The Fascinating Story of Speciation in Bulimulid Land Snails

Total Page:16

File Type:pdf, Size:1020Kb

The Fascinating Story of Speciation in Bulimulid Land Snails Where did they come from and where did they Galapa-go? The fascinating story of speciation in Bulimulid land snails Figure 1. A Bulimulid snail crawls across some lichen covering a lava rock in the humid highlands of San Cristobal. (Author) Audrey Bennett Bill Durham – Sophomore College: Evolution and Conservation in Galapagos Stanford University 14 October 2018 Abstract Hiding under leaf piles and in small pools of moisture in the porous rocks, the small, herbivorous bulimulid snails exist almost inconspicuously from the average tourist’s eye. However, a closer inspection into their natural history reveals an amazing story of diversification, adaptation, and evolution. This genera of snail, upon arrival to the Galapagos Islands about 2.77 million years ago (Parent and Crespi, 2006), has since radiated into 71 different species, making it the largest adaptive radiation on the islands (Parent and Crespi, 2006). The extent of this radiation in such a small area is rivaled only by the radiation of a similar bulimulid group in Baja California (Chambers, 1991, pp. 307-325). This raises some central questions: What factors contribute to successful radiation of the the bulimulid snails? Has reproductive isolation within an island or between islands been more important for speciation? Several hypotheses are proposed: Hypothesis 1 is that colonization event order will follow the Progression Rule, moving from eastern to western islands. Hypothesis 2 is that island isolation and species richness are negatively correlated. Hypotheses 3, 4, and 5 are that plant diversity, an island’s elevation, and the island area are positively correlated with the land snail species richness on that island. Data from case studies of these snails appear to support hypotheses 1, 3, 4, and 5. Lastly, this report investigates the threats that land snails face and how their adaptations to specialized environments has potentially lead to their vulnerability. https://galapagosconservation.org.uk/wildlife/galapagos-land-snail/ Figure 2-4. Bulimulid snails occupy a variety of habitats and have a variety of shell morphologies. (Parent) INTRODUCTION Natural history The group of Galapagos Bulimulidae includes about 71 species of land snails, all of which are endemic and distributed on most of the islands of the archipelago. (Coppois and Wells, 1987) They are also found in five of the six vegetation zones on the islands (Parent and Crespi, 2006). Adults range from 6-25 mm in length, and display a wide range of morphological traits. This is perhaps due to the variety of microclimates they inhabit. Adults range in color from white to dull brown to dark black, often with stripes or spiral bands. The ground living species tend to be duller in color than the arboreal ones, which have paler, polished shells. There is also a large diversity in shell shape, from short and globose to long and slender (Coppois and Wells, 1987) Potential as a study system In recent years, scientists have gained interest in these previously overlooked snails due to their amazing radiation and evolutionary history. By their very nature, islands are ideal study sites to investigate evolution, colonization, and radiation due to their isolation and simplified ecology. These snails are a particularly interesting study system since their evolutionary history is rich in speciation but very poorly understood. When lineages have diversified within islands, the clearest cases of diversification occur in taxa with low vagility on large islands with diverse habitats. This system fits that description quite well, with the islands’ distinct moisture zones providing the diversity in habitat. This combination of factors often leads to great diversification because with their limited mobility, populations are readily genetically isolated, and the diversity in habitat creates plenty of niches for which populations can specialize. Therefore, these Galapagos land snails are an ideal study system for radiation and speciation. These snails have also exhibited a remarkable adaptability to a variety of habitats. A single species has radiated into species that can now survive in dry, dusty habitats as well as moist, vegetation-rich regions. They can also survive long periods of drought, which contributes to their persistence and rapid speciation. The nature of the habitats on the Galapagos contribute to the amazing radiation as well; conditions of life such as climate, vegetation, and substrate, change within very short distances, allowing for distinct species to exist in close proximity but utilize different resources (Coppois 1984). Scientists around the world have begun to recognize the potential in this system. Christine Parent, one of the most prominent researchers on these snails, focuses on several evolutionary questions, such as: What is the sequence of species formation? Does it match the geological sequence of island formation? Are species often formed within in an island, or do they need to colonize a new island to split definitively from a common ancestor? (Parent and Coppois, 2016). Additionally, so little is understood about this genera (their small size and elusiveness contributes to this) that scientists are still trying to answer fundamental questions about their natural history, which then inform conservation efforts. Figure 5. Phylogenetic tree of the Bulimulid snails of the Galapagos based on combined mtDNA COI and nDNA ITS1 sequence data. The snail outlines are roughly proportional to actual size. Species on older islands connect at deeper nodes. Numbers above branches are Bayesian posterior probabilities. (Parent, Caccone, and Petren, 2008) Adaptive radiation Before delving into hypotheses, a