Analytic Geometry, Linear Algebra, Kernels, RKHS, and Native Spaces John Erickson, IIT

Total Page:16

File Type:pdf, Size:1020Kb

Analytic Geometry, Linear Algebra, Kernels, RKHS, and Native Spaces John Erickson, IIT Analytic Geometry, Linear Algebra, Kernels, RKHS, and Native Spaces John Erickson, IIT “There are two things you don’t want to see get made: Sausage and Mathematics” -John Erickson (I might have heard this somewhere however.) Note to the Reader ◼ This is the latest in a series of Mathematica notebooks that some people have taken to calling “The Erickson Kernel Notebooks”. By some people, I am referring to myself of course. I have used them in various forms in the Meshfree/Kernel research group here at IIT for the past two summers. As a result, I occasionally say things like, “as we discussed...”, “recall that...”. and end up referencing a concept that appears no where else in the current document. I am trying to remove all such references or replace them with something useful. ◼ If you find the material too elementary or the tone too pedantic at times, try not to judge too harshly that the author is an idiot. I would suggest waiting until the end to revisit this question and then form an opinion. Keep in mind that this was written partly to answer the question: “Can I teach this stuff to a very talented high school student?” and also inspired by the spirit of Arnold Ross who taught us to “think deeply about simple things.” ◼ We urge the reader to play with the Manipulates in order to gain a feel for the subject. We understand that not everyone is in love with Mathematica but the pdf version is but a mere shadow of the cdf version. While poetic and apparently hyperbolic (no pun intended), we mean this quite literally: the pdf is essentially the cdf stuck at the particular moment of time I happened to save it. ◼ Some severe limitations should be confessed to immediately: we will usually confine the discussion to positive definite kernels on a subset of the real line. This is mainly to keep the ideas, programs, and graphics as simple as possible. ◼ I always have enjoyed reading articles where the author freely gave his opinions about things so I have done so. Take them with a grain of salt however and think for yourself. Finally, at times you might find yourself chuckling a bit. That’s because I’m a pretty funny guy I think. Introduction An alternative title for this talk could have been “What are native spaces and what the heck is the native space norm measuring?” I used the above title because I think the best way to answer this question is to take a tour through a number of topics in mathematics ranging from the elementary to the more advanced. 2 analytic_geom_kernels_native_spaces.nb We will endeavor to provide some insight into what exactly the native space norm of a positive definite kernel is measuring while staying as elementary as possible. The native space norm is clearly designed to be a means of measuring the size of functions which are linear combinations of our given kernel evaluated at points in our space. The norm has the benefit that it comes from an inner product but it isn’t exactly clear what is being measured. In order to make things easier we will confine ourselves to dimension one and primarily confine ourselves to the native spaces determined by positive definite kernels, but we will mention a few conditionally positive definite kernels since they provide nice examples. Before proceeding however, let’s ask a question. A Question From Analytic Geometry We all know from high school that if you take the unit circle centered at the origin and apply a non singular matrix A to it, you get an ellipse. In high school you learn this in a different form as the paramet- ric equations of an ellipse. We also know that every ellipse centered at the origin is essentially the solution to a quadratic equation in two variables which can also be defined by a matrix B. In high school you learn this when you learn about conic sections, and it involved a fair amount of trigonometry since you may not have known enough about matrices at the time. So the question is the following: precisely formulate the above statement and find the relationship between the two matrices A and B. If you don’t know the answer and find it interesting then think about it for a moment. Remark: I actually did learn analytic geometry, but not this question, in high school but my school had a strong math program. Unfortunately, since geometry appears to have been deprecated in the modern American high school curriculum (presumably so that students feel good about themselves), I find that many students have never had a full course in analytic geometry which is a real pity since it therefore makes teaching them multivariable calculus and linear algebra that much harder. Of course, this is my fault for “making it so confusing.” Some Linear Algebra We don’t intend to Review all of linear algebra but simply state some results that should be familiar. You might even know these facts without realizing you know them. Incidentally, we will adopt the convention that vectors can be identified with column matrices. You should have learned that in finite dimensions, after choosing a basis... ◼ Every Linear