I110-00 1..9999

Total Page:16

File Type:pdf, Size:1020Kb

I110-00 1..9999 PLANETARY SCIENCE THE SCIENCE OF PLANETS AROUND STARS PLANETARY SCIENCE THE SCIENCE OF PLANETS AROUND STARS George H A Cole Department of Physics, University of Hull, UK Michael M Woolfson Department of Physics, University of York, UK Institute of Physics Publishing Bristol and Philadelphia # IOP Publishing Ltd 2002 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. Multiple copying is permitted in accordance with the terms of licences issued by the Copyright Licensing Agency under the terms of its agreement with Universities UK (UUK). British Library Cataloguing-in-Publication Data A catalogue record of this book is available from the British Library. ISBN 0 7503 0815 X Library of Congress Cataloging-in-Publication Data are available Commissioning Editor: John Navas Production Editor: Simon Laurenson Production Control: Sarah Plenty Cover Design: Fre de rique Swist Published by Institute of Physics Publishing, wholly owned by The Institute of Physics, London Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK US Oce: Institute of Physics Publishing, The Public Ledger Building, Suite 1035, 150 South Independence Mall West, Philadelphia, PA 19106, USA Typeset by Academic Technical, Bristol Printed in the UK by Bookcraft, Midsomer Norton, Somerset CONTENTS INTRODUCTION xix A REVIEW OF THE SOLAR SYSTEM 1 THE UNITY OF THE UNIVERSE 1 1.1. Cosmic abundance of the chemical elements 1 1.2. Some examples 2 Problem 1 4 2 THE SUN AND OTHER STARS 6 2.1. The interstellar medium 6 2.2. Dense cool clouds 6 2.3. Stellar clusters 8 2.4. A scenario for formation of a galactic cluster 10 2.5. Main sequence stars and their evolution 12 2.6. Brown dwarfs 12 2.7. Stellar companions 12 Problem 2 15 3 THE PLANETS 16 3.1. An overview of the planets 16 3.2. Orbital motions 16 3.3. Orbits of the planets 19 3.4. Planetary structuresÐgeneral considerations 21 3.4.1. Planetary magnetic ®elds 24 Problems 3 26 4 THE TERRESTRIAL PLANETS 27 4.1. Mercury 27 4.1.1. The surface of Mercury 28 4.1.2. Mercury's magnetic ®eld 31 4.1.3. Mercury summary 31 v vi Contents 4.2. Venus 32 4.2.1. The surface of Venus 32 4.2.2. The atmosphere of Venus 35 4.2.3. Venus and magnetism 38 4.2.4. Venus summary 38 4.3 The Earth 38 4.3.1. The shape of the Earth 39 4.3.2. Surface composition and age 39 4.3.3. Changing surface features 41 4.3.4. Surface plate structure 41 4.3.5. Heat ¯ow through the surface 46 4.3.6. Earthquakes 49 4.3.6.1. The crust 51 4.3.6.2. The mantle 52 4.3.6.3. The core 52 4.3.7. The Earth's atmosphere 52 4.3.8. The Earth's magnetic ®eld 53 4.3.9. Earth summary 54 4.4. Mars 54 4.4.1. The surface of Mars 54 4.4.1.1. The highlands 55 4.4.1.2. The plains 57 4.4.1.3. Volcanic regions 58 4.4.1.4. Channels and canyons 60 4.4.2. Consequences of early water 62 4.4.3. Later missions 62 4.4.4. The atmosphere of Mars 65 4.4.5. Magnetism and Mars 66 4.4.6. Mars summary 66 Problem 4 67 5 THE MAJOR PLANETS AND PLUTO 68 5.1. Jupiter 68 5.1.1. The internal structure of Jupiter 68 5.1.2. Heat generation in Jupiter 5.1.3. The atmosphere of Jupiter 70 5.1.4. Jupiter's magnetic ®eld 72 5.1.5. Jupiter summary 73 5.2. Saturn 74 5.2.1. The internal structure of Saturn 74 