A V~*» the URANIUM GEOLOGY and TECTONIC CORRELATION

Total Page:16

File Type:pdf, Size:1020Kb

A V~*» the URANIUM GEOLOGY and TECTONIC CORRELATION •••, A v~*«^» í f >-v ,— / PER-58 THE URANIUM GEOLOGY AND TECTONIC CORRELATION BETWEEN THE AFRICAN AND LATIN AMERICAN CONTINENTS by P.D. Toens J.P. le Roux C.J.H. Hartnady W.J. van Biljon /| ATOMIC ENERGY BOARD _i, j Pelinclaha T> J! PRETORIA x | Republic of South Africa October 1980 8 .ii. ::iii!!:imi:::: gjpji, lip£.l.^....diyiii^..,».M!i» *ltji|ill I «•••*«••• •••«•If*III(**««*}«atja•*••••**•••*•***<*••••• «•(•I<>«lil«ll»»"<'->1 I.. !!::::i::!ii:J:i:: PER-58 THE URANIUM GEOLOGY AND TECTONIC CORRELATION BETWEEN THE AFRICAN AND LATIN AMERICAN CONTINENTS by P.D. Toens* J.P. le Roux* C.J.H. Hartnady** W.J. van Biljon*** *Geo1ogy Division POSTAL ADDRESS: Private Bag X256 PRETORIA 0001 **University of Cape Town ***Rand Afrikaans University PELINDABA October 1980 [OnÁQÍnaíly pfiuzntíd cu> an intoxÁm Kzpoht by thz South A^fvican Walking Gnoixp to thz IAEA Consultants' Mz&ting, Vienna, JLU.IJ 1980) ISBN 0 86960 720 0 PER-58-1 CONTINENTS, LIKE PEOPLE, CAW MO LONGER BE STUV1EV EFFECTIVELY IN/ ISOLATION. PER-58-2 MIEVATTIH8 CONTENTS Page ABSTRACT 1. GENERAL STATEMENT 7 2. INTRODUCTION 8 3. CORRELATION OF METALLOGENIC PROVINCES 11 4. PRE-DRIFT RECONSTRUCTION OF WEST GONDWANALAND 14 4.1 Accuracy and Precision of Reconstruction 14 4.2 Basic Review of Previous Reconstructions 15 4.3 Proposed New Reconstruction 16 5. RELATIONSHIP BETWEEN MAJOR URANIUM METALLOGENIC 18 PROVINCES AND GEOTECTONIC PROVINCES 6. PERMO-TRIASSIC GONDWANA BASINS 21 6.1 Tectonic Setting 21 6.2 Description of Uranium Deposits in Gondwana 30 (Karoo) Basins 6.2.1 Main Karoo Basin 30 6.2.2 Waterberg Basin 32 6.2.3 Botswana Basin 32 6.2.4 Limpopo Basin 33 6.2.5 Mozambique Basin 33 6.2.6 Etjo Basin 33 6.2.7 Ovambo Basin 33 6.2.8 Mid-Zambezi Basin 34 6.2.9 Lower-Zambezi Basin 35 6.2.10 Barotse Basin 35 6.2.11 Angola Basin 36 6.2.12 Luano-Luangwa Basin 36 6.2.13 East African Basin 36 6.2.14 Rukwa Basin 36 6.2.15 Congo Basin 37 6.2.16 Gabon Basin 37 6.2.17 Parana Basin (Southern Brazil) 37 6.2.18 Callingasta-Uspallata Basin (Argentina) 37 7. URANIUM DEPOSITS RELATED TO CARBONATITE AND 38 ALKALINE INTRUSIONS 7.1 Tectonic Setting 38 7.2 Description of Uranium Deposits 42 ) PER-58-3 Page 7.2.1 Phalaborwa, Transvaal 42 7.2.2 Pilanesberg, Transvaal 43 7.2.3 Bonga, Angola 43 7.2.4 Pocos de Caldas, Brazil 44 PAN-AFRICAN-BRASILIANO PROVINCES 44 8.1 Tectonic Setting 44 8.2 Correlations 50 8.2.1 Zaire deposits 50 8.2.2 Damara Belt (Rossing region) 53 uranium deposits PRE-PAN-AFRICAN URANIUM PROVINCES 55 9.1 Mamaqua-Natal Mobile Belt 55 9.1.1 Uranium potential 58 9.2 Eburnian Mobile Belt 59 9.3 Ancient Cratons 59 9.3.1 The Witwatersrand Triad 61 9.3.2 Other occurrences in South Africa 63 9.3.3 Brazilian quartz-pebble conglomerates 64 9.3.4 Remarks 65 CONCLUSIONS 66 REFERENCES 66 LIST OF FIGURES 1 Metallogenic provinces of Western Gondwanaland 13 (after Leube, 1976) 2 Gondwana Karoo Basins in Southern Africa and 22 South America 3 Distribution of alkaline complexes and k'.mberlite 39 in Southern Africa and South America 4 Relationship between the Ribeira Belt in South 48 America, and the Damara and Gariep Belts of