CJNH 2016(2) December (2016).Indd

Total Page:16

File Type:pdf, Size:1020Kb

CJNH 2016(2) December (2016).Indd Postpartum phytomedicine and its future in maternal healthcare in Prey Lang, Cambodia Grape, Victoria H. ; Turreira Garcia, Nerea; Schmidt, Lars Holger; Phourin, Chhang; Srisanga, Prachaya Published in: Cambodian Journal of Natural History Publication date: 2016 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Grape, V. H., Turreira Garcia, N., Schmidt, L. H., Phourin, C., & Srisanga, P. (2016). Postpartum phytomedicine and its future in maternal healthcare in Prey Lang, Cambodia. Cambodian Journal of Natural History, 2016(2), 119–133. Download date: 26. Sep. 2021 Cambodian Journal of Natural History Biodiversity and health Postpartum phytomedicine Podocarps on Bokor Mountain Hairy-nosed otter status and ecology Reproductive thresholds of dipterocarps New orchids, reptiles and range extensions December 2016 Vol. 2016 No. 2 Cambodian Journal of Natural History ISSN 2226–969X Editors Email: [email protected] • Dr Neil M. Furey, Chief Editor, Fauna & Flora International, Cambodia. • Dr Jenny C. Daltry, Senior Conservation Biologist, Fauna & Flora International, UK. • Dr Nicholas J. Souter, Mekong Case Study Manager, Conservation International, Cambodia. • Dr Ith Saveng, Project Manager, University Capacity Building Project, Fauna & Flora International, Cambodia. International Editorial Board • Dr Stephen J. Browne, Fauna & Flora International, • Dr Sovanmoly Hul, Muséum National d’Histoire Singapore. Naturelle, Paris, France. • Dr Martin Fisher, Editor of Oryx – The International • Dr Andy L. Maxwell, World Wide Fund for Nature, Journal of Conservation, Cambridge, U.K. Cambodia. • Dr L. Lee Grismer, La Sierra University, California, • Dr Brad Pett itt , Murdoch University, Australia. USA. • Dr Campbell O. Webb, Harvard University Herbaria, • Dr Knud E. Heller, Nykøbing Falster Zoo, Denmark. USA. Other peer reviewers for this volume • Prof. Leonid Averyanov, Komarov Botanical Institute, • Dr Syed Ainul Hussain, Wildlife Institute of India. Russia. • Dr Mamoru Kanzaki, Kyoto University, Japan. • Dr Hugo de Boer, University of Oslo, Norway. • Neang Thy, Minstry of Environment, Cambodia. • Prof. Rafe Brown, University of Kansas, USA. • Prof. Brendan Buckley, Lamont-Doherty Earth • Dr Nguyen Quang Truong, Institute of Ecology and Observatory, USA. Biological Resources, Vietnam. • Dr Rainer Bussmann, Missouri Botanical Garden, USA. • Dr Shoko Sakai, Kyoto University, Japan. • Dr Nicole Duplaix, Oregon State University, USA. • Dr Bryan Stuart, North Carolina Museum of Natural • Dr Jackson Frechett e, Fauna & Flora International, Sciences, USA. Cambodia. • Dr Phillip Thomas, Royal Botanical Garden, Edinburgh, • Dr Peter Geissler, Staatliches Museum für Naturkunde UK. Stutt gart, Germany. • Dr Timo Hartmann, Zoological Research Museum • Dr Santi Watt hana, Suranaree University of Technology, Alexander Koenig, Germany. Thailand. The Cambodian Journal of Natural History is an open access journal published by the Centre for Biodiversity Conserva- tion, Royal University of Phnom Penh. The Centre for Biodiversity Conservation is a non-profi t making unit dedicated to training Cambodian biologists and to the study and conservation of Cambodian biodiversity. Cover image: Chocolate chip seastars (Protoreaster nodosus) in a seagrass meadow near Koh Rong Island (© Paul Colley). The Royal Government of Cambodia declared the country’s fi rst large-scale marine protected area around the islands of Koh Rong and Koh Rong Sanloem in June 2016 (page 83). Editorial 77 Editorial — Links between biodiversity and health: consequences and opportunities for collaboration Mathieu PRUVOT1,* & Serge MORAND2,3,4 1 Wildlife Conservation Society, Wildlife Health and Health Policy program, PO Box 1620, No. 21, Street 21, Tonle Bassac, Phnom Penh, 12000, Cambodia. 