Ectopic Cervical Thymic Tissue Diagnosis by Fine Needle Aspiration

Total Page:16

File Type:pdf, Size:1020Kb

Ectopic Cervical Thymic Tissue Diagnosis by Fine Needle Aspiration Ectopic Cervical