Southern Africa PER-58-4 Page FIG. 5 Cratons and mobile belts of Southern Africa 56 FIG. 6 The Namaqua-Natal Mobile Belt and adjacent 57 tectonic areas (after Blignault, 1974; Joubert 1974; Jacob ei aJL 1980) FIG. 7 Precambrian cover rocks of South Africa 60 LIST OF TABLES TABLE I Mineralised areas in West Africa and Eastern 14 South America (mostly after Leube, 1S76) TABLE II Finite rotations describing the relative 16 motions of Africa and South America - Summary from 1968 to 1980 TABLE III Correlation of the Karoo sequences in 23 African Gondwana Basins TABLE IV List of Alkaline Complexes in Africa south 40 of the equator as given in Fig. 3 PER-58-5 SAMEVATTING In opvolging van ft vergadering van die Internasionale Atoomenergie= agentskap se Adviesgroep vir Uraangeologie in Latyns-Amerika wat in Desember 1978 in Lima, Peru, gehou is, is daar besluit dat Yi projek vir die korrelering van uraangeologie aan beide kante van die Atlantiese Oseaan noodsaaklik geword het. Die verteenwoordigers van die betrokke lande is versoek om in Julie 1980 in Wenen te vergader en tussentydse verslae oor die vordering wat met die projek gemaak is, in te dien. Hierdie referaat verteenwoordig tt tussentydse verslag deur die Suid-Afrikaanse Werkgroep. Aspekte wat behandel word, is die passing van die twee vastelande, die aard en ver= spreiding van die Gondwana- en vroeër opeenvolgings, asook die aard en verspreiding van uraa.onoudende alkalikomplekse en graniete. ABSTRACT Subsequent to a meeting of the International Atomic Energy Agency's Advisory Group on Uranium Geology in Latin America held in Lima, Peru in December 1978, it was decideo that a project involving the corre­ lation of uranium geology on either side of the Atlantic was called for. The representatives of the countries concerned were asked to meet in Vienna in July 1980 and present interim reports on progress made in their respective countries on this project. This paper represents an interim report by the South African Working Group. The aspects dealt with cover the matching of the two continents, the nature and distri= bution of the Gondwana and earlier sequences, as well as the nature and distribution of uraniferous alkaline complexes and granites. PER-58-6 ACKNOWLEDGEMENTS Acknowledgement is made to the President and Deputy President of the South African Atomic Energy Board, Dr J.W.L. de Villiers and Dr J.P. Hugo respectively, for making participation in this project possible. Their interest and encouragement are much appreciated. The assistance of Dr B.B. Hambleton-Jones, Messrs H.J. Brynard, C.J.B. Smit and Mrs T.M.T. Kloppers is gratefully acknowledged. Thanks are also due to the University of Cape Town and the Rand Afrikaans University for making available the services of Dr Hartnady and Professor Van Biljon respectively. PER-58-7 1. GENERAL STATEMENT At a meeting of the International Atomic Energy Agency's Advisory Group on Uranium Geology *n Latin America held in Lima, Peru in December 1978 and at which South Africa was ^presented by P.D. Toens, it was agreed that there is excellent scope for cooperation between Latin American and African countries sharing a common geology and similar metallogenic trends. It was therefore felt that a concerted