2 Centre National de Recherche Scientifi que and Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Animal et Gestion Intégrée des Risques, F-34398, Montpellier, France. 3 Centre d’Infectiologie Christophe Mérieux du Laos, Vientiane, Laos. 4 Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. * Corresponding author. Email [email protected] The relationships between biodiversity and the health hunting are also driving biodiversity declines in many of people, livestock, and wildlife have been increasingly of Cambodia’s landscapes (Valbo-Jørgensen et al., 2009; recognized and documented in recent decades (Millen- Gray et al., 2012), further aff ecting food chains in these nium Ecosystem Assessment, 2005; Myers et al., 2013; ecosystems and compromising the nutritional status and Hough, 2014; WHO, 2015). In att empting to understand survival of wildlife (O’Kelly et al., 2012). Conversion of the practical implications of these links, one inevitably biodiverse areas to monocultures and agriculture inten- stumbles on their complexity and sometimes contra- sifi cation have increased chemical pollution with severe dictory nature. One consequence of this is diffi culty in health consequences for wildlife, livestock, and humans aligning the policy agendas and activities of the conser- (Monirith et al., 1999; Neufeld et al., 2010; Wang et al., vation and health sectors (Chivian & Bernstein, 2008; 2011; WCS, 2016). Smoke from forest fi res used to clear Hough, 2014). In the interests of promoting benefi cial land also cause signifi cant respiratory issues, particularly collaborations between these sectors, we briefl y illustrate in children (Jayachandran, 2009). When natural habitats the diversity of these relationships using examples from are destroyed, the vegetal and microbial diversity that Cambodia, and highlight the complementary nature of have allowed many biomedical discoveries supporting conservation and health initiatives through examples of human and animal health (e.g., anti-microbial drugs) are ongoing projects and potential opportunities. also lost. These biota also support the health of rural and Strong economic growth in Cambodia, with a stable indigenous communities through traditional medicine 7% GDP growth over the past six years, has led to (Hout et al., 2006; Chea et al., 2007). Although conserva- improvements in several development and health indi- tion of medicinal plants can be used to promote sustain- cators (World Bank, 2016). However, rapid rates of defor- able use and forest protection (e.g., Laval et al., 2011), estation, agricultural growth, and urbanization represent some of the beliefs and practices involving the use of major challenges to ecosystem and biodiversity conser- animal parts for traditional medicine pose a considerable vation, and off er mixed prospects for animal and public threat to wildlife (Sodhi et al., 2004; Starr et al., 2010) and health (NBSC, 2014). will likely continue to result in species extinctions (Cour- champ et al., 2006). One of the most obvious connections between biodi- versity and health is through provisioning services (Millen- A wide range of regulating and supporting ecosystem nium Ecosystem Assessment, 2005). Many of Cambodia’s services (Millennium Ecosystem Assessment, 2005) are rural communities still rely heavily on wildlife and non- related to wildlife, livestock, and human health. Intact timber forest products for their subsistence and nutri- ecosystems may help in regulating pests and infec- tional needs, similar to other parts of Southeast Asia tious diseases (WHO, 2015). However, the relation- and the world (Golden et al., 2011; Johnson et al., 2012). ships between biodiversity and infectious diseases are However, wildlife consumption has also caused major complex, highly context-dependent, and much debated infectious disease outbreaks (e.g., SARS, HIV, Ebola) and (Johnson & Thieltges, 