5.2.2. Heat generation in Saturn 75 5.2.3. The atmosphere of Saturn 75 5.2.4. Saturn's magnetic ®eld 75 5.2.5. Saturn summary 76 5.3. Uranus 77 5.3.1. The internal structure of Uranus 78 5.3.2. Heat generation in Uranus 78 5.3.3. The atmosphere of Uranus 78 Contents vii 5.3.4. The magnetic ®eld of Uranus 79 5.3.5. Uranus summary 79 5.4. Neptune 80 5.4.1. The internal structure of Neptune 80 5.4.2. Heat generation in Neptune 81 5.4.3. The atmosphere of Neptune 81 5.4.4. Neptune's magnetic ®eld 81 5.4.5. Neptune summary 82 5.5. Pluto 82 5.5.1. Physical characteristics of Pluto 83 5.5.2. Relationship with Charon 83 Problem 5 84 6 THE MOON 85 6.1. The physical characteristics of the Moon 85 6.1.1. The distance, size and orbit of the Moon 85 6.2. Earth±Moon interactions 88 6.2.1. The diurnal tides 88 6.2.2. The eects of tides on the Earth±Moon system 89 6.3. Lunar and solar eclipses 90 6.3.1. Solar eclipses 90 6.3.2. Eclipses of the Moon 90 6.4. The lunar surface 91 6.4.1. The maria 92 6.4.2. The highlands 93 6.4.3. Breccias 95 6.4.4. Regolith: lunar soil 95 6.5. The interior of the Moon 96 6.5.1. Gravity measurements 96 6.5.2. Lunar seismicity 98 6.5.3. The interior structure of the Moon 98 6.5.4. Heat ¯ow and temperature measurements 98 6.6. Lunar magnetism 100 6.7. Some indications of lunar history 101 6.8. Moon summary 103 Problems 6 104 7 SATELLITES AND RINGS 105 7.1. Types of satellites 105 7.2. The satellites of Mars 105 7.3. The satellites of Jupiter 107 7.3.1. Io 107 7.3.2. Europa 109 7.3.3. Ganymede 110 7.3.4. Callisto 111 7.3.5. Commensurabilities of the Galilean satellites 112 7.3.6. The smaller satellites of Jupiter 113 viii Contents 7.4. The satellites of Saturn 114 7.4.1. Titan and Hyperion 114 7.4.2. Mimas, Enceladus, Tethys, Dione and co-orbiting satellites 115 7.4.3. Rhea and Iapetus 117 7.4.4. Phoebe 117 7.4.5. Other small satellites 118 7.5. The satellites of Uranus 118 7.6. The satellites of Neptune 119 7.7. Pluto's satellite 120 7.8. Ring systems 120 7.8.1. The rings of Saturn 120 7.8.2. The rings of Uranus 122 7.8.3. The rings of Jupiter 122 7.8.4. The rings of Neptune 123 7.9. General observations 123 Problem 7 123 8 ASTEROIDS 124 8.1. General characteristics 124 8.2. Types of asteroid orbits 126 8.3. The distribution of asteroid orbitsÐKirkwood gaps 127 8.4. The compositions and possible origins of asteroids 128 Problem 8 131 9 COMETS 132 9.1. Types of comet orbit 132 9.2. The physical structure of comets 135 9.3. The Oort cloud 139 9.4. The Kuiper belt 142 Problems 9 143 10 METEORITES 144 10.1. Introduction 144 10.2. Stony meteorites 148 10.2.1. The systematics of chondritic meteorites 148 10.2.2. Achondrites 151 10.3. Stony irons 153 10.4. Iron meteorites 155 10.5. The ages of meteorites 159 10.6. Isotopic anomalies in meteorites 159 10.6.1. Oxygen in meteorites 159 10.6.2. Magnesium in meteorites 160 10.6.3. Neon in meteorites 162 10.6.4. Other isotopic anomalies 163 Problems 10 163 11 DUST IN THE SOLAR SYSTEM 164 11.1. Meteor showers 164 Contents ix 11.2. Zodiacal light and gegenschein 166 11.3. Radiation pressure and the Poynting±Robertson eect 166 Problem 11 167 12 THEORIES OF THE ORIGIN AND EVOLUTION OF THE SOLAR SYSTEM 168 12.1. The coarse structure of the Solar