effort should be made to bring together geoscientists involved in uranium exploration and assessment, in order to clearly define metallogenic mooels for uranium ore deposits likely to have meaningful patterns within pre-drift Western Gondwana. A formula for cooperation between interested countries was devised under the auspices of the International Atomic Energy Agency. The proposed final objective of the South American/African correlation should be: (a) To draw a complete metallogenic map (or a series of two or four such maps) of pre-drift Western Gondwanaland at a scale of 1:10 000 000 showing all the known significant uranium deposits and occurrences. Only relevant geological and tec= tonic features should be shown on the map. (b) To make a brief summary of the known uraniferous deposits of Western Gondwanaland indicating age, ore-forming processes, mineralogy and relevant bibliography. (c) To make specific recommendations on furthering uranium explora= tion along preferred patterns on the two sides of the Atlantic. Preferred areas and exploration guides should be clearly defined. Each participating country was asked to form a Working Group to commence studies or projects, the results of which could eventually be incorpo= rated into a document which would deal with the whole of Western Gondwanaland. The South African Working Group is composed as follows: PER-58-8 P.D. Toens : Convenor (Atomic Energy Board) J.P. le Roux (Atomic Energy Board) W.J. van Biljon (Rand Afrikaans University) C.J.H. Hartnady (University of Cape Town) The first consultants' meeting is due to take place in Vienna during the period 21 - 25 July 1980, to which the following countries have been invited: Argentina (Belluco or Rodrigo) Brazil (Cordani and Angeiras or Forman) France (Bigotte) Germany (Gatzweiler and Ballhorn) Italy (Papadia) Nigeria (Koutoubi) South Africa (Toens and Van Biljon) Venezuela (Pasquali) Each participating delegation was requested to present a progress report at this meeting on studies carried out to date which may represent suitable material for incorporation in the volume dealing with the uranium geology of Western Gondwanaland. This paper, in the form of an interim report by the South African Working Group, represents progress made to date by the group and is tabled in the hope that it will lead to fruitful discussion. 2. INTRODUCTION By the very nature of the project in hand, we are far more concerned with the extrapolation of mineral provinces across the Atlantic than with the actual mechanics of plate movement. Nevertheless, it is as well to review some of the pertinent studies by previous researchers in this field with special reference to the southern half of Africa and eastern South America. In 1927 A.L. du Toit published his "Geological Comparison of South America with South Africa". His findings had a considerable influence on geolo= gical thinking in South America and Africa and was translated into Portuguese in 1952. PER-58-9 The similarities in the stratigraphy of Gondwanaland established by his study are so striking that it remains one of the cornerstones on which the hypothesis of Continental Drift, which eventually led to the establishment of the concept of Plate Tectonics, is based.