transformation L:ℝ n → ℝm can be realized as a matrix L(u)=Au. ◼ In particular, with m= 1, every linear functional L:ℝ n → ℝ can be realized as a row matrix which can in turn be identified as a vector. In infinite dimensions this becomes one of the Riesz representation theorems for bounded linear functionals. It doesn’t seem reasonable that you can understand the latter result if you never realized it in finite dimensions. By the way, the set of all linear functionals on a finite dimensional vector space is also called the dual space. It is also a vector space and in fact it is essentially the same (isomorphic) to the original space due to the aforementioned correspondence. ◼ Every bilinear functional b:ℝ n ×ℝ m → ℝ can be realized as the matrix product b(u,v)=u T B v. analytic_geom_kernels_native_spaces.nb 3 ◼ In particular every (real) inner product b:ℝ n ×ℝ n → ℝ can be realized as b(u,v)=u T B v where the matrix B is both symmetric and positive definite (in addition to being bilinear already). Inner products are a very special type of kernel. In fact, in some sense they are canonical type of kernel. We will denote inner product by using the “bra-ket” notation 〈u,v〉=u T B v. ◼ In a real inner product space, or pre-Hilbert space, we can define a norm on the space by taking the inner product of a vector with itself, i.e., v2 =〈v,v〉=v T B v where B is again a symmetric positive definite matrix. It is clear (you should have seen) that an inner product will induce a norm in this fashion. Conversely if you are given a norm in a real inner product space derived from the inner product you can always recover the inner product using the following so-called “polarization identity” 〈u,v〉= 1 u2 +v 2 -u-v 2 2 This is, of course, nothing more than the law of cosines from high school trigonometry since 〈u,v〉=uv cos(θ). There is a similar result for complex inner product spaces. ◼ You should know about Eigenvalues and Eigenvectors. ◼ You should know the spectral theorem that every symmetric operator on a space of dimension n has n real Eigenvalues (when counted with multiplicity) and an orthogonal basis of eigenvectors. In terms of matrices, you can diagonalize a symmetric matrix and you get reals on the diagonal. Moreover the matrix effecting the change of basis is the just the transpose of the Eigenbasis. This is an example of a matrix factorization: A=PΛP -1 where P is the change of basis matrix. ◼ It would be nice if you were acquainted with some additional matrix factorizations: The Jordan canonical form, L U, Q R, Cholesky, and the SVD. We probably won’t use the Jordan form, but you really should know it. ◼ Finally, you should realize that the set of all bilinear functionals on a pair of vector spaces is isomorphic to the dual space of the tensor product of the original two spaces. More precisely, Bilinear(ℝn ×ℝ m ,ℝ)≃ Linear(ℝ n ⊗ℝm ,ℝ) This follows “trivially” from the universal mapping property of tensor products. I’m kidding of course, while also adopting the standard pompous tone in mathematics that we all learn so as to sound smarter. You don’t really need to know this and I just threw it in partly to be erudite but it is actually relevant. This result reduces the above claim about the representation of bilinear functionals (which you do need to know) to the previous claim about the representation of linear functionals which you do know. If I have piqued your interest, I’ll say a bit more. The left and right sides are both vectors spaces of dimension m n (that’s one of the properties of tensor products) therefore they must be isomorphic since dimension is an isomorphism invariant in the category of vector spaces if you want to make a mountain out of a molehill. The result is actually interesting because there is a natural isomorphism between these two vector spaces. If you want to know more about this google “Multilinear Algebra” or, god forbid, go to the library and read a book about it.
Recommended publications
  • FUNCTIONAL ANALYSIS 1. Banach and Hilbert Spaces in What
    FUNCTIONAL ANALYSIS PIOTR HAJLASZ 1. Banach and Hilbert spaces In what follows K will denote R of C. Definition. A normed space is a pair (X, k · k), where X is a linear space over K and k · k : X → [0, ∞) is a function, called a norm, such that (1) kx + yk ≤ kxk + kyk for all x, y ∈ X; (2) kαxk = |α|kxk for all x ∈ X and α ∈ K; (3) kxk = 0 if and only if x = 0. Since kx − yk ≤ kx − zk + kz − yk for all x, y, z ∈ X, d(x, y) = kx − yk defines a metric in a normed space. In what follows normed paces will always be regarded as metric spaces with respect to the metric d. A normed space is called a Banach space if it is complete with respect to the metric d. Definition. Let X be a linear space over K (=R or C). The inner product (scalar product) is a function h·, ·i : X × X → K such that (1) hx, xi ≥ 0; (2) hx, xi = 0 if and only if x = 0; (3) hαx, yi = αhx, yi; (4) hx1 + x2, yi = hx1, yi + hx2, yi; (5) hx, yi = hy, xi, for all x, x1, x2, y ∈ X and all α ∈ K. As an obvious corollary we obtain hx, y1 + y2i = hx, y1i + hx, y2i, hx, αyi = αhx, yi , Date: February 12, 2009. 1 2 PIOTR HAJLASZ for all x, y1, y2 ∈ X and α ∈ K. For a space with an inner product we define kxk = phx, xi . Lemma 1.1 (Schwarz inequality).