strong understanding of adaptive radiation will be useful in understanding the mystery of the high species richness. Adaptive radiation is defined as the differentiation of a single ancestor into an array of species that inhabit a variety of environments and differ in morphological and physiological traits to exploit those environments (Schluter). The mechanism is as follows: more ecological niches, whether that be habitat type or food source, allows for more specialization, which given enough time can lead to reproductive isolation and isolation. Thus, phenotypic differences between populations originate from differences in environments they inhabit and resources they consume. These differences subject the species to unique selection pressures, which drives unique adaptations to that ecological niche. In addition, competition can drive co-occurring populations to exploit new resources and environments (Schluter). For example, competition for habitat space could drive a subset of a snail population in a region to move to a more arboreal habitat. This also suggests that rates of such divergence are dependent on the number of niches available, which could be a partial explanation to the snails’ incredible species richness. Given the high barrier to entry, islands as isolated as the Galapagos have a wealth of different resource types underutilized by different taxa, providing a great opportunity for divergence (Schluter). Therefore, ecological opportunity is largely dependent on timing; a species colonizing a remote archipelago or surviving a mass extinction is in a powerful position to speciate, given the number of available ecological niches. This paper will investigate the mechanisms of this impressive example of radiation to better understand the factors that influence species richness on islands. Island biogeographical theory says that species richness is dependent on three main rates: colonization, speciation, and extinction (Parent and Crespi, 2006). My hypotheses will focus on the dynamics of these three rates, which will in turn contribute to the overall understanding of how such a high number of species has remained distinct in a relatively small land area (7880 km2) (worldatlas.com). Figure 6. Species richness on an island is affected by colonization, speciation, and extinction rates. The three main influences of these factors are listed above them. This paper will investigate colonization, speciation, and extinction of the snails and how it affects species richness. COLONIZATION The initial colonization event, their “lucky break” that allowed such speciation, is thus a key part of the snails’ evolutionary history. However, mechanisms of dispersal and the exact common ancestor is still surprisingly unknown. Parent, Caccone, and Petren (2006) found that there was one single colonization event from the mainland, while other genera of snails on the Galapagos like Bapstinus have about three. They hypothesize that the Galapagos bulimulids are closely related to the continental South American bulimulids due to morphological affinities. However, this has not been genetically confirmed, and extinctions and range shifts often makes identifying the initial colonizer difficult to confirm. The time of the initial divergence from their closest relatives is also unknown, since there is not a reliable molecular clock for this taxonomic group. Dispersal mechanisms The bulimulid snails have certain adaptations that could have aided in their survival across the 1000+ km of ocean. They can close their operculum to prevent moisture loss, and can go into a state of aestivation, which is a state of dormancy and lowered metabolic rate to cope with arid conditions. One hypothesized mechanism has been travel via birds. Rafting on vegetation, though originally proposed, seems less likely since on certain islands, there
Recommended publications
  • A New Species of Bothriembryon (Mollusca, Gastropoda
    A peer-reviewed open-access journal ZooKeys 581: 127–140A new species(2016) of Bothriembryon (Mollusca, Gastropoda, Bothriembryontidae)... 127 doi: 10.3897/zookeys.581.8044 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Bothriembryon (Mollusca, Gastropoda, Bothriembryontidae) from south-eastern Western Australia Corey S. Whisson1,2, Abraham S.H. Breure3,4 1 Western Australian Museum, Locked Bag 49, Welshpool, WA 6106, Australia 2 School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia 3 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands 4 Royal Belgian Institute of Natural Sciences, Vautierstraat 29, Brussels, Belgium Corresponding author: Abraham S.H. Breure ([email protected]) Academic editor: F. Köhler | Received 5 February 2016 | Accepted 17 March 2016 | Published 14 April 2016 http://zoobank.org/15337CC0-0F00-4682-97C0-DAAE0D5CC2BE Citation: Whisson CS, Breure ASH (2016) A new species of Bothriembryon (Mollusca, Gastropoda, Bothriembryontidae) from south-eastern Western Australia. ZooKeys 581: 127–140. doi: 10.3897/zookeys.581.8044 Abstract Bothriembryon sophiarum sp. n. is described, based on shell and anatomical morphology, from the coastal area of south-easternmost Western Australia. This is the first description of a new extant Australian bo- thriembryontid in 33 years. The shell of B. sophiarum is slender with a unique teleoconch sculpture. It is found in low coastal scrub on cliff edges and escarpments and because of its restricted distribution, qualifies as a short range endemic. Keywords Western Australia, Orthalicoidea, ecology, anatomy, micro-CT Introduction Along with the diverse and generally more northern and eastern Camaenidae, the en- demic Australian genus Bothriembryon (Bothriembryontidae) forms a large and charac- teristic component of the Australian terrestrial molluscan fauna, particularly in Western Australia (Iredale 1939; Kershaw 1985; Solem 1998).
