integration of many Observing System (ASOS). technologies. Besides the aircraft that fly There are two direct uses for ASOS, you and your family to vacation resorts, and the FAA’s Automated Weather or business meetings, many other tech- Observing System (AWOS). They are: nologies are at work - unseen, but critical Integrated Terminal Weather System MIAWS - Medium to aviation safety. The Federal Aviation (ITWS), and the Medium Intensity Intensity Airport Administration (FAA) is undertaking a Airport Weather System (MIAWS). The Weather System modernization of the NAS. One of the technologies that make up ITWS, shown modernization efforts is seeking to blend in Figure 1, expand the reach of the many weather and aircraft sensors, sur- observing site from the terminal to the en veillance radar, and computer model route environment. Their primary focus weather output into presentations that will is to reduce delays caused by weather, Gust fronts - Evolution and Detection Weather radar displays NWS - Doppler FAA - ITWS ASOS - It’s not just for airport observations anymore Mission Statement To enhance aviation safety by Source: MIT Lincoln Labs increasing the pilots’ knowledge of weather systems and processes Figure 1. -
Lightning and the Space Program
National Aeronautics and Space Administration facts Lightning and the Space NASA Program Lightning protection systems weather radar, are the primary Air Force thunderstorm surveil- lance tools for evaluating weather conditions that lead to the ennedy Space Center operates extensive lightning protec- issuance and termination of lightning warnings. Ktion and detection systems in order to keep its employees, The Launch Pad Lightning Warning System comprises 31 the 184-foot-high space shuttle, the launch pads, payloads and electric field mills uniformly distributed throughout Kennedy processing facilities from harm. The protection systems and the and Cape Canaveral. They serve as an early warning system detection systems incorporate equipment and personnel both for electrical charges building aloft or approaching as part of a at Kennedy and Cape Canaveral Air Force Station (CCAFS), storm system. These instruments are ground-level electric field located southeast of Kennedy. strength monitors. Information from this warning system gives forecasters information on trends in electric field potential Predicting lightning before it reaches and the locations of highly charged clouds capable of support- Kennedy Space Center ing natural or triggered lightning. The data are valuable in Air Force 45th Weather Squadron – The first line of detecting early storm electrification and the threat of triggered defense for lightning safety is accurately predicting when and lightning for launch vehicles. where thunderstorms will occur. The Air Force 45th Weather The Lightning Detection and Ranging system, developed Squadron provides all weather support for Kennedy/CCAFS by Kennedy, detects and locates lightning in three dimensions operations, except space shuttle landings, which are supported using a “time of arrival” computation on signals received at by the National Atmospheric and Oceanic Administration seven antennas. -
Three Events Occurred During This Period Which Together Constitute A
P10.2 Recent Weather Support Improvement Initiatives By The 45th Weather Squadron William P. Roeder Johnny W. Weems William H. Bauman III * 45th Weather Squadron * ENSCO, Inc. Patrick Air Force Base, FL Cocoa Beach, FL 1. INTRODUCTION Due to these forecast challenges, the 45 WS participates in an active operational research program to The mission of the 45th Weather Squadron (45 WS) meet our customers’ many stringent and unusual is to ‘exploit the weather to ensure safe access to air forecasting requirements. This research focuses on the and space’ at Cape Canaveral Air Force Station most important operational needs of the customers (CCAFS), NASA’s Kennedy Space Center (KSC) and including lightning forecasting, lightning launch commit Patrick Air Force Base. The 45 WS provides criteria, convective wind forecasting, forecasting of comprehensive weather services for personnel safety, boundary layer peak winds in our cool season, and low resource protection, pre-launch ground processing, day- temperature forecasting. The 45 WS also provides of-launch, post-launch, aviation, and special operations. extensive climatological assistance to our customers. These services are provided for more than 30 space launch countdowns per year by the Department of Defense (DoD), National Aeronautics and Space Administration (NASA), and commercial launch customers. Weather presents significant challenges to space lift and is the leading cause of countdown delayed and scrubbed launches. The 45 WS mission is complicated by the extreme forecasting challenges along the central coast of Florida in the ‘Thunderstorm Capital’ of the U.S. (Figure 1). The most frequent warning products issued by 45 WS are for lightning and convective winds.