System 168 12.2. The distribution of angular momentum 168 12.3. Other features of the Solar System 169 12.4. The Laplace nebula theory 170 12.4.1. Objections and diculties 170 12.5. The Jeans tidal theory 171 12.5.1. Objections and diculties 172 12.6. The Solar Nebula Theory 172 12.6.1. The transfer of angular momentum 173 12.6.2. The formation of planets 173 12.6.2.1. Settling of dust into the mean plane 174 12.6.2.2. Formation of planetesimals 174 12.6.2.3. Planets and cores from planetesimals 174 12.6.2.4. Gaseous envelopes 174 12.6.3. General comments 174 12.7. The capture theory 175 12.7.1. The basic scenario of the capture theory 175 12.7.2. Modelling the basic capture theory 175 12.7.3. Planetary orbits and satellites 176 12.7.4. General Comments 176 12.8. Ideas on the evolution of the Solar System 178 12.8.1. Precession of elliptical orbits 178 12.8.2. Near interactions between protoplanets 179 12.9. A planetary collision 179 12.9.1. The Earth and Venus 179 12.9.2. Asteroids, comets and meteorites 181 12.10. The origin of the Moon 181 12.10.1. Darwin's ®ssion hypothesis 181 12.10.2. Co-accretion of the Earth and the Moon 182 12.10.3. Capture of the Moon 182 12.10.4. A single impact theory 183 12.10.5. Capture in a collision scenario 183 12.11. Other bodies in the Solar System 185 12.11.1.
Recommended publications
  • Starspot Photometry with Robotic Telescopes
    SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 125, 11-63 (1997) Starspot photometry with robotic telescopes Continuous UBV and V (RI)C photometry of 23 stars in 1991–1996 K.G. Strassmeier1, J. Bartus1,2, G. Cutispoto3, and M. Rodon´o3 1 Institut f¨ur Astronomie, Universit¨at Wien, T¨urkenschanzstraße 17, A-1180 Wien, Austria [email protected] 2 Konkoly Observatory, Hungarian Academy of Sciences, H-1525 Budapest, Hungary [email protected] 3 Catania Astrophysical Observatory, V.le A. Doria 6, I-95125 Catania, Italy [email protected], [email protected] Received September 23; accepted December 16, 1996 Abstract. We report on the progress of our ongoing pho- 1. Introduction: Starspot photometry tometric monitoring program of spotted late-type stars with automatic photoelectric telescopes (APTs) on Mt. Photometry of late-type stars with inhomogeneous sur- Hopkins in Arizona and on Mt. Etna in Sicily. We present face brightness distributions revealed distinct light-curve 9 250 differential UBV and/or V (RI)C observations for variations modulated with the stellar rotation period. altogether 23 chromospherically active stars, singles and Numerous papers dealt with this phenomenology since the binaries, pre main sequence and post main sequence, taken early seventies, starting with the first interpretations by between 1991 and 1996. The variability mechanism of our Kron (1947, 1952), Hoffmeister (1965), Chugainov (1966), target stars is mostly rotational modulation by an asym- Catalano & Rodon´o (1967) and Hall (1972) and finally cul- metrically spotted stellar surface. Therefore, precise rota- minating in the use of fully automatic telescopes for con- tional periods and their seasonal variations are determined tinuously monitoring RS CVn- and even solar-type stars using baselines between 3 years for HD 129333 to 34 years (e.g.