Recommended publications
  • Record of the Angola Portion of the Congo Craton: Newly Dated Magmatic Events at 1500 and 1110 Ma and Implications for Nuna (Columbia) Supercontinent Reconstructions
    NOTICE: This is the author’s version of a work that was accepted for publication in Precambrian Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Precambrian Research, Vol. 230 (2013). doi: 10.1016/j.precamres.2013.01.010 Accepted Manuscript Title: Mesoproterozoic intraplate magmatic ‘barcode’ record of the Angola portion of the Congo craton: newly dated magmatic events at 1500 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions Authors: Richard E. Ernst, Eurico Pereira, Michael A. Hamilton, Sergei A. Pisarevsky, Jose´ Rodriques, Colombo C.G. Tassinari, Wilson Teixeira, Vitoria´ Van-Dunem PII: S0301-9268(13)00011-9 DOI: doi:10.1016/j.precamres.2013.01.010 Reference: PRECAM 3703 To appear in: Precambrian Research Received date: 24-7-2012 Revised date: 26-11-2012 Accepted date: 3-1-2013 Please cite this article as: Ernst, R.E., Pereira, E., Pisarevsky, S.A., Rodriques, J., Tassinari, C.C.G., Teixeira, W., Van-Dunem, V., Mesoproterozoic intraplate magmatic ‘barcode’ record of the Angola portion of the Congo craton: newly dated magmatic events at 1500 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions, Precambrian Research (2010), doi:10.1016/j.precamres.2013.01.010 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript.
    [Show full text]
  • The Long-Term Evolution of the Congo Deep-Sea Fan: a Basin-Wide View of the Interaction Between a Giant Submarine Fan and a Mature Passive Margin (Zaiango Project)
    The Congo deep-sea fan: how far and for how long? A basin-wide view of the interaction between a giant submarine fan and a mature passive margin Zahie Anka 1,*, Michel Séranne 2,**, Michel Lopez 2, Magdalena Scheck-Wenderoth 1, Bruno Savoye 3,†. 1. GFZ German Research Centre for Geosciences. Telegrafenberg, 14473 Potsdam, Germany. 2. CNRS-Université Montpellier II. cc 060, Geosciences Montpellier. 34095 Montpellier, France. 3. IFREMER, Geosciences Marines, BP 70 — 29280 Plouzané, France. (*) [email protected] (**) [email protected] (†) deceased 1.- Introduction The Congo deep-sea fan is one of the largest submarine fan systems in the world and one of the most important depocentre in the eastern south Atlantic. The present-day fan extends over 1000 km offshore the Congo-Angola continental margin and it is sourced by the Congo River, whose continental drainage area is the second largest in the world (3.7 106 km²) (Droz et al., 1996) (Fig.1). There is a direct connexion between the river’s drainage basin and the deep basin through an impressive submarine canyon, which cuts down about 950 m at the shelf-break and more than 1300 m at 100 km offshore the coastline (Babonneau et al., 2002). Hence, the direct transfer of terrigenous material onto the abyssal plain takes place through the canyon, by-passing the shelf and upper slope. The submarine fan covers a surface of about 300,000 km² and contains at least 0.7 Mkm³ of Tertiary sediments (Anka and Séranne, 2004; Droz et al., 2003; Savoye et al., 2000).
    [Show full text]
  • Tracing the Central African Rift and Shear Systems Offshore Onto
    Tracing the West and Central African Rift and Shear Systems offshore onto oceanic crust: a ‘rolling’ triple junction William Dickson (DIGs), and James W. Granath, PhD, (Granath & Associates) Abstract Compared to the understood kinematics of its continental margins and adjacent ocean basins, the African continent is unevenly or even poorly known. Consequently, the connections from onshore fault systems into offshore spreading centers and ridges are inaccurately positioned and inadequately understood. This work considers a set of triple junctions and the related oceanic fracture systems within the Gulf of Guinea from Nigeria to Liberia. Our effort redefines the greater Benue Trough, onshore Nigeria, and reframes WCARS (West and Central African Rift and Shear Systems) as it traces beneath the onshore Niger Delta and across the Cameroon Volcanic Line (CVL), Figure 1. We thus join onshore architecture to oceanic fracture systems, forming a kinematically sound whole. This required updating basin outlines and relocating mis- positioned features, marrying illustrations from the literature to imagery suitable for basin to sub- basin mapping. The resulting application of systems structural geology explains intraplate deformation in terms of known structural styles and interplay of their elements. Across the Benue Trough and along WCARS, we infer variations in both structural setting and thermal controls that require further interpretation of their petroleum systems. Introduction Excellent work has defined Africa's onshore geology and the evolution and driving mechanisms of the adjacent (particularly the circum-Atlantic) ocean basins. However, understanding of the oceanic realm has outpaced that of the continent of Africa. This paper briefly reviews onshore work. We then discuss theoretical geometry of tectonic boundaries (including triple junctions) and our data (sources and compilation methods).
