I110-00 1..9999
Total Page:16
File Type:pdf, Size:1020Kb
PLANETARY SCIENCE THE SCIENCE OF PLANETS AROUND STARS PLANETARY SCIENCE THE SCIENCE OF PLANETS AROUND STARS George H A Cole Department of Physics, University of Hull, UK Michael M Woolfson Department of Physics, University of York, UK Institute of Physics Publishing Bristol and Philadelphia # IOP Publishing Ltd 2002 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. Multiple copying is permitted in accordance with the terms of licences issued by the Copyright Licensing Agency under the terms of its agreement with Universities UK (UUK). British Library Cataloguing-in-Publication Data A catalogue record of this book is available from the British Library. ISBN 0 7503 0815 X Library of Congress Cataloging-in-Publication Data are available Commissioning Editor: John Navas Production Editor: Simon Laurenson Production Control: Sarah Plenty Cover Design: Fre de rique Swist Published by Institute of Physics Publishing, wholly owned by The Institute of Physics, London Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK US Oce: Institute of Physics Publishing, The Public Ledger Building, Suite 1035, 150 South Independence Mall West, Philadelphia, PA 19106, USA Typeset by Academic Technical, Bristol Printed in the UK by Bookcraft, Midsomer Norton, Somerset CONTENTS INTRODUCTION xix A REVIEW OF THE SOLAR SYSTEM 1 THE UNITY OF THE UNIVERSE 1 1.1. Cosmic abundance of the chemical elements 1 1.2. Some examples 2 Problem 1 4 2 THE SUN AND OTHER STARS 6 2.1. The interstellar medium 6 2.2. Dense cool clouds 6 2.3. Stellar clusters 8 2.4. A scenario for formation of a galactic cluster 10 2.5. Main sequence stars and their evolution 12 2.6. Brown dwarfs 12 2.7. Stellar companions 12 Problem 2 15 3 THE PLANETS 16 3.1. An overview of the planets 16 3.2. Orbital motions 16 3.3. Orbits of the planets 19 3.4. Planetary structuresÐgeneral considerations 21 3.4.1. Planetary magnetic ®elds 24 Problems 3 26 4 THE TERRESTRIAL PLANETS 27 4.1. Mercury 27 4.1.1. The surface of Mercury 28 4.1.2. Mercury's magnetic ®eld 31 4.1.3. Mercury summary 31 v vi Contents 4.2. Venus 32 4.2.1. The surface of Venus 32 4.2.2. The atmosphere of Venus 35 4.2.3. Venus and magnetism 38 4.2.4. Venus summary 38 4.3 The Earth 38 4.3.1. The shape of the Earth 39 4.3.2. Surface composition and age 39 4.3.3. Changing surface features 41 4.3.4. Surface plate structure 41 4.3.5. Heat ¯ow through the surface 46 4.3.6. Earthquakes 49 4.3.6.1. The crust 51 4.3.6.2. The mantle 52 4.3.6.3. The core 52 4.3.7. The Earth's atmosphere 52 4.3.8. The Earth's magnetic ®eld 53 4.3.9. Earth summary 54 4.4. Mars 54 4.4.1. The surface of Mars 54 4.4.1.1. The highlands 55 4.4.1.2. The plains 57 4.4.1.3. Volcanic regions 58 4.4.1.4. Channels and canyons 60 4.4.2. Consequences of early water 62 4.4.3. Later missions 62 4.4.4. The atmosphere of Mars 65 4.4.5. Magnetism and Mars 66 4.4.6. Mars summary 66 Problem 4 67 5 THE MAJOR PLANETS AND PLUTO 68 5.1. Jupiter 68 5.1.1. The internal structure of Jupiter 68 5.1.2. Heat generation in Jupiter 5.1.3. The atmosphere of Jupiter 70 5.1.4. Jupiter's magnetic ®eld 72 5.1.5. Jupiter summary 73 5.2. Saturn 74 5.2.1. The internal structure of Saturn 74 5.2.2. Heat generation in Saturn 75 5.2.3. The atmosphere of Saturn 75 5.2.4. Saturn's magnetic ®eld 75 5.2.5. Saturn summary 76 5.3. Uranus 77 5.3.1. The internal structure of Uranus 78 5.3.2. Heat generation in Uranus 78 5.3.3. The atmosphere of Uranus 78 Contents vii 5.3.4. The magnetic ®eld of Uranus 79 5.3.5. Uranus summary 79 5.4. Neptune 80 5.4.1. The internal structure of Neptune 80 5.4.2. Heat generation in Neptune 81 5.4.3. The atmosphere of Neptune 81 5.4.4. Neptune's magnetic ®eld 81 5.4.5. Neptune summary 82 5.5. Pluto 82 5.5.1. Physical characteristics of Pluto 83 5.5.2. Relationship with Charon 83 Problem 5 84 6 THE MOON 85 6.1. The physical