    [Show full text]
  • Are Rotational Axes Perpendicular to Orbital Planes in Binary Systems. III. Main Sequence and Short-Period RS Cvn Stars. R
    ACTA ASTRONOMICA Vol. 45 (1995) pp. 725±745 Are Rotational Axes Perpendicular to Orbital Planes in Binary Systems. III. Main Sequence and Short-Period RS CVn Stars. by R. GøeÎbocki Institute of Theoretical Physics and Astrophysics, University of GdaÂnsk, ul. Wita Stwosza 57, 80-952 GdaÂnsk, Poland e-mail: ®[email protected] and A. Stawikowski N. Copernicus Astronomical Center, ul. RabiaÂnska 8, 87-100 ToruÂn, Poland e-mail: [email protected] Received November 24, 1995 ABSTRACT Inclinations of the rotational axes, irot , are determined for 46 main sequence binaries of F, G, K and M spectral type and short period RS CVn systems. Seven binaries are asynchronous. The i inclinations irot are then compared with the orbital inclinations, orb , to test the alignment between the equatorial and orbital planes. In all 39 cases of synchronous rotators irot is equal or nearly equal to iorb . In a sample of seven asynchronous systems, at least six, and perhaps all, are non-coplanar. Key words: Stars: rotation-binaries: general-Stars: late-type 1. Introduction Chromospherically active stars with spots present a unique possibility to de- V i termine rotational period, Prot , and with independently measured rot sin rot to evaluate inclination of rotational axis, irot . In late type binaries it allows for com- parison of inclination of rotational axes to the orbital plane. Our previous analyses (Stawikowski and GøeÎbocki 1994 a,b called hereinafterPaperIandPaperII)showed that in long-period RS CVn stars an assumption of coplanarity of the equatorial ro- = i tational and orbital planes ( irot orb ) is justi®ed for synchronous systems only.
    [Show full text]
  • Arxiv:0705.4290V2 [Astro-Ph] 23 Aug 2007
    DRAFT VERSION NOVEMBER 11, 2018 Preprint typeset using LATEX style emulateapj v. 08/13/06 THE GEMINI DEEP PLANET SURVEY – GDPS∗ DAVID LAFRENIÈREA,RENÉ DOYONA , CHRISTIAN MAROISB ,DANIEL NADEAUA, BEN R. OPPENHEIMERC,PATRICK F. ROCHED , FRANÇOIS RIGAUTE, JAMES R. GRAHAMF ,RAY JAYAWARDHANAG,DOUG JOHNSTONEH,PAUL G. KALASF ,BRUCE MACINTOSHB, RENÉ RACINEA Draft version November 11, 2018 ABSTRACT We present the results of the Gemini Deep Planet Survey, a near-infrared adaptive optics search for giant planets and brown dwarfs around nearby young stars. The observations were obtained with the Altair adaptive optics system at the Gemini North telescope and angular differential imaging was used to suppress the speckle noise of the central star. Detection limits for the 85 stars observed are presented, along with a list of all faint point sources detected around them. Typically, the observations are sensitive to angular separations beyond 0.5′′ with 5σ contrast sensitivities in magnitude difference at 1.6 µm of 9.5 at 0.5′′, 12.9 at 1′′, 15.0 at 2′′, and 16.5 at 5′′. For the typical target of the survey, a 100 Myr old K0 star located 22 pc from the Sun, the observations are sensitive enough to detect planets more massive than 2 MJup with a projected separation in the range 40–200 AU. Depending on the age, spectral type, and distance of the target stars, the detection limit can be as low as 1 MJup. Second epoch observations of 48 stars with candidates (out of 54) have confirmed that all candidates are∼ unrelated background stars. A detailed statistical analysis of the survey results, yielding upper limits on the fractions of stars with giant planet or low mass brown dwarf companions, is presented.
    [Show full text]
  • Where Are All the Sirius-Like Binary Systems?