    [Show full text]
  • The Mesozoic to Early Cenozoic Magmatism of the Benue Trough (Nigeria); Geochemical Evidence for the Involvement of the St Helen
    JOURNAL OF PETROLOGY VOLUME 37 NUMBER 6 PAGES 1341-1358 1996 C. COULON1*, P. VIDAL2, C. DUPUY3, P. BAUDIN1, M. POPOFF*, H. MALUSKI5 AND D. HERMITTE1 'PETROLOGIE MAGMATIQUE, URA 1277, CEREGE, BP 80, 15545 AIX EN PROVENCE CEDEX 4, FRANCE 'CENTRE DE RECHERCHES VOLCANOLOGIQUES, URA 10, 63038 CLERMONT FERRAND CEDEX, FRANCE 'CENTRE GEOLOGIO.UE ET GEOPHYSIO.UE, CNRS, PLACE BATAILLON, J4095 MONTPELLIER CEDEX, FRANCE *INSTITUT DE GEODYNAMIQ.UE, URA 1279, UNIVERSITE DE NICE—SOPHIA ANTIPOLIS, AVENUE EINSTEIN, 06560 VALBONNE, FRANCE JLABORATOIRE DE GEOCHRONOLOGIE—GEOCHIMIE, URA 176J, PLACE BATAILLON, 34095 MONTPELLIER CEDEX, FRANCE The Mesozoic to Early Cenozoic Downloaded from https://academic.oup.com/petrology/article/37/6/1341/1406521 by guest on 28 September 2021 Magmatism of the Benue Trough (Nigeria); Geochemical Evidence for the Involvement of the St Helena Plume The Benue Trough is a continental rift related to the opening of Equatorial Atlantic. Moreover, the geochemical similarity the equatorial domain of the South Atlantic which was initi- between the alkaline magmatism of the Benue Trough and that ated in Late Jurassic-Early Cretaceous times. Highly diversi- of the Cameroon Line suggests that both magmatic provinces fied and volumetrically restricted Mesozoic to Cenozoic were related to the St Helena plume. Finally, the temporal magmatic products are scattered throughout the rift. Three per- change of the mantle sources observed in the Benue Trough can iods of magmatic activity have been recognized on the basis of be accounted for by the recent models of plume dynamics, in the *°Ar-39Ar ages: 147-106 Ma, 97-81 Ma and 68-49 Ma.
    [Show full text]
  • Durham Research Online
    Durham Research Online Deposited in DRO: 13 April 2015 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Kaislaniemi, L. and van Hunen, J. (2014) 'Dynamics of lithospheric thinning and mantle melting by edge-driven convection : application to Moroccan Atlas mountains.', Geochemistry, geophysics, geosystems., 15 (8). pp. 3175-3189. Further information on publisher's website: http://dx.doi.org/10.1002/2014GC005414 Publisher's copyright statement: c 2014. The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modications or adaptations are made. Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk PUBLICATIONS Geochemistry,
    [Show full text]
  • Continental Complexities: a Multidisciplinary Introduction to Africa
    Continental Complexities A Multidisciplinary Introduction to Africa By Dr. Ibigbolade Simon Aderibigbe and Dr. Akinloye Ojo Included in this preview: • Table of Contents • Chapter 1 & 2 For additional information on adopting this book for your class, please contact us at 800.200.3908 x501 or via e-mail at [email protected] Dpoujofoubm!Dpnqmfyjujft A MULTIDISCIPLINARY INTRODUCTION TO AFRICA Revised Edition Edited by Ibigbolade Aderibigbe and Akinloye Ojo University of Georgia Bassim Hamadeh, CEO and Publisher Christopher Foster, General Vice President Michael Simpson, Vice President of Acquisitions Jessica Knott, Managing Editor Kevin Fahey, Cognella Marketing Manager Jess Busch, Senior Graphic Designer Zina Craft , Acquisitions Editor Jamie Giganti, Project Editor Brian Fahey, Licensing Associate Copyright © 2013 by Cognella, Inc. All rights reserved. No part of this publication may be reprinted, reproduced, transmitted, or utilized in any form or by any electronic, mechanical, or other means, now known or hereaft er invented, including photocopying, microfi lming, and recording, or in any information retrieval system without the written permission of Cognella, Inc. First published in the United States of America in 2013 by Cognella, Inc. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifi cation and explanation without intent to infringe. Printed in the United States of America ISBN: 978-1-62131-133-1 (pbk) Contents The Study of Africa: An Introduction 1 Ibigbolade Aderibigbe