2010; Randolph & Dobson, 2012; continues to be a driver of disease emergence (Karesh & Ostfeld, 2013). In some circumstances, diversity of host Noble, 2009; Greatorex et al., 2016). Overfi shing and over- species plays a regulating role through the combined Cambodian Journal of Natural History 2016 (2) 77–81 © Centre for Biodiversity Conservation, Phnom Penh 78 Editorial action of host competition and diff erential host suscep- etary Health” have emerged to promote integrative and tibility to pathogens (i.e. the dilution eff ect) (Keesing et trans-disciplinary approaches to their study (Roger et al., al., 2010), while in others, it can be a source of pathogens 2016). These are all initiatives and frameworks that foster and result in their amplifi cation (Randolph & Dobson, collaboration between the livestock, human and wildlife 2012). Higher biodiversity often results in higher path- health sectors, and encourage an ecosystem approach to ogen diversity, but a pathogen-rich ecosystem may not health. Although these eff orts have improved coordina- necessarily be an issue; rather it is the loss of ecosystem tion between public and animal health, much more can integrity and increased contact with invasive hosts be done to increase collaboration between health sectors (including humans and livestock) that may increase and conservation initiatives. disease emergence risks (Patz et al., 2004). For instance, the overall richness of infectious diseases in the Asia- Field personnel in protected areas and individuals Pacifi c region is positively correlated with the richness of that directly work with wildlife (e.g., law enforcement, birds and mammals, but the number of zoonotic disease wildlife monitoring) are typically at the forefront of outbreaks
Recommended publications
  • Addenda and Amendments to a Checklist of the Lepidoptera of the British Isles on Account of Subsequently Published Data
    Ent Rec 128(2)_Layout 1 22/03/2016 12:53 Page 98 94 Entomologist’s Rec. J. Var. 128 (2016) ADDENDA AND AMENDMENTS TO A CHECKLIST OF THE LEPIDOPTERA OF THE BRITISH ISLES ON ACCOUNT OF SUBSEQUENTLY PUBLISHED DATA 1 DAVID J. L. A GASSIZ , 2 S. D. B EAVAN & 1 R. J. H ECKFORD 1 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD 2 The Hayes, Zeal Monachorum, Devon EX17 6DF This update incorpotes information published before 25 March 2016 into A Checklist of the Lepidoptera of the British Isles, 2013. CENSUS The number of species now recorded from the British Isles stands at 2535 of which 57 are thought to be extinct and in addition there are 177 adventive species. CHANGE OF STATUS (no longer extinct) p. 17 16.013 remove X, Hall (2013) p. 25 35.006 remove X, Beavan & Heckford (2014) p. 40 45.024 remove X, Wilton (2014) p. 54 49.340 remove X, Manning (2015) ADDITIONAL SPECIES in main list 12.0047 Infurcitinea teriolella (Amsel, 1954) E S W I C 15.0321 Parornix atripalpella Wahlström, 1979 E S W I C 15.0861 Phyllonorycter apparella (Herrich-Schäffer, 1855) E S W I C 15.0862 Phyllonorycter pastorella (Zeller, 1846) E S W I C 27.0021 Oegoconia novimundi (Busck, 1915) E S W I C 35.0299 Helcystogramma triannulella (Herrich-Sch äffer, 1854) E S W I C 41.0041 Blastobasis maroccanella Amsel, 1952 E S W I C 48.0071 Choreutis nemorana (Hübner, 1799) E S W I C 49.0371 Clepsis dumicolana (Zeller, 1847) E S W I C 49.2001 TETRAMOERA Diakonoff, [1968] langmaidi Plant, 2014 E S W I C 62.0151 Delplanqueia inscriptella (Duponchel, 1836) E S W I C 72.0061 Hypena lividalis (Hübner, 1790) Chevron Snout E S W I C 70.2841 PUNGELARIA Rougemont, 1903 capreolaria ([Denis & Schiffermüller], 1775) Banded Pine Carpet E S W I C 72.0211 HYPHANTRIA Harris, 1841 cunea (Drury, 1773) Autumn Webworm E S W I C 73.0041 Thysanoplusia daubei (Boisduval, 1840) Boathouse Gem E S W I C 73.0301 Aedia funesta (Esper, 1786) Druid E S W I C Ent Rec 128(2)_Layout 1 22/03/2016 12:53 Page 99 Entomologist’s Rec.