    [Show full text]
  • Development and R Elopment and R Elopment and Reproduction In
    Development and reproduction in Bulimulus tenuissimus (Mollusca: Bulimulidae) in laboratory Lidiane C. Silva; Liliane M. O. Meireles; Flávia O. Junqueira & Elisabeth C. A. Bessa Núcleo de Malacologia, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora. Campus Universitário, 36036-330 Juiz de Fora, Minas Gerais, Brasil. E-mail: [email protected] ABSTRACT: Bulimulus tenuissimus (d’Orbigny, 1835) is a land snail of parasitological importance with a poorly understood biology. The goal of this laboratory study was to determine development and reproductive patterns in B. tenuissimus. Recently hatched individuals in seven groups of 10 were maintained in the laboratory for two years. To test for self-fertilization, 73 additional individuals were isolated. After 180 days the isolated snails showed no signs of reproduction. Subsequently, 30 of these snails were paired to test fertility. We noted the date and time of egg-laying, the number of eggs produced, the number of egg-layings per individual, the incubation period and hatch success. This species shows indeterminate growth. Individuals that were maintained with others, as compared to isolated individuals, laid eggs sooner, laid more eggs and had a greater hatching success. This species can self-fertilize, however, with lower reproductive success. Bulimulus tenuissimus has a well-defined repro- ductive period that is apparently characteristic for this species. KEY WORDS. Growth; land snail; reproduction. RESUMO. Padrão de desenvolvimento e aspectos reprodutivos de Bulimulus tenuissimus (Mollusca: Bulimulidae) em condições de laboratório. Apesar de ser uma espécie de importância parasitológica, não existem estudos sobre a biologia de Bulimulus tenuissimus (d’Orbigny, 1835).
    [Show full text]
  • Land Snail Diversity in Brazil
    2019 25 1-2 jan.-dez. July 20 2019 September 13 2019 Strombus 25(1-2), 10-20, 2019 www.conchasbrasil.org.br/strombus Copyright © 2019 Conquiliologistas do Brasil Land snail diversity in Brazil Rodrigo B. Salvador Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand. E-mail: [email protected] Salvador R.B. (2019) Land snail diversity in Brazil. Strombus 25(1–2): 10–20. Abstract: Brazil is a megadiverse country for many (if not most) animal taxa, harboring a signifi- cant portion of Earth’s biodiversity. Still, the Brazilian land snail fauna is not that diverse at first sight, comprising around 700 native species. Most of these species were described by European and North American naturalists based on material obtained during 19th-century expeditions. Ear- ly 20th century malacologists, like Philadelphia-based Henry A. Pilsbry (1862–1957), also made remarkable contributions to the study of land snails in the country. From that point onwards, however, there was relatively little interest in Brazilian land snails until very recently. The last de- cade sparked a renewed enthusiasm in this branch of malacology, and over 50 new Brazilian spe- cies were revealed. An astounding portion of the known species (circa 45%) presently belongs to the superfamily Orthalicoidea, a group of mostly tree snails with typically large and colorful shells. It has thus been argued that the missing majority would be comprised of inconspicuous microgastropods that live in the undergrowth. In fact, several of the species discovered in the last decade belong to these “low-profile” groups and many come from scarcely studied regions or environments, such as caverns and islands.