    [Show full text]
  • SÉRANNE, M., and ANKA, Z., 2005
    ARTICLE IN PRESS Journal of African Earth Sciences xxx (2005) xxx–xxx www.elsevier.com/locate/jafrearsci South Atlantic continental margins of Africa: A comparison of the tectonic vs climate interplay on the evolution of equatorial west Africa and SW Africa margins Michel Se´ranne *, Zahie Anka UMR 5573 Dynamique de la Lithosphe`re, CNRS/Universite´ Montpellier 2, 34095 Montpellier cedex 05, France Received 5 February 2005; accepted 18 July 2005 Abstract Africa displays a variety of continental margin structures, tectonic styles and sedimentary records. The comparative review of two representative segments: the equatorial western Africa and the SW Africa margins, helps in analysing the main controlling factors on the development of these margins. Early Cretaceous active rifting south of the Walvis Ridge resulted in the formation of the SW Africa volcanic margin that displays thick and wide intermediate igneous crust, adjacent to a thick unstretched continental crust. The non-vol- canic mode of rifting north of the Walvis ridge, led to the formation of the equatorial western Africa margin, characterised by a wide zone of crustal stretching and thinning, and thick, extensive, syn-rift basins. Contrasting lithologies of the early post-rift (salt vs shale) determined the style of gravitational deformation, whilst periods of activity of the decollements were controlled by sedimentation rates. Regressive erosion across the prominent shoulder uplift of SW Africa accounts for high clastic sedimentation rate during Late Creta- ceous to Eocene, while dominant carbonate production on equatorial western Africa shelf suggests very little erosion of a low hinterland. The early Oligocene long-term climate change had contrasted response in both margins.
    [Show full text]
  • Sea Experience in Developing Countries
    Chapter 6 SEA EXPERIENCE IN DEVELOPING COUNTRIES Increasingly, developing countries are experimenting with SEA and some have SEA-type approaches and elements in place already. There is also considerable experience with using a variety of strategic planning processes that display many of the characteristics of SEA (para SEA). We focus first on SEA in southern Africa where a dedicated regional workshop on SEA was organised to feed into this review (SAIEA 2003a), followed by sections covering francophone Africa, the rest of sub-Saharan Africa, Latin America, Asia and elsewhere. But our survey of this field represents no more than a preliminary reconnaissance. Selected examples of SEA and para SEA illustrate some of the indigenous approaches that have been adopted. These are less common than SEAs promoted and funded by development assistance agencies (which are reviewed in Chapter 4). In most cases where formal SEA has been undertaken in developing countries, the basic aim and approach has mirrored that in the north – namely to identify the environmental consequences (and associated social and economic effects) of existing, new or revised policies, plans and programmes. These represent only a small number of the broad family of SEA approaches. But they are a highly visible sub-set of the large suite of informal or para-SEAs which form part of development policy-making, land use planning or resource management. No strict boundaries can be drawn for this latter area of application. Only the more evident SEA type elements and approaches are introduced in this chapter. Nevertheless, they indicate the scope and diversity of the extended SEA family in developing countries, where political and economic realities constrain what can be done.