    Mon. Not. R. Astron. Soc. 000, 1-22 (2013) Printed 20/08/2013 (MAB WORD template V1.0) Where are all the Sirius-Like Binary Systems? 1* 2 3 4 4 J. B. Holberg , T. D. Oswalt , E. M. Sion , M. A. Barstow and M. R. Burleigh ¹ Lunar and Planetary Laboratory, Sonnett Space Sciences Bld., University of Arizona, Tucson, AZ 85721, USA 2 Florida Institute of Technology, Melbourne, FL. 32091, USA 3 Department of Astronomy and Astrophysics, Villanova University, 800 Lancaster Ave. Villanova University, Villanova, PA, 19085, USA 4 Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK 1st September 2011 ABSTRACT Approximately 70% of the nearby white dwarfs appear to be single stars, with the remainder being members of binary or multiple star systems. The most numerous and most easily identifiable systems are those in which the main sequence companion is an M star, since even if the systems are unresolved the white dwarf either dominates or is at least competitive with the luminosity of the companion at optical wavelengths. Harder to identify are systems where the non-degenerate component has a spectral type earlier than M0 and the white dwarf becomes the less luminous component. Taking Sirius as the prototype, these latter systems are referred to here as ‘Sirius-Like’. There are currently 98 known Sirius-Like systems. Studies of the local white dwarf population within 20 pc indicate that approximately 8 per cent of all white dwarfs are members of Sirius-Like systems, yet beyond 20 pc the frequency of known Sirius-Like systems declines to between 1 and 2 per cent, indicating that many more of these systems remain to be found.
    [Show full text]
  • Exploring the Brown Dwarf Desert with Hipparcos J
    Exploring the brown dwarf desert with Hipparcos J. L. Halbwachs, Frédéric Arenou, M. Mayor, S. Udry, D. Queloz To cite this version: J. L. Halbwachs, Frédéric Arenou, M. Mayor, S. Udry, D. Queloz. Exploring the brown dwarf desert with Hipparcos. Astronomy and Astrophysics - A&A, EDP Sciences, 2000, 355, pp.581-594. hal- 02055170 HAL Id: hal-02055170 https://hal.archives-ouvertes.fr/hal-02055170 Submitted on 3 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Astron. Astrophys. 355, 581–594 (2000) ASTRONOMY AND ASTROPHYSICS Exploring the brown dwarf desert with Hipparcos? J.L. Halbwachs1, F. Arenou2, M. Mayor3, S. Udry3, and D. Queloz3,4 1 Equipe “Populations stellaires et evolution galactique”, Observatoire Astronomique de Strasbourg (UMR 7550), 11 rue de l’Universite,´ 67 000 Strasbourg ([email protected]) 2 DASGAL, Observatoire de Paris–Meudon, bat 11, 5 place J. Janssen, 92195 Meudon Cedex, France ([email protected]) 3 Geneva Observatory, 51 chemin des Maillettes, 1290 Sauverny, Switzerland ([email protected]; [email protected]; [email protected]) 4 Jet Propulsion Lab., 4800 Oak Grove Drive, Pasadena, CA 91109, USA Received 5 July 1999 / Accepted 16 November 1999 Abstract.
    [Show full text]
  • Presentation
    Time, Calendar, Angle of sunbeam and the gnomons (vertical sticks) at Syene and Alexandria allowed Eratosthene to' estimate radius and circumference of Earth. Ancient Babylonians Used Geometry to Track the Planets. This illustration from a translation of Aristarchus in four ancient Babylonian cuneiform tablets, Jupiter’s The Antikythera mechanism is an ancient analog work shows how he approached measuring the displacement along the ecliptic is computed as the area of computer[ designed to predict astronomical positions size of the Earth based the size of the Earth's a trapezoidal figure obtained by drawing its daily and eclipses for calendrical and astrological purposes, shadow on the moon during a Lunar eclipse displacement against time (Ossendrijver 2016) Observation of night sky has been a driver for natural sciences and has allowed a better understanding of our planet! Geodetic VLBI allows for accurate measurement of : • Earth Orientation Parameters (EOP) – UT1, polar motion, nutation, precession • Positions and velocities of sites occupied by VLBI antennas • Troposphericparameters – total and wet zenith path delays, meteorological data for stations http://geodesy.hartrao.ac.za/site/en/geodesy-equipment/radio-telescope-vlbi.html Credit: P. Laudet Scientific Reasoning 1 2 3 Observe Think.. Verify …and question …and may be understand …that the thought was correct Ptolemy's model for planetary motion, with deferents (big spheres) and epicycles (small spheres). Using precise astronomical data, Kepler’s proposed a theory for the orbital motions of the solar system bodies: Kepler’s law of planetary oition Copernicus' drawing of his system. He Comparison of the calculated position of Mars with the From Dante's (1265-1321) "The Divine notes that Mars is far from its predicted Ptolemy/Copernicus systems, as carried out by Origanus, and its Comedy position.