    [Show full text]
  • Review of the Fossil Record of the Australian Land Snail Genus
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 34 038–050 (2019) DOI: 10.18195/issn.0312-3162.34(1).2019.038-050 Review of the fossil record of the Australian land snail genus Bothriembryon Pilsbry, 1894 (Mollusca: Gastropoda: Bothriembryontidae): new distributional and geological data Corey S. Whisson1,2* and Helen E. Ryan3 1 Department of Aquatic Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. 2 School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia. 3 Department of Earth and Planetary Sciences, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. * Corresponding author: [email protected] ABSTRACT – The land snail genus Bothriembryon Pilsbry, 1894, endemic to southern Australia, contains seven fossil and 39 extant species, and forms part of the Gondwanan family Bothriembryontidae. Little published data on the geographical distribution of fossil Bothriembryon exists. In this study, fossil and modern data of Bothriembryon from nine Australian museums and institutes were mapped for the first time. The fossilBothriembryon collection in the Western Australian Museum was curated to current taxonomy. Using this data set, the geological age of fossil and extant species was documented. Twenty two extant Bothriembryon species were identified in the fossil collection, with 15 of these species having a published fossil record for the first time. Several fossil and extant species had range extensions. The geological age span of Bothriembryon was determined as a minimum of Late Oligocene to recent, with extant endemic Western Australian Bothriembryon species determined as younger, traced to Pleistocene age. Extant Bothriembryon species from the Nullarbor region were older, dated Late Pliocene to Early Pleistocene.
    [Show full text]
  • Download Download
    ARTICLE Taxonomic study on a collection of terrestrial mollusks from the region of Santa Maria, Rio Grande do Sul state, Brazil Fernanda Santos Silva¹³; Luiz Ricardo L. Simone¹⁴ & Rodrigo Brincalepe Salvador² ¹ Universidade de São Paulo (USP), Museu de Zoologia (MZUSP). São Paulo, SP, Brasil. ² Museum of New Zealand Te Papa Tongarewa. Wellington, New Zealand. ORCID: http://orcid.org/0000-0002-4238-2276. E-mail: [email protected] ³ ORCID: http://orcid.org/0000-0002-2213-0135. E-mail: [email protected] (corresponding author) ⁴ ORCID: http://orcid.org/0000-0002-1397-9823. E-mail: [email protected] Abstract. The malacological collection of the Universidade Federal de Santa Maria, curated by Dr. Carla B. Kotzian, has been recently donated to the Museu de Zoologia da Universidade de São Paulo (MZSP, Brazil). The collection is rich in well preserved specimens of terrestrial gastropods from central Rio Grande do Sul state, in southernmost Brazil. That region, centered in the municipality of Santa Maria, represents a transitional area between the Atlantic Rainforest and Pampas biomes and has been scarcely reported in the literature. Therefore, we present a taxonomical study of these specimens, complemented by historical material of the MZSP collection. Overall, we report 20 species, mostly belonging to the Stylommatophora, from which four represent new records for Rio Grande do Sul: Adelopoma brasiliense, Happia vitrina, Macrodontes gargantua, and Cyclodontina corderoi. The present report of C. corderoi is also the first from Brazil. Two introduced species were found in the studied material: Bradybaena similaris and Zonitoides sp. Key-Words. Diplommatinidae; Gastropoda; Helicinidae; Pulmonata; Stylommatophora. Resumo.