    [Show full text]
  • Coleoptera: Byrrhoidea
    P O L I S H JOU R NAL OF ENTOM O LOG Y POL SKIE PISMO ENTOMOL OGICZ N E VOL. 84: 145–154 Lublin 30 September 2015 DOI: 10.1515/pjen-2015-0012 Notes on Neotropical Microcorsini and Enarmoniini (Lepidoptera: Tortricidae) 1 2 JÓZEF RAZOWSKI , VITOR O. BECKER 1Institute of Systematic and Experimental Zoology, Polish Academy of Sciences, Kraków, 31-016 Sławkowska 17, Poland, e-mail: [email protected] 2Reserve Serra Bonita PO Box 01, 45 880 Camacan BA, Brazil, e-mail: [email protected] ABSTRACT. One genus – Auchenancylis gen. n. – and the following species are described as new: Cryptaspasma sanvito sp. n., Pseudancylis sphensaccula sp. n., Aglaopollex niveofascia sp. n., Aglaopollex gana sp. n., Auchenancylis macrauchenia sp. n. Hemimene sevocata is transferred to Auchancylis. KEY WORDS: Lepidoptera, Tortricidae, Microcorsini, Enarmoniini, Neotropical, new taxa. INTRODUCTION The Neotropical olethreutine tribes Microcorsini and Enarmoniini are little known. The Microcorsini are represented by six species of Cryptaspasma, described chiefly from Brazil. We have practically no data on their distribution except for the type localities. One species (C. anaphorana WALSINGHAM, 1914) and another described below are known from Central America, Panama and Costa Rica, which are the most northerly known localities of the genus. Enarmoniini have a world-wide distribution with an Oriental-Australian centre. In the New World there occur Ancylis HÜBNER, 1825 (35 Nearctic and 8 Neotropical species), Hystrichophora WALSINGHAM, 1879 (11 Nearctic species), Eucosmomorpha OBRAZTSOV, 1951 (one Nearctic species), Aglaopollex RAZOWSKI & PELZ, 2011 (Neotropical, 9 species) and the monotypical, Neotropical Auchenancylis gen. n. 146 Polish Journal of Entomology 84 (3) Acknowledgements The authors thank Artur CZEKAJ, Witold ZAJDA and Łukasz PRZYBYŁOWICZ, Kraków, for taking the photographs and arranging the plates.
    [Show full text]
  • Development and Climate Change in the Mekong Region Case Studies
    Development and Climate Change in the Mekong Region Case Studies edited by Chayanis Kri�asudthacheewa Hap Navy Bui Duc Tinh Saykham Voladet Contents i Development and Climate Change in the Mekong Region ii Development and Climate Change in the Mekong Region Stockholm Environment Institute (SEI) SEI is an international non-profit research and policy organization that tackles environment and development challenges. SEI connects science and decision- making to develop solutions for a sustainable future for all. SEI’s approach is highly collaborative: stakeholder involvement is at the heart of our efforts to build capacity, strengthen institutions and equip partners for the long-term. SEI promotes debate and shares knowledge by convening decision-makers, academics and practitioners, and engaging with policy processes, development action and business practice throughout the world. The Asia Centre of SEI, based in Bangkok, focuses on gender and social equity, climate adaptation, reducing disaster risk, water insecurity and integrated water resources management, urbanization, and renewable energy. SEI is an affiliate of Chulalongkorn University, Thailand. SUMERNET Launched in 2005, the Sustainable Mekong Research Network (SUMERNET) brings together a network of research partners working on sustainable development in the countries of the Mekong Region: Cambodia, China, Lao PDR, Myanmar, Thailand and Vietnam. The network aims to bridge science and policy in the Mekong Region and pursues an evolving agenda in response to environmental issues that arise in the region. In the present phase of its program (2019–27), SUMERNET 4 All, the network is focusing on reducing water insecurity for all, in particular for the poor, marginalized and socially vulnerable groups of women and men in the Mekong Region.