    [Show full text]
  • NASA Astronauts
    PUBLISHED BY Public Affairs Divisio~l Washington. D.C. 20546 1983 IColor4-by-5 inch transpar- available free to information lead and sent to: Non-informstionmedia may obtain identical material for a fee through a photographic contractor by using the order forms in the rear of this book. These photqraphs are government publications-not subject to copyright They may not be used to state oiimply the endorsement by NASA or by any NASA employee of a commercial product piocess or service, or used in any other manner that might mislead. Accordingly, it is requested that if any photograph is used in advertising and other commercial promotion. layout and copy be submitted to NASA prior to release. Front cover: "Lift-off of the Columbia-STS-2 by artist Paul Salmon 82-HC-292 82-ti-304 r 8arnr;w u vowzn u)rorr ~ nsrvnv~~nrnno................................................ .-- Seasat .......................................................................... 197 Skylab 1 Selected Pictures .......................................................150 Skylab 2 Selected Pictures ........................................................ 151 Skylab 3 Selected Pictures ........................................................152 Skylab 4 Selected Pictures ........................................................ 153 SpacoColony ...................................................................183 Space Shuttle ...................................................................171 Space Stations ..................................................................198 \libinn 1 1f.d Apoiio 17/Earth 72-HC-928 72-H-1578 Apolb B/Earth Rise 68-HC-870 68-H-1401 Voyager ;//Saturn 81-HC-520 81-H-582 Voyager I/Ssturian System 80-HC-647 80-H-866 Voyager IN~lpiterSystem 79-HC-256 79-H-356 Viking 2 on Mars 76-HC-855 76-H-870 Apollo 11 /Aldrin 69-HC-1253 69-H-682 Apollo !I /Aldrin 69-HC-684 69-H-1255 STS-I /Young and Crippen 79-HC-206 79-H-275 STS-1- ! QTPLaunch of the Columbia" 82-HC-23 82-H-22 Major Launches NAME UUNCH VEHICLE MISSIONIREMARKS 1956 VANGUARD Dec.
    [Show full text]
  • Ebook < Impact Craters on Mars # Download
    7QJ1F2HIVR # Impact craters on Mars « Doc Impact craters on Mars By - Reference Series Books LLC Mrz 2012, 2012. Taschenbuch. Book Condition: Neu. 254x192x10 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 50. Chapters: List of craters on Mars: A-L, List of craters on Mars: M-Z, Ross Crater, Hellas Planitia, Victoria, Endurance, Eberswalde, Eagle, Endeavour, Gusev, Mariner, Hale, Tooting, Zunil, Yuty, Miyamoto, Holden, Oudemans, Lyot, Becquerel, Aram Chaos, Nicholson, Columbus, Henry, Erebus, Schiaparelli, Jezero, Bonneville, Gale, Rampart crater, Ptolemaeus, Nereus, Zumba, Huygens, Moreux, Galle, Antoniadi, Vostok, Wislicenus, Penticton, Russell, Tikhonravov, Newton, Dinorwic, Airy-0, Mojave, Virrat, Vernal, Koga, Secchi, Pedestal crater, Beagle, List of catenae on Mars, Santa Maria, Denning, Caxias, Sripur, Llanesco, Tugaske, Heimdal, Nhill, Beer, Brashear Crater, Cassini, Mädler, Terby, Vishniac, Asimov, Emma Dean, Iazu, Lomonosov, Fram, Lowell, Ritchey, Dawes, Atlantis basin, Bouguer Crater, Hutton, Reuyl, Porter, Molesworth, Cerulli, Heinlein, Lockyer, Kepler, Kunowsky, Milankovic, Korolev, Canso, Herschel, Escalante, Proctor, Davies, Boeddicker, Flaugergues, Persbo, Crivitz, Saheki, Crommlin, Sibu, Bernard, Gold, Kinkora, Trouvelot, Orson Welles, Dromore, Philips, Tractus Catena, Lod, Bok, Stokes, Pickering, Eddie, Curie, Bonestell, Hartwig, Schaeberle, Bond, Pettit, Fesenkov, Púnsk, Dejnev, Maunder, Mohawk, Green, Tycho Brahe, Arandas, Pangboche, Arago, Semeykin, Pasteur, Rabe, Sagan, Thira, Gilbert, Arkhangelsky, Burroughs, Kaiser, Spallanzani, Galdakao, Baltisk, Bacolor, Timbuktu,... READ ONLINE [ 7.66 MB ] Reviews If you need to adding benefit, a must buy book. Better then never, though i am quite late in start reading this one. I discovered this publication from my i and dad advised this pdf to find out. -- Mrs. Glenda Rodriguez A brand new e-book with a new viewpoint.