    [Show full text]
  • The Land and Fresh-Water Mollusks of Puerto Rico
    MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, NO. 70 THE LAND AND FRESH-WATER MOLLUSKS OF PUERTO RICO BY HENRY VAN DER SCHALIE ANN ARBOR UNIVERSITY OF MICHIGAN PRESS AUGUST12, 1948 MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, NO. 70 THE LAND AND FRESH-WATER MOLLUSKS OF PUERTO RICO BY HENRY VAN DER SCHALIE ANN ARBOR UNIVERSITY OF MICHIGAN PRESS AUGUST12, 1948 CONTENTS INTRODUCTION.............. -... 9 Acknowledgments 10 ILLUSTRATIONS PLATES (Plates I-XITT follo~vpage 128) PLATE Francisco Mariaiio YagBn (front~spiece). I. FIG. 1. Alcadia striata (Lamnrck). FIG. a. Alcadia ILjulnlarsoni (Pfeiffer). FIG. 3. Alcadia ulta (Sowerby). FIa. 4. Helicina pl~asinnella " Sowel.by ' ' Pfeiff er. Fra. 5. Lucidella winosa (Sliuttle~vorth). PIG. 6. Lucidclla umbonuta (5huttlewortl1). FIa. 7. Pad?/enin portoricensis (Pfeiffer). FIG. 8. Ccrutoth.cc~isportoricanus Pilsbry and Vanatta. l17ra. 9. Stoaston~ops~U.C~~O~LC(LPLU $1. lj. 1l:lkcr. F1a. 10. Stoastonlops boriqucni 11. 13. Balter. 11. Fra. 1. Megalomastoma o'oceum (Ginelin). Fra. 2. Megalomasto?na werruculosum Sliuttlcworth. FIG. Licina decttssata (Lamarck). FIG. Licina aguadillensis (Pfeiffer) . FIG. Licina granainosa H. B. Baker. Fro. Chondropoma riisei (Pfeiffer). Fra. Chondropoma blauneri (Shuttleworth). Fra. Cl~ondropomaconseptum (von Martens). FIa. Chondropoma yunquei H. B. Baker. FIG. Chondroporna swifti (Sh~ttleworth). 111. FIG. 1. Pupi8,oma minus Pilsbry. FIG. 2. Pupison~adioscoricola (C. B. Adams). FIG. 3. Bothriopupa tenuidens (C. B. Adams). FIG. 4. Pupoides nitidulus (Pfeiffer) . FIG. 5. Gastrocopta sc.rwilis (Gould). FIG. 6. Gnstrocoptn prllncidn (Pfciffcr). Fra. 7. Guppya pi?~dlachi(Pf~iffer) . Fla. 8. Habroconcts cf. ernsti (Jousseaume). FIa. 9. Hau~aiia~tlinrrsc~rla (I%inney).
    [Show full text]
  • The Nautilus
    THE NAUTILUS QL Volume 131, Number 1 March 28, 2017 HOI ISSN 0028-1344 N3M A quarterly devoted £2 to malacology. EDITOR-IN-CHIEF Steffen Kiel Angel Valdes Jose H. Leal Department of Paleobiology Department of Malacology The Bailey-Matthews National Swedish Museum of Natural History Natural History Museum Shell Museum Box 50007 of Los Angeles County 3075 Sanibel-Captiva Road 104 05 Stockholm, SWEDEN 900 Exposition Boulevard Sanibel, FL 33957 USA Los Angeles, CA 90007 USA Harry G. Lee 4132 Ortega Forest Drive Geerat |. Vermeij EDITOR EMERITUS Jacksonville, FL 32210 USA Department of Geology University of California at Davis M. G. Harasewyeh Davis, CA 95616 USA Department of Invertebrate Zoology Charles Lydeard Biodiversity and Systematics National Museum of G. Thomas Watters Department of Biological Sciences Natural History Aquatic Ecology Laboratory University of Alabama Smithsonian Institution 1314 Kinnear Road Tuscaloosa, AL 35487 USA Washington, DC 20560 USA Columbus, OH 43212-1194 USA Bruce A. Marshall CONSULTING EDITORS Museum of New Zealand SUBSCRIPTION INFORMATION Riidiger Bieler Te Papa Tongarewa Department of Invertebrates P.O. Box 467 The subscription rate for volume Field Museum of Wellington, NEW ZEALAND 131 (2017) is US $65.00 for Natural History individuals, US $102.00 for Chicago, IL 60605 USA Paula M. Mikkelsen institutions. Postage outside the Paleontological Research United States is an additional US Institution $10.00 for regular mail and US Arthur E. Bogan 1259 Trumansburg Road $28.00 for air deliver)'. All orders North Carolina State Museum of Ithaca, NY 14850 USA should be accompanied by payment Natural Sciences and sent to: THE NAUTILUS, P.O.