    [Show full text]
  • Linear Spaces
    Chapter 2 Linear Spaces Contents FieldofScalars ........................................ ............. 2.2 VectorSpaces ........................................ .............. 2.3 Subspaces .......................................... .............. 2.5 Sumofsubsets........................................ .............. 2.5 Linearcombinations..................................... .............. 2.6 Linearindependence................................... ................ 2.7 BasisandDimension ..................................... ............. 2.7 Convexity ............................................ ............ 2.8 Normedlinearspaces ................................... ............... 2.9 The `p and Lp spaces ............................................. 2.10 Topologicalconcepts ................................... ............... 2.12 Opensets ............................................ ............ 2.13 Closedsets........................................... ............. 2.14 Boundedsets......................................... .............. 2.15 Convergence of sequences . ................... 2.16 Series .............................................. ............ 2.17 Cauchysequences .................................... ................ 2.18 Banachspaces....................................... ............... 2.19 Completesubsets ....................................... ............. 2.19 Transformations ...................................... ............... 2.21 Lineartransformations.................................. ................ 2.21
    [Show full text]
  • General Inner Product & Fourier Series
    General Inner Products 1 General Inner Product & Fourier Series Advanced Topics in Linear Algebra, Spring 2014 Cameron Braithwaite 1 General Inner Product The inner product is an algebraic operation that takes two vectors of equal length and com- putes a single number, a scalar. It introduces a geometric intuition for length and angles of vectors. The inner product is a generalization of the dot product which is the more familiar operation that's specific to the field of real numbers only. Euclidean space which is limited to 2 and 3 dimensions uses the dot product. The inner product is a structure that generalizes to vector spaces of any dimension. The utility of the inner product is very significant when proving theorems and runing computations. An important aspect that can be derived is the notion of convergence. Building on convergence we can move to represenations of functions, specifally periodic functions which show up frequently. The Fourier series is an expansion of periodic functions specific to sines and cosines. By the end of this paper we will be able to use a Fourier series to represent a wave function. To build toward this result many theorems are stated and only a few have proofs while some proofs are trivial and left for the reader to save time and space. Definition 1.11 Real Inner Product Let V be a real vector space and a; b 2 V . An inner product on V is a function h ; i : V x V ! R satisfying the following conditions: (a) hαa + α0b; ci = αha; ci + α0hb; ci (b) hc; αa + α0bi = αhc; ai + α0hc; bi (c) ha; bi = hb; ai (d) ha; aiis a positive real number for any a 6= 0 Definition 1.12 Complex Inner Product Let V be a vector space.
    [Show full text]
  • Function Space Tensor Decomposition and Its Application in Sports Analytics
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 12-2019 Function Space Tensor Decomposition and its Application in Sports Analytics Justin Reising East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Applied Statistics Commons, Multivariate Analysis Commons, and the Other Applied Mathematics Commons Recommended Citation Reising, Justin, "Function Space Tensor Decomposition and its Application in Sports Analytics" (2019). Electronic Theses and Dissertations. Paper 3676. https://dc.etsu.edu/etd/3676 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Function Space Tensor Decomposition and its Application in Sports Analytics A thesis presented to the faculty of the Department of Mathematics East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Mathematical Sciences by Justin Reising December 2019 Jeff Knisley, Ph.D. Nicole Lewis, Ph.D. Michele Joyner, Ph.D. Keywords: Sports Analytics, PCA, Tensor Decomposition, Functional Analysis. ABSTRACT Function Space Tensor Decomposition and its Application in Sports Analytics by Justin Reising Recent advancements in sports information and technology systems have ushered in a new age of applications of both supervised and unsupervised analytical techniques in the sports domain. These automated systems capture large volumes of data points about competitors during live competition.