    [Show full text]
  • Terrestrial Planets (Bennett Et Al
    Earth and the Geology of the Terrestrial Planets (Bennett et al. Ch. 9) Major Ideas In This Chapter ● Terrestrial planets looked (largely) the same when they were formed. Differences due to geological processes. ● Geological activity is driven by internal heat ● Planetary size plays a large role in retaining heat ● Distance from the Sun, rotation affects erosion ● Crater density can indicate surface age ● Earth has a unique geology Terrestrial Planets ● Compared to Jovian planets: – Smaller size/mass – Large “core” to atmosphere ratio – Higher density – Closer to Sun and closer together – Warmer – Few or no moons – No rings (NASA) Planetary Surfaces and Interiors ● Terrestrial planets + Moon were similar when young – Subjected to heavy bombardment – Differences due to processes that occurred after formation ● Understanding the surface features: planetary geology ● Processes in the interior drive activity at the surface Your book uses “terrestrial worlds” to refer to the terrestrial planets + the Moon. (from Bennett et al.) (from Bennett et al.) How Do We Learn About Planetary Interiors? ● Average density determinations ● Local gravity variations as measured with artificial satellites ● Magnetic fields: molten core/convection ● Lava flow: internal composition ● Earthquakes: internal structure Earthquakes: Seismic Waves ● Earthquakes generate vibrations – Typical wavelength ~ several km – Reconstruct interior ● Two types of waves: – P-waves: compressional waves – S-waves: shear waves ● S-waves cannot pass through liquid (from Bennett et
    [Show full text]
  • ‹ in This Web Service Cambridge University Press Cambridge University Press 978-0-521-51418-7
    &DPEULGJH8QLYHUVLW\3UHVV 78-0-521-51418-7 - Planetary Surface Processes +-D\0HORVK ,QGH[ 0RUHLQIRUPDWLRQ Index aa, 208–09 Apollo 17, 152, 153, 277, 322 accretion of planets, 268 heat flow, 292 acoustic fluidization, 343 Appalachian Valley and Ridge, 129 adiabat, 180, 181 Arden corona, 139 adiabatic gradient, 123, 173–74 Ares Vallis, 405 Adivar crater, 379 Ares Vallis flood, 406 Aeolis Planum, 413, 414 Argyre Basin, 455 Agassiz, Louis, 434, 439 Aristarchus crater, 216 age, solar system, 3 Aristarchus plateau, 195, 206, 216 ages of planetary surfaces, see impact craters: Artemis Chasma, 16 populations: dating Artemis Corona, 93 agglutinate, 285 Ascraeus Mons, 207 Ahmad Baba crater, 225 asteroid, 4 Airy isostasy, 87, 88 atmospheres Alba Patera, 157, 159 retention, 6 albedo, 289 Aleutian volcanic chain, 189, 195 Bagnold, R., 348, 374, 397, 401, 430 Algodones dunes, 366 Baltis Vallis, Venus, 217 alkali basalt, 184 Barringer, D. M., 223 Allegheny River, 417 basalt, 179, 196 Alpha Regio, Venus, 216 Basin and Range province, 136 Alphonsus crater, 155 batch melting, 187 Alpine Fault, 149 Beta Regio, 91 Alps, 436 Big Bear Lake, CA, 302 Amazon River, 416 Bingham, E. C., 64, 185 Amboy crater, CA, 377 biotite, 305 ammonia clathrate, 179 Blackhawk landslide, 341 Amontons, Guillaume, 68 blueberries on Mars, 304 amorphous ice, 288 Bonestell, Chesley, 328 Anderson, Don, 94 Borealis plains, 17 Anderson, E. M., 145 Boulton, G. S., 452 Andes mountains, 189, 195 Boussinesq, J., 411 andesite, 182, 184, 196, 197 Brazil nut effect, 314 anhydrite, 297, 299 Brent
    [Show full text]
  • Download This Article in PDF Format