    [Show full text]
  • On the Snails' Trail
    74 On the Snails’ Trail Evolution and Speciation Among a Vanishing Tribe Christine Parent and Guy Coppois Section of Integrative Biology, Dr. Christine Parent is an evolutionary ecologist, now a postdoctoral fellow at the University of University of Texas at Austin, Texas at Austin. She is interested in the patterns and processes of adaptive radiation, particularly in 1 University Station C0930, island systems. Austin, TX 78712, U.S.A. <[email protected]> Dr. Guy Coppois is a malacologist. He started investigations on Galápagos terrestrial malaco- fauna in 1973, focusing on systematics, distribution, ecology and adaptation. A member of the Charles Darwin Foundation (CDF) General Assembly, he served on its Board of Directors (Belgian representative) from 1987–2003. He is Professor of Biology at Brussels’s Free University. Christine’s experience 1999–2005 for the study of evolutionary diversification, my main FOR OVER EIGHT YEARS now I have been studying the scientific interest. endemic land snails of Galápagos, during which time After I returned to Carleton University in Canada these creatures have truly ‘grown on me.’ I first came to finish my Master’s thesis on wasps, I started across their trail in 1999, when I spent five months thinking about pursuing a Ph.D. in evolutionary on Galápagos doing research on two introduced ecology, and, with my supervisor’s encouragement, predatory wasps. Toward the end of my field season, decided to study the Galápagos bulimulid land Laboratoire de Systématique in the arid zone of Santa Cruz Island, I was sitting on snails. But remembering the empty shells on Santa et d’Ecologie, Faculté des a lava rock observing Polistes versicolor wasp nests Cruz, I became concerned upon reading that a lot In November 2000, I was back on Santa Cruz Island By this time, I had learned that there are over 80 ABOVE: The lush Scalesia Sciences, CP-160/13, when I noticed tiny white shells littered about.
    [Show full text]
  • Project Title: Distribution, Habitat Association, Species Abundance
    1 2 3 MSc Conservation and Biodiversity 4 ASSIGNMENT COVER SHEET – Research Project 5 Student Name: Rhon Connor ....Uni. No: ………... 6 7 Project Title: Distribution, Habitat Association, Species Abundance and Perceptions of Residents 8 towards Achatina fulica in Anguilla 9 10 Supervisor: Dr Tom Tregenza 11 Date Submitted: 12th September 2006 Date Received ASU: 12th September 2006 12 13 Feedback: 14 15 16 17 18 Marker‟s signature 19 Mark: 20 Moderator‟s signature: 21 22 DECLARATION 23 24 I certify that this assignment is my own work. I confirm that I have not allowed anyone else to copy this work. 25 Any material quoted or paraphrased from references books, journals, www etc. has been identified and duly 26 acknowledged or references as such. I have read the University‟s policy on plagiarism. 27 28 Signed………………………………………………………………………………… 29 Rhon Connor – MSc paper 1 30 Cover page 31 Title: Distribution, Habitat Association, Species Abundance and Perceptions of Residents towards 32 Achatina fulica in Anguilla 33 Rhon A. Connor 34 Postal address: Rendezvous Bay, Anguilla, British West Indies. 35 Corresponding author e:mail: [email protected] 36 37 38 39 40 Rhon Connor – MSc paper 2 41 Abstract 42 Invasive species affect biodiversity and have been associated with high economic costs and other 43 implications for society. One invasive mollusc, which is currently causing considerable damage to the 44 livelihood of people in the Caribbean, is the Giant African Snail (Achatina fulica). The invasion of this 45 mollusc in the Caribbean Island of Anguilla has posed a major challenge to the authorities and 46 residents alike.