    [Show full text]
  • Supporting Information for Comprehensive Mass Spectrometry
    Supporting Information for Comprehensive mass spectrometry-guided plant specialized metabolite phenotyping reveals metabolic diversity in the cosmopolitan plant family Rhamnaceae Kyo Bin Kang1,2,3,a,*, Madeleine Ernst1,a, Justin J. J. van der Hooft1,4,a, Ricardo R. da Silva1, Junha Park3, Marnix H. Medema4, Sang Hyun Sung3,b and Pieter C. Dorrestein1,* 1 Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States 2 College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea 3 College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea 4 Bioinformatics Group, Wageningen University, 6708PB Wageningen, The Netherlands a K.B.K, M.E. and J.J.J.v.d.H contributed equally to this work. b Deceased July 24, 2018. * correspondence: e-mail: [email protected] (K.B.K.) and [email protected] (P.C.D.) Result S1. Inspection on putative annotation of molecular families C and E. Based on Mass2Motifs, two flavonoid aglycone substructures, quercetin and kaempferol, could be distinguished in C. Supplementary Figure 1(a) visualizes Mass2Motif-mapped molecular family C. Three Mass2Motifs 86, 130, and 149 were extracted from MS/MS spectra in C; these Mass2Motifs explained MS/MS features which are commonly observed in plant metabolomics dataset, so they could be easily annotated. Mass2Motif 130 was annotated as a kaempferol- related motif, while Mass2motif 86 as a quercetin-related motif. Mass2Motif 149 contained MS/MS fragments which are commonly observed in collision-induced dissociation (CID) fragmentation spectra of flavonol aglycones, such as quercetin or myricetin (Fabre et al., 2001).
    [Show full text]
  • Maejo International Journal of Science and Technology ISSN 1905-7873 Available Online At
    i Maejo Int. J. Sci. Technol. 2009, 3(01), i Maejo International Journal of Science and Technology ISSN 1905-7873 Available online at www.mijst.mju.ac.th Editor's Note The year B.E. 2552 (A.D. 2009) has brought about a number of changes in connection with this journal. First, it is now entering its 3rd year of activity since its conception with its first volume and first issue being launched 2 years ago. Second, it is now a 100% e-journal (no more hard copies), which means an article can be published anytime as soon as it is ready (as always being the case from the beginning, however.) Thirdly, our managing editor, Dr. Weerachai Phutdhawong, the technical and key founder of this journal, has reluctantly left us for a new academic position at Kasetsart University. Without him from the start, this journal would never have been as it is now. He and the webmasters of Maejo University have jointly created a website for a journal which is freely, fully, and easily accessible. And this is most probably one of the factors that contribute to its unexpected and continuing popularity from the beginning as well as to the increasing international recognition of the journal now.* Lastly, the editor sincerely hopes that, with a well-laid foundation in store and a strong editorial committee at present, and despite his failing health after two years in office, which may result in a new editor for the journal in the near future, this journal will continue on well towards serving submitters, both local and abroad, as well as improving on its standard further.