    [Show full text]
  • Using Functional Distance Measures When Calibrating Journey-To-Crime Distance Decay Algorithms
    USING FUNCTIONAL DISTANCE MEASURES WHEN CALIBRATING JOURNEY-TO-CRIME DISTANCE DECAY ALGORITHMS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Natural Sciences in The Interdepartmental Program of Natural Sciences by Joshua David Kent B.S., Louisiana State University, 1994 December 2003 ACKNOWLEDGMENTS The work reported in this research was partially supported by the efforts of Dr. James Mitchell of the Louisiana Department of Transportation and Development - Information Technology section for donating portions of the Geographic Data Technology (GDT) Dynamap®-Transportation data set. Additional thanks are paid for the thirty-five residence of East Baton Rouge Parish who graciously supplied the travel data necessary for the successful completion of this study. The author also wishes to acknowledge the support expressed by Dr. Michael Leitner, Dr. Andrew Curtis, Mr. DeWitt Braud, and Dr. Frank Cartledge - their efforts helped to make this thesis possible. Finally, the author thanks his wonderful wife and supportive family for their encouragement and tolerance. ii TABLE OF CONTENTS ACKNOWLEDGMENTS .............................................................................................................. ii LIST OF TABLES.......................................................................................................................... v LIST OF FIGURES ......................................................................................................................
    [Show full text]
  • Calculus of Variations
    MIT OpenCourseWare http://ocw.mit.edu 16.323 Principles of Optimal Control Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 16.323 Lecture 5 Calculus of Variations • Calculus of Variations • Most books cover this material well, but Kirk Chapter 4 does a particularly nice job. • See here for online reference. x(t) x*+ αδx(1) x*- αδx(1) x* αδx(1) −αδx(1) t t0 tf Figure by MIT OpenCourseWare. Spr 2008 16.323 5–1 Calculus of Variations • Goal: Develop alternative approach to solve general optimization problems for continuous systems – variational calculus – Formal approach will provide new insights for constrained solutions, and a more direct path to the solution for other problems. • Main issue – General control problem, the cost is a function of functions x(t) and u(t). � tf min J = h(x(tf )) + g(x(t), u(t), t)) dt t0 subject to x˙ = f(x, u, t) x(t0), t0 given m(x(tf ), tf ) = 0 – Call J(x(t), u(t)) a functional. • Need to investigate how to find the optimal values of a functional. – For a function, we found the gradient, and set it to zero to find the stationary points, and then investigated the higher order derivatives to determine if it is a maximum or minimum. – Will investigate something similar for functionals. June 18, 2008 Spr 2008 16.323 5–2 • Maximum and Minimum of a Function – A function f(x) has a local minimum at x� if f(x) ≥ f(x �) for all admissible x in �x − x�� ≤ � – Minimum can occur at (i) stationary point, (ii) at a boundary, or (iii) a point of discontinuous derivative.
    [Show full text]
  • Fact Sheet Functional Analysis
    Fact Sheet Functional Analysis Literature: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 1986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen. Springer, 2000. Triebel, H.: H¨ohere Analysis. Harri Deutsch, 1980. Dobrowolski, M.: Angewandte Funktionalanalysis, Springer, 2010. 1. Banach- and Hilbert spaces Let V be a real vector space. Normed space: A norm is a mapping k · k : V ! [0; 1), such that: kuk = 0 , u = 0; (definiteness) kαuk = jαj · kuk; α 2 R; u 2 V; (positive scalability) ku + vk ≤ kuk + kvk; u; v 2 V: (triangle inequality) The pairing (V; k · k) is called a normed space. Seminorm: In contrast to a norm there may be elements u 6= 0 such that kuk = 0. It still holds kuk = 0 if u = 0. Comparison of two norms: Two norms k · k1, k · k2 are called equivalent if there is a constant C such that: −1 C kuk1 ≤ kuk2 ≤ Ckuk1; u 2 V: If only one of these inequalities can be fulfilled, e.g. kuk2 ≤ Ckuk1; u 2 V; the norm k · k1 is called stronger than the norm k · k2. k · k2 is called weaker than k · k1. Topology: In every normed space a canonical topology can be defined. A subset U ⊂ V is called open if for every u 2 U there exists a " > 0 such that B"(u) = fv 2 V : ku − vk < "g ⊂ U: Convergence: A sequence vn converges to v w.r.t. the norm k · k if lim kvn − vk = 0: n!1 1 A sequence vn ⊂ V is called Cauchy sequence, if supfkvn − vmk : n; m ≥ kg ! 0 for k ! 1.