    [Show full text]
  • Integrated Conservation Approach for the Australian Land Snail Genus Bothriembryon Pilsbry, 1894: Curation, Taxonomy and Palaeontology
    Integrated conservation approach for the Australian land snail genus Bothriembryon Pilsbry, 1894: curation, taxonomy and palaeontology Corey Whisson This thesis is presented for the Master of Philosophy 2019 Murdoch University, Perth, Western Australia DECLARATION I declare that this thesis is my own original account of my research and contains as its main content, work which has not previously been submitted for a degree at any tertiary education institution and as author, I reserve the right of copyright under the Copyright Act 1968, Commonwealth of Australia. …………………………………………………………… Corey Whisson i "Probably the most intriguing land shells in Australia are the bulimoid forms inhabiting the south-west corner. A large number of species and races has developed, and probably only a tithe has been described. It is unfortunate these have not yet been studied by anyone conversant with local conditions, and it is certain that they will provide future students with much research. No more exciting subject could be chosen by the student, but the unravelling of the many problems will necessitate much investigation." Mr Tom Iredale (cited in Iredale, 1939) ii Abstract Native land snails are important to ecosystems given their role in the decomposition process through herbivorous feeding of primarily decaying plant matter; calcium recycling and soil nitrification, and as a food source for larger predators. They also serve as a valuable bio-indicator group, especially in Western Australia where they are critical to Environmental Impact Assessments surveys. One conspicuous genus of native land snail found in Western Australia is Bothriembryon Pilsbry, 1894, a Gondwanan group endemic to the southern half of Australia and most diverse in the south-west of Western Australia.
    [Show full text]
  • First Record of Bulimulus Tenuissimus (Mollusca) As Potential Experimental Intermediate Host of Angiostrongylus Cantonensis (Nematoda) F
    Brazilian Journal of Biology https://doi.org/10.1590/1519-6984.188914 ISSN 1519-6984 (Print) Original Article ISSN 1678-4375 (Online) First record of Bulimulus tenuissimus (Mollusca) as potential experimental intermediate host of Angiostrongylus cantonensis (Nematoda) F. G. Martinsa, J. S. Garciab, E. J. L. Torresc, M. A. J. Santosd, C. L. Massarda,e and J. Pinheiroa,f* aPrograma de Pós-graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro – UFRRJ, BR 465, Km 7, CEP 23897-000, Seropédica, RJ, Brasil bLaboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Fundação Oswaldo Cruz – FIOCRUZ, Avenida Brasil, 4365, Manguinhos, CEP 21040-360, Rio de Janeiro, RJ, Brasil cDepartamento de Imunologia, Microbiologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro – UERJ, Rio de Janeiro, RJ, Brasil dDepartamento de Biologia Animal, Instituto de Ciências Biológicas e da Saúde, BR 465, Km 7, CEP 23897-000, Seropédica, RJ, Brasil eDepartamento de Parasitologia Animal, Instituto de Veterinária, BR 465, Km 7, CEP 23897-000, Seropédica, RJ, Brasil fDepartamento de Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, BR 465, Km 7, CEP 23897-000, Seropédica, RJ, Brasil *e-mail: [email protected] Received: October 12, 2017 – Accepted: March 07, 2018 – Distributed: November 30, 2019 (With 4 figures) Abstract Snails are essential to complete the life cycle of the metastrongylid nematode Angiostrongylus cantonensis, the causative agent of infections in domestic and wild animals, mainly rodents, and also of neural angiostrongyliasis or eosinophilic meningitis in humans. There are many reports of mollusks that can act as intermediate hosts of this parasite, especially freshwater snails and the African giant Achatina fulica.
    [Show full text]
  • Biogeographical and Ecological Determinants of Land Snail Diversification on Islands Author(S) :Christine E
    Biogeographical and Ecological Determinants of Land Snail Diversification on Islands Author(s) :Christine E. Parent Source: American Malacological Bulletin, 30(1):207-215. 2012. Published By: American Malacological Society DOI: http://dx.doi.org/10.4003/006.030.0118 URL: http://www.bioone.org/doi/full/10.4003/006.030.0118 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Amer. Malac. Bull. 30(1): 207–215 (2012) Biogeographi cal and ecological determinants of land snail diversifi cation on islands* Christine E. Parent Section of Integrative Biology, University of Texas at Austin, 1 University Station C0930, Austin, Texas 78712, U.S.A. Correspondence, Christine E. Parent: [email protected] Abstract: The equilibrium theory of island biogeography as originally proposed by R. MacArthur and E. O. Wilson relied on the ecological processes of colonization and extinction to determine the species diversity of islands.
    [Show full text]