    [Show full text]
  • Phylogeny of Tortricidae (Lepidoptera): a Morphological Approach with Enhanced Whole
    Template B v3.0 (beta): Created by J. Nail 06/2015 Phylogeny of Tortricidae (Lepidoptera): A morphological approach with enhanced whole mount staining techniques By TITLE PAGE Christi M. Jaeger AThesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Agriculture and Life Sciences (Entomology) in the Department of Biochemistry, Molecular Biology, Entomology, & Plant Pathology Mississippi State, Mississippi August 2017 Copyright by COPYRIGHT PAGE Christi M. Jaeger 2017 Phylogeny of Tortricidae (Lepidoptera): A morphological approach with enhanced whole mount staining techniques By APPROVAL PAGE Christi M. Jaeger Approved: ___________________________________ Richard L. Brown (Major Professor) ___________________________________ Gerald T. Baker (Committee Member) ___________________________________ Diana C. Outlaw (Committee Member) ___________________________________ Jerome Goddard (Committee Member) ___________________________________ Kenneth O. Willeford (Graduate Coordinator) ___________________________________ George M. Hopper Dean College of Agriculture and Life Sciences Name: Christi M. Jaeger ABSTRACT Date of Degree: August 11, 2017 Institution: Mississippi State University Major Field: Agriculture and Life Sciences (Entomology) Major Professor: Dr. Richard L. Brown Title of Study: Phylogeny of Tortricidae (Lepidoptera): A morphological approach with enhanced whole mount staining techniques Pages in Study 117 Candidate for Degree of Master of
    [Show full text]
  • Patients' and Healthcare Providers' Perspectives of Diabetes
    Open access Original research BMJ Open: first published as 10.1136/bmjopen-2019-032578 on 21 November 2019. Downloaded from Patients’ and healthcare providers’ perspectives of diabetes management in Cambodia: a qualitative study Ei Ei Khaing Nang ,1 Chhavarath Dary,2 Li Yang Hsu,1 Sokrath Sor,3 Vonthanak Saphonn,2 Konstantin Evdokimov1 To cite: Nang EEK, Dary C, ABSTRACT Strengths and limitations of this study Hsu LY, et al. Patients’ Objective This study aimed to explore the challenges and healthcare providers’ encountered by patients and healthcare providers and ► Views of patients and healthcare providers from perspectives of diabetes opportunities for improvement in managing diabetes management in Cambodia: a both public and private healthcare sectors allowed mellitus (DM) in a low- and middle- income country (LMIC) qualitative study. BMJ Open the triangulation of the diverse perspectives on dia- facing a rise in DM prevalence. 2019;9:e032578. doi:10.1136/ betes management. Design Qualitative cross- sectional study. bmjopen-2019-032578 ► Different levels of healthcare system including na- Setting Urban, semiurban, and rural areas in Cambodia. tional, provincial, and district level were covered. ► Prepublication history and Participants Thirty health service providers and fifty- nine ► The study was conducted in diverse geographical additional material for this adult DM patients. paper are available online. To regions of Cambodia including the regions near the Results Most of the 59 DM patients reported having view these files, please visit border and geographically isolated areas. developed DM complications when they first sought the journal online (http:// dx. doi. ► Most of the patient participants were recruited at treatment.
    [Show full text]
  • Tortricoidea: Lepidoptera) from Northwestern India -- Tribe Eucosmini (Olethreutinae)
    PAPER ZOOS' PRINT JOURNAL 20(2): 1751-1765 TAXONOMIC STUDIES ON THE FAMILY TORTRICIDAE (TORTRICOIDEA: LEPIDOPTERA) FROM NORTHWESTERN INDIA -- TRIBE EUCOSMINI (OLETHREUTINAE) H.S. Rose and H.S. Pooni Department of Zoology, Punjabi University, Patiala, Punjab 147002, India E-mail: [email protected] ABSTRACT Sixteen species belonging to eleven genera viz., Rhopobota Lederer, Acroclita Lederer, Strepsicrates Meyrick, Gibberifera Obraztsov, Loboschiza Diakonoff, Crocidosema Zeller, Epinotia Hübner, Helictophanes Meyrick, Acanthoclita Diakonoff, Ancylis Hübner and Eucosma Hübner belonging to the tribe Eusosmini (Olethreutinae) of the family Tortricidae have been collected from northwestern India and dealt with taxonomically. Key to the presently examined genera has been prepared on the basis of characters