    [Show full text]
  • Inner Product Spaces
    CHAPTER 6 Woman teaching geometry, from a fourteenth-century edition of Euclid’s geometry book. Inner Product Spaces In making the definition of a vector space, we generalized the linear structure (addition and scalar multiplication) of R2 and R3. We ignored other important features, such as the notions of length and angle. These ideas are embedded in the concept we now investigate, inner products. Our standing assumptions are as follows: 6.1 Notation F, V F denotes R or C. V denotes a vector space over F. LEARNING OBJECTIVES FOR THIS CHAPTER Cauchy–Schwarz Inequality Gram–Schmidt Procedure linear functionals on inner product spaces calculating minimum distance to a subspace Linear Algebra Done Right, third edition, by Sheldon Axler 164 CHAPTER 6 Inner Product Spaces 6.A Inner Products and Norms Inner Products To motivate the concept of inner prod- 2 3 x1 , x 2 uct, think of vectors in R and R as x arrows with initial point at the origin. x R2 R3 H L The length of a vector in or is called the norm of x, denoted x . 2 k k Thus for x .x1; x2/ R , we have The length of this vector x is p D2 2 2 x x1 x2 . p 2 2 x1 x2 . k k D C 3 C Similarly, if x .x1; x2; x3/ R , p 2D 2 2 2 then x x1 x2 x3 . k k D C C Even though we cannot draw pictures in higher dimensions, the gener- n n alization to R is obvious: we define the norm of x .x1; : : : ; xn/ R D 2 by p 2 2 x x1 xn : k k D C C The norm is not linear on Rn.
    [Show full text]
  • Calculus of Variations Raju K George, IIST
    Calculus of Variations Raju K George, IIST Lecture-1 In Calculus of Variations, we will study maximum and minimum of a certain class of functions. We first recall some maxima/minima results from the classical calculus. Maxima and Minima Let X and Y be two arbitrary sets and f : X Y be a well-defined function having domain → X and range Y . The function values f(x) become comparable if Y is IR or a subset of IR. Thus, optimization problem is valid for real valued functions. Let f : X IR be a real valued → function having X as its domain. Now x X is said to be maximum point for the function f if 0 ∈ f(x ) f(x) x X. The value f(x ) is called the maximum value of f. Similarly, x X is 0 ≥ ∀ ∈ 0 0 ∈ said to be a minimum point for the function f if f(x ) f(x) x X and in this case f(x ) is 0 ≤ ∀ ∈ 0 the minimum value of f. Sufficient condition for having maximum and minimum: Theorem (Weierstrass Theorem) Let S IR and f : S IR be a well defined function. Then f will have a maximum/minimum ⊆ → under the following sufficient conditions. 1. f : S IR is a continuous function. → 2. S IR is a bound and closed (compact) subset of IR. ⊂ Note that the above conditions are just sufficient conditions but not necessary. Example 1: Let f : [ 1, 1] IR defined by − → 1 x = 0 f(x)= − x x = 0 | | 6 1 −1 +1 −1 Obviously f(x) is not continuous at x = 0.