    [Show full text]
  • Hafnium and Neodymium Isotopes in Surface Waters of the Eastern Atlantic Ocean: Implications for Sources and Inputs of Trace Metals to the Ocean
    Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 74 (2010) 540–557 www.elsevier.com/locate/gca Hafnium and neodymium isotopes in surface waters of the eastern Atlantic Ocean: Implications for sources and inputs of trace metals to the ocean J. Rickli a,*, M. Frank b, A.R. Baker c, S. Aciego a, G. de Souza a, R.B. Georg d, A.N. Halliday d a ETH Zurich, Institute for Isotope Geochemistry and Mineral Resources, Clausiusstrasse 25, CH-8092 Zurich, Switzerland b IFM-GEOMAR, Leibniz Institute of Marine Sciences, 24148 Kiel, Germany c School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK d Department of Earth Sciences, University of Oxford, Parks Road, Oxford OX1 3PR, UK Received 14 January 2009; accepted in revised form 30 September 2009; available online 7 October 2009 Abstract We present hafnium (Hf) and neodymium (Nd) isotopic compositions and concentrations in surface waters of the eastern Atlantic Ocean between the coast of Spain and South-Africa. These data are complemented by Hf and Nd isotopic and con- centration data, as well as rare earth element (REE) concentrations, in Saharan dust. Hafnium concentrations range between a maximum of 0.52 pmol/kg in the area of the Canary Islands and a minimum value of 0.08 pmol/kg in the southern Angola Basin. Neodymium concentrations also show a local maximum in the area of the Canary Islands (26 pmol/kg) but are even higher between ~20°N and ~4°N reaching maximum concentrations of 35 pmol/kg. These elevated concentrations provide evidence of inputs from weathering of the Canary Islands and from the partial dissolution of dust from the Sahara/Sahel region.
    [Show full text]
  • Pan-African Orogeny 1
    Encyclopedia 0f Geology (2004), vol. 1, Elsevier, Amsterdam AFRICA/Pan-African Orogeny 1 Contents Pan-African Orogeny North African Phanerozoic Rift Valley Within the Pan-African domains, two broad types of Pan-African Orogeny orogenic or mobile belts can be distinguished. One type consists predominantly of Neoproterozoic supracrustal and magmatic assemblages, many of juvenile (mantle- A Kröner, Universität Mainz, Mainz, Germany R J Stern, University of Texas-Dallas, Richardson derived) origin, with structural and metamorphic his- TX, USA tories that are similar to those in Phanerozoic collision and accretion belts. These belts expose upper to middle O 2005, Elsevier Ltd. All Rights Reserved. crustal levels and contain diagnostic features such as ophiolites, subduction- or collision-related granitoids, lntroduction island-arc or passive continental margin assemblages as well as exotic terranes that permit reconstruction of The term 'Pan-African' was coined by WQ Kennedy in their evolution in Phanerozoic-style plate tectonic scen- 1964 on the basis of an assessment of available Rb-Sr arios. Such belts include the Arabian-Nubian shield of and K-Ar ages in Africa. The Pan-African was inter- Arabia and north-east Africa (Figure 2), the Damara- preted as a tectono-thermal event, some 500 Ma ago, Kaoko-Gariep Belt and Lufilian Arc of south-central during which a number of mobile belts formed, sur- and south-western Africa, the West Congo Belt of rounding older cratons. The concept was then extended Angola and Congo Republic, the Trans-Sahara Belt of to the Gondwana continents (Figure 1) although West Africa, and the Rokelide and Mauretanian belts regional names were proposed such as Brasiliano along the western Part of the West African Craton for South America, Adelaidean for Australia, and (Figure 1).