such as the labial palpi, antennae, costal fold, anal fold, wing venation and male and female genitalic characteristics. Further, keys to the species of the genera Epinotia Hübner and Eucosma Hübner represented by more than one species have also been furnished. Eucosma pseudostrigulata is being reported as new to science. Species such as Rhopobota grypodes Meyrick, Epinotia corynetes Diakonoff, Acanthoclita iridorphna Meyrick and Eucosma prominens Meyrick are being reported for the first time from India, whereas, Acroclita corinthia Meyrick, Gibberifera glaciata Meyrick, Epinotia canthonias Meyrick, Helictophanes dryocoma Meyrick, Ancylis lutescens Meyrick, Eucosma stereoma Meyrick and E. melanoneura Meyrick have been collected for the first
    [Show full text]
  • Loboschiza Diakonoff (Lepidoptera: Tortricidae) from Thailand with Descriptions of Four New Species
    Zootaxa 4109 (1): 081–088 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4109.1.7 http://zoobank.org/urn:lsid:zoobank.org:pub:5E8BAED1-A50D-433C-946A-48448DD5FB58 Loboschiza Diakonoff (Lepidoptera: Tortricidae) from Thailand with descriptions of four new species SURACHET ANAN1, PARADORN DOKCHAN1 & NANTASAK PINKAEW1,2,3 1Department of Entomology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand, 73140 (e-mail: [email protected], [email protected]). 2Center for Advanced Studies in Tropical Natural Resources, NRU-KU, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand (e-mail: [email protected]). 3Corresponding author Abstract Four new species of Loboschiza Diakonoff collected from the Nakhon Ratchasima, Chanthaburi, Nakhon Nayok, Sa Kaeo, Nakhon Si Thammarat, and Nakhon Pathom provinces of Thailand are described: Loboschiza spiniforma Anan and Pinkaew, n. sp.; Loboschiza bisulca Anan and Pinkaew, n. sp.; Loboschiza subrectangula Anan and Pinkaew, n. sp.; and Loboschiza lunata Anan and Pinkaew, n. sp. Loboschiza koenigiana (Fabricius) is redescribed. Illustrations of adults and genitalia are provided. Keywords: Enarmoniini, morphology, new species, Olethreutinae, Rhadinoscolops Introduction Loboschiza was described by Diakonoff (1968) with Loboschiza clytocarpa (Meyrick, 1920) from the Philippines as the type species. Rhadinoscolops was described by Obraztsov (1968) with Pyralis koenigiana as the type species, and it subsequently was synonymized with Loboschiza by Diakonoff (1982). The genus is characterized by conspicuously colored forewings, usually with a two-toned pattern with the basal one-half to two-thirds either bright yellow, orange, or with bright red bands on a greyish or brownish ground, and the distal portion darker, brownish or blackish, often with bright orange sinuous striations.
    [Show full text]
  • Monitoring the Seasonal Flight Activity of Three Tortricid Pests in Bulgaria with a Single Sex Pheromone-Baited Trap
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library ACTA ZOOLOGICA BULGARICA Applied Zoology Acta zool. bulg., 69 (2), 2017: 283-292 Research Article Monitoring the Seasonal Flight Activity of Three Tortricid Pests in Bulgaria with a Single Sex Pheromone-baited Trap Teodora B. Toshova1, Boyan Zlatkov2, Mitko Subchev1 & Miklós Tóth3 1Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria; E-mails: [email protected]; [email protected] 2Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; E-mail: [email protected] 3Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman O. u. 15., H-1022 Budapest, Hungary; E-mail: [email protected] Abstract: Transparent sticky CSALOMON® RAG traps baited with (E)-9-dodecenyl acetate (E9-12Ac) and (Z)- 9-dodecenyl (Z9-12Ac) were used to study the seasonal flight of the cherry bark tortrix, Enarmonia for- mosana and the pine resin-gall moth, Retinia resinella in the region of Sofia, Bulgaria during 2008 - 2010. Our results showed a continuous flight period for E. formosana - from the beginning of May to the first decade of October. Catches of R. resinella were recorded from the beginning of May to the second half of July. In addition to target species, we recorded 14 non-target tortricids during this study. The most abundant species among them was Cnephasia pasiuana, a known pest on poaceous crops in Bulgaria. We reported the attraction of males of this species to a mixture of E9-12Ac and Z9-12Ac in a ratio of 1: 1 (dos- age 300 µg).