    A&A 593, A38 (2016) Astronomy DOI: 10.1051/0004-6361/201628231 & c ESO 2016 Astrophysics SPOTS: The Search for Planets Orbiting Two Stars II. First constraints on the frequency of sub-stellar companions on wide circumbinary orbits M. Bonavita1; 2, S. Desidera2, C. Thalmann3, M. Janson4, A. Vigan5, G. Chauvin6, and J. Lannier6 1 Institute for Astronomy, The University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK e-mail: [email protected] 2 INAF–Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 3 Institute for Astronomy, ETH Zurich, Wolfgang-Pauli Strasse 27, 8093 Zurich, Switzerland 4 Department of Astronomy, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden 5 Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388 Marseille, France 6 Institut de Planétologie et d’Astrophysique de Grenoble, UJF, CNRS, 414 rue de la piscine, 38400 Saint-Martin-d’Hères, France Received 1 February 2016 / Accepted 12 May 2016 ABSTRACT A large number of direct imaging surveys for exoplanets have been performed in recent years, yielding the first directly imaged planets and providing constraints on the prevalence and distribution of wide planetary systems. However, like most of the radial velocity ones, these generally focus on single stars, hence binaries and higher-order multiples have not been studied to the same level of scrutiny. This motivated the Search for Planets Orbiting Two Stars (SPOTS) survey, which is an ongoing direct imaging study of a large sample of close binaries, started with VLT/NACO and now continuing with VLT/SPHERE.
    [Show full text]
  • Université De Montréal Relevé De Planètes Géantes Autour D'étoiles
    Université de Montréal Relevé de planètes géantes autour d’étoiles proches par imagerie directe et optimisation d’une technique d’imagerie multibande par David Lafrenière Département de physique Faculté des arts et des sciences Thèse présentée à la Faculté des études supérieures en vue de l’obtention du grade de Philosophiœ Doctor (Ph.D.) en physique Avril, 2007 © David Lafrenière, 2007. o o Université (III de Montréal Direction des bib1othèques AVIS L’auteur a autorisé l’Université de Montréal à reproduire et diffuser, en totalité ou en partie, par quelque moyen que ce soit et sur quelque support que ce soit, et exclusivement à des fins non lucratives d’enseignement et de recherche, des copies de ce mémoire ou de cette thèse. L’auteur et les coauteurs le cas échéant conservent la propriété du droit d’auteur et des droits moraux qui protègent ce document. Ni la thèse ou le mémoire, ni des extraits substantiels de ce document, ne doivent être imprimés ou autrement reproduits sans l’autorisation de l’auteur. Afin de se conformer à la Loi canadienne sur la protection des renseignements personnels, quelques formulaires secondaires, coordonnées ou signatures intégrées au texte ont pu être enlevés de ce document. Bien que cela ait pu affecter la pagination, il n’y a aucun contenu manquant. NOTICE The author of this thesis or dissertation has granted a nonexciusive license allowing Université de Montréal to reproduce and publish the document, in part or in whole, and in any format, solely for noncommercial educationaT and research purposes. The author and co-authors if applicable retain copyright ownership and morel rights in this document.
    [Show full text]