    [Show full text]
  • Evidence of a Permian Remagnetization in the Neoproterozoic- Cambrian Adoudounian Formation (Anti-Atlas, Morocco)
    Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Terre, 2012, n° 34, p. 15-28. Evidence of a Permian remagnetization in the Neoproterozoic- Cambrian Adoudounian Formation (Anti-Atlas, Morocco) Florent BOUDZOUMOU1,2, Didier VANDAMME2, Pascal AFFATON2 Jérôme GATTACCECA2, Hassane OUAZZANI3, Lakhlifi BADRA3 3 & Elmahjoub MAHJOUBI 1. Université Marien Ngouabi, Faculté des Sciences, Département de Géologie, B.P. 69, Brazzaville, Congo. e-mail : [email protected] 2. CEREGE, Université d’Aix-Marseille, CNRS, B.P. 80, Europôle Méditerranéen de l’Arbois, 13545 Aix-en-Provence Cedex 04, France. 3. Université Moulay Ismail, Faculté des Sciences, Département de Géologie, B.P. 11201 Zaitoune, Meknès, Maroc. Abstract. A paleomagnetic study was undertaken on samples collected from seven sites of the exhumed and eroded Ait-Abdallah and Kerdous antiforms in the Moroccan Anti-Atlas of the West African craton. These sites are located in the Adoudounian Formation considered as of Neoproterozoic–Cambrian age. The magnetic mineralogy is represented essentially by magnetite and titanohematite. Magnetization is carried by three components respectively of high-temperature (500-670°C), medium-temperature (350-470°C) and low- temperature (NRM-300°C). Plotted in Gondwana Apparent Polar Wander Path, the high and medium temperature components close to the Permian pole and determine Permian overprint directions. The low temperature component closes to the present day field and corresponds to the present overprint day. This study shows that Permian overprint largely affect the Anti-Atlas area. Key words: Paleomagnetism, Anti-Atlas, West-African craton, Adoudounian Formation, Neoproterozoic, Cambrian. Mise en évidence d’une ré-aimantation permienne dans la Formation Adoudounienne, d’âge Néoprotérozoïque-Cambrien (Anti- Atlas, Maroc) Résumé.
    [Show full text]
  • Deep Sea Drilling Project Initial Reports Volume 40
    28. LEG 40 RESULTS IN RELATION TO CONTINENTAL SHELF AND ONSHORE GEOLOGY William G. Siesser, Department of Geology, University of Cape Town, Rondebosch, South Africa INTRODUCTION tion of basins; instead a sediment wedge has prograded seaward in a deltaic fashion (Scrutton and Dingle, This study compares and contrasts the sedimentary 1974). However, there is some suggestion that history of the onshore coastal region and the continen- marginal-fracture zones striking perpendicular to the tal shelf along the west coast of South Africa, South coast have acted as lines of differential subsidence, thus West Africa, and Angola with that of the outer con- exercising some control over the movement of tinental margin of those countries (Figure 1), as shown sediments parallel to the coast (Scrutton and Dingle, by Leg 40 drilling. 1974). This situation is in contrast to the Cuanza Basin of Geologic Setting: Mesozoic and Tertiary Sedimentation Angola, where sedimentation has been controlled by a Southern Africa underwent its last orogenic phase marginal basement plateau, a number of basement during the Triassic, raising up the Cape Fold Belt. highs, and salt structures (Scrutton and Dingle, 1974). Although no further orogenies occurred, southern Africa remained a high continental mass throughout Onshore the Mesozoic and Cenozoic owing to repeated epeiro- Only two Cretaceous exposures have been reported genic uplift. Epeirogenesis had a characteristic and between Cape Agulhas and the Kunene River. The repeated pattern: maximum uplift occurred in a zone southernmost is a deposit of nonmarine clayey sands near the coastal margin (somewhat seaward of what is (with calcareous concretions) containing bones of the now the Great Escarpment), resulting in a steep dinosaur Kangnasaurus coetzeei, calcified and silicified seaward tilting on the outer side and a gentler inland wood, and streaks of lignite (Rogers, 1915).
    [Show full text]