    [Show full text]
  • Collaborative Fashion Recommendation: a Functional Tensor Factorization Approach
    Collaborative Fashion Recommendation: A Functional Tensor Factorization Approach Yang Hu†, Xi Yi‡, Larry S. Davis§ Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742 [email protected]†, [email protected]‡, [email protected]§ ABSTRACT With the rapid expansion of online shopping for fashion products, effective fashion recommendation has become an increasingly important problem. In this work, we study the problem of personalized outfit recommendation, i.e. auto- matically suggesting outfits to users that fit their personal (a) Users 1 fashion preferences. Unlike existing recommendation sys- tems that usually recommend individual items, we suggest sets of items, which interact with each other, to users. We propose a functional tensor factorization method to model the interactions between user and fashion items. To effec- tively utilize the multi-modal features of the fashion items, we use a gradient boosting based method to learn nonlinear (b) Users 2 functions to map the feature vectors from the feature space into some low dimensional latent space. The effectiveness of the proposed algorithm is validated through extensive ex- periments on real world user data from a popular fashion- focused social network. Categories and Subject Descriptors (c) Users 3 H.3.3 [Information Search and Retrieval]: Retrieval models; I.2.6 [Learning]: Knowledge acquisition Figure 1: Examples of fashion sets created by three Keywords Polyvore users. Different users have different style preferences. Our task is to automatically recom- Recommendation systems; Collaborative filtering; Tensor mend outfits to users that fit their personal taste. factorization; Learning to rank; Gradient boosting 1. INTRODUCTION book3, where people showcase their personal styles and con- With the proliferation of social networks, people share al- nect to others that share similar fashion taste.
    [Show full text]
  • Functional and Structured Tensor Analysis for Engineers
    UNM BOOK DRAFT September 4, 2003 5:21 pm Functional and Structured Tensor Analysis for Engineers A casual (intuition-based) introduction to vector and tensor analysis with reviews of popular notations used in contemporary materials modeling R. M. Brannon University of New Mexico, Albuquerque Copyright is reserved. Individual copies may be made for personal use. No part of this document may be reproduced for profit. Contact author at [email protected] NOTE: When using Adobe’s “acrobat reader” to view this document, the page numbers in acrobat will not coincide with the page numbers shown at the bottom of each page of this document. Note to draft readers: The most useful textbooks are the ones with fantastic indexes. The book’s index is rather new and still under construction. It would really help if you all could send me a note whenever you discover that an important entry is miss- ing from this index. I’ll be sure to add it. This work is a community effort. Let’s try to make this document helpful to others. FUNCTIONAL AND STRUCTURED TENSOR ANALYSIS FOR ENGINEERS A casual (intuition-based) introduction to vector and tensor analysis with reviews of popular notations used in contemporary materials modeling Rebecca M. Brannon† †University of New Mexico Adjunct professor [email protected] Abstract Elementary vector and tensor analysis concepts are reviewed in a manner that proves useful for higher-order tensor analysis of anisotropic media. In addition to reviewing basic matrix and vector analysis, the concept of a tensor is cov- ered by reviewing and contrasting numerous different definition one might see in the literature for the term “tensor.” Basic vector and tensor operations are provided, as well as some lesser-known operations that are useful in materials modeling.
    [Show full text]
  • An Introduction to Some Aspects of Functional Analysis
    An introduction to some aspects of functional analysis Stephen Semmes Rice University Abstract These informal notes deal with some very basic objects in functional analysis, including norms and seminorms on vector spaces, bounded linear operators, and dual spaces of bounded linear functionals in particular. Contents 1 Norms on vector spaces 3 2 Convexity 4 3 Inner product spaces 5 4 A few simple estimates 7 5 Summable functions 8 6 p-Summable functions 9 7 p =2 10 8 Bounded continuous functions 11 9 Integral norms 12 10 Completeness 13 11 Bounded linear mappings 14 12 Continuous extensions 15 13 Bounded linear mappings, 2 15 14 Bounded linear functionals 16 1 15 ℓ1(E)∗ 18 ∗ 16 c0(E) 18 17 H¨older’s inequality 20 18 ℓp(E)∗ 20 19 Separability 22 20 An extension lemma 22 21 The Hahn–Banach theorem 23 22 Complex vector spaces 24 23 The weak∗ topology 24 24 Seminorms 25 25 The weak∗ topology, 2 26 26 The Banach–Alaoglu theorem 27 27 The weak topology 28 28 Seminorms, 2 28 29 Convergent sequences 30 30 Uniform boundedness 31 31 Examples 32 32 An embedding 33 33 Induced mappings 33 34 Continuity of norms 34 35 Infinite series 35 36 Some examples 36 37 Quotient spaces 37 38 Quotients and duality 38 39 Dual mappings 39 2 40 Second duals 39 41 Continuous functions 41 42 Bounded sets 42 43 Hahn–Banach, revisited 43 References 44 1 Norms on vector spaces Let V be a vector space over the real numbers R or the complex numbers C.
    [Show full text]