characteristics of the Moon 85 6.1.1. The distance, size and orbit of the Moon 85 6.2. Earth±Moon interactions 88 6.2.1. The diurnal tides 88 6.2.2. The eects of tides on the Earth±Moon system 89 6.3. Lunar and solar eclipses 90 6.3.1. Solar eclipses 90 6.3.2. Eclipses of the Moon 90 6.4. The lunar surface 91 6.4.1. The maria 92 6.4.2. The highlands 93 6.4.3. Breccias 95 6.4.4. Regolith: lunar soil 95 6.5. The interior of the Moon 96 6.5.1. Gravity measurements 96 6.5.2. Lunar seismicity 98 6.5.3. The interior structure of the Moon 98 6.5.4. Heat ¯ow and temperature measurements 98 6.6. Lunar magnetism 100 6.7. Some indications of lunar history 101 6.8. Moon summary 103 Problems 6 104 7 SATELLITES AND RINGS 105 7.1. Types of satellites 105 7.2. The satellites of Mars 105 7.3. The satellites of Jupiter 107 7.3.1. Io 107 7.3.2. Europa 109 7.3.3. Ganymede 110 7.3.4. Callisto 111 7.3.5. Commensurabilities of the Galilean satellites 112 7.3.6. The smaller satellites of Jupiter 113 viii Contents 7.4. The satellites of Saturn 114 7.4.1. Titan and Hyperion 114 7.4.2. Mimas, Enceladus, Tethys, Dione and co-orbiting satellites 115 7.4.3. Rhea and Iapetus 117 7.4.4. Phoebe 117 7.4.5. Other small satellites 118 7.5. The satellites of Uranus 118 7.6. The satellites of Neptune 119 7.7. Pluto's satellite 120 7.8. Ring systems 120 7.8.1. The rings of Saturn 120 7.8.2. The rings of Uranus 122 7.8.3. The rings of Jupiter 122 7.8.4. The rings of Neptune 123 7.9. General observations 123 Problem 7 123 8 ASTEROIDS 124 8.1. General characteristics 124 8.2. Types of asteroid orbits 126 8.3. The distribution of asteroid orbitsÐKirkwood gaps 127 8.4. The compositions and possible origins of asteroids 128 Problem 8 131 9 COMETS 132 9.1. Types of comet orbit 132 9.2. The physical structure of comets 135 9.3. The Oort cloud 139 9.4. The Kuiper belt 142 Problems 9 143 10 METEORITES 144 10.1. Introduction 144 10.2. Stony meteorites 148 10.2.1. The systematics of chondritic meteorites 148 10.2.2. Achondrites 151 10.3. Stony irons 153 10.4. Iron meteorites 155 10.5. The ages of meteorites 159 10.6. Isotopic anomalies in meteorites 159 10.6.1. Oxygen in meteorites 159 10.6.2. Magnesium in meteorites 160 10.6.3. Neon in meteorites 162 10.6.4. Other isotopic anomalies 163 Problems 10 163 11 DUST IN THE SOLAR SYSTEM 164 11.1. Meteor showers 164 Contents ix 11.2. Zodiacal light and gegenschein 166 11.3. Radiation pressure and the Poynting±Robertson eect 166 Problem 11 167 12 THEORIES OF THE ORIGIN AND EVOLUTION OF THE SOLAR SYSTEM 168 12.1. The coarse structure of the Solar System 168 12.2. The distribution of angular momentum 168 12.3. Other features of the Solar System 169 12.4. The Laplace nebula theory 170 12.4.1. Objections and diculties 170 12.5. The Jeans tidal theory 171 12.5.1. Objections and diculties 172 12.6. The Solar Nebula Theory 172 12.6.1. The transfer of angular momentum 173 12.6.2. The formation of planets 173 12.6.2.1. Settling of dust into the mean plane 174 12.6.2.2. Formation of planetesimals 174 12.6.2.3. Planets and cores from planetesimals 174 12.6.2.4. Gaseous envelopes 174 12.6.3. General comments 174 12.7. The capture theory 175 12.7.1. The basic scenario of the capture theory 175 12.7.2. Modelling the basic capture theory 175 12.7.3. Planetary orbits and satellites 176 12.7.4. General Comments 176 12.8. Ideas on the evolution of the Solar System 178 12.8.1. Precession of elliptical orbits 178 12.8.2. Near interactions between protoplanets 179 12.9. A planetary collision 179 12.9.1. The Earth and Venus 179 12.9.2. Asteroids, comets and meteorites 181 12.10. The origin of the Moon 181 12.10.1. Darwin's ®ssion hypothesis 181 12.10.2. Co-accretion of the Earth and the Moon 182 12.10.3. Capture of the Moon 182 12.10.4. A single impact theory 183 12.10.5. Capture in a collision scenario 183 12.11. Other bodies in the Solar System 185 12.11.1.