    [Show full text]
  • Arbuscular Mycorrhizal Fungi and Dark Septate Fungi in Plants Associated with Aquatic Environments Doi: 10.1590/0102-33062016Abb0296
    Arbuscular mycorrhizal fungi and dark septate fungi in plants associated with aquatic environments doi: 10.1590/0102-33062016abb0296 Table S1. Presence of arbuscular mycorrhizal fungi (AMF) and/or dark septate fungi (DSF) in non-flowering plants and angiosperms, according to data from 62 papers. A: arbuscule; V: vesicle; H: intraradical hyphae; % COL: percentage of colonization. MYCORRHIZAL SPECIES AMF STRUCTURES % AMF COL AMF REFERENCES DSF DSF REFERENCES LYCOPODIOPHYTA1 Isoetales Isoetaceae Isoetes coromandelina L. A, V, H 43 38; 39 Isoetes echinospora Durieu A, V, H 1.9-14.5 50 + 50 Isoetes kirkii A. Braun not informed not informed 13 Isoetes lacustris L.* A, V, H 25-50 50; 61 + 50 Lycopodiales Lycopodiaceae Lycopodiella inundata (L.) Holub A, V 0-18 22 + 22 MONILOPHYTA2 Equisetales Equisetaceae Equisetum arvense L. A, V 2-28 15; 19; 52; 60 + 60 Osmundales Osmundaceae Osmunda cinnamomea L. A, V 10 14 Salviniales Marsileaceae Marsilea quadrifolia L.* V, H not informed 19;38 Salviniaceae Azolla pinnata R. Br.* not informed not informed 19 Salvinia cucullata Roxb* not informed 21 4; 19 Salvinia natans Pursh V, H not informed 38 Polipodiales Dryopteridaceae Polystichum lepidocaulon (Hook.) J. Sm. A, V not informed 30 Davalliaceae Davallia mariesii T. Moore ex Baker A not informed 30 Onocleaceae Matteuccia struthiopteris (L.) Tod. A not informed 30 Onoclea sensibilis L. A, V 10-70 14; 60 + 60 Pteridaceae Acrostichum aureum L. A, V, H 27-69 42; 55 Adiantum pedatum L. A not informed 30 Aleuritopteris argentea (S. G. Gmel) Fée A, V not informed 30 Pteris cretica L. A not informed 30 Pteris multifida Poir.
    [Show full text]
  • Lao Flora a Checklist of Plants Found in Lao PDR with Scientific and Vernacular Names
    Lao Flora A checklist of plants found in Lao PDR with scientific and vernacular names 2 L. Inthakoun and C. O. Delang Lao Flora A checklist of plants found in Lao PDR with scientific and vernacular names Lamphay Inthakoun Claudio O. Delang Lulu Press First published 2008 by Lulu Enterprises, Inc. 860 Aviation Parkway, Suite 300 Morrisville, NC 27560 The book can be purchased or downloaded from http://lulu.com/lao_flora. Contents Introduction 1 Lao Flora Listed by Lao Script 13-121 Lao Flora Listed by Genus and Species 123-238 Introduction This introduction1 provides a brief synopsis of the forest habitats and ecoregions found in Lao PDR, as well as an overview of the related research on plant taxonomy. This is followed by a description of the structure and contents of the present volume and a citation of sources used to compile the present checklist. 1. Forest habitats and ecoregions in Lao PDR 1.1. Forest habitats Forest classifications can be vegetation-related (which implies that the factors used to distinguish forests are the physiognomic or floristic characteristics of the vegetation), biophysically- and climate-related (where broad environmental or geographic characteristics become the distinguishing factors), or management- related (which involves utilizing combinations of vegetation and non-vegetation criteria). These modes of classification are scale-specific: while global-scale classifications are largely based on climatic criteria such as rainfall and temperature, classification systems used at country- or smaller regional-level scales emphasise floristic and physiognomic characteristics as well as physical site factors (Wong, Delang, Schmidt-Vogt, 2007). These latter variables were taken into account by the National Office of Forest Inventory and Planning (NOFIP) when it classified the forests of Lao PDR (Manivong and Sandewall, 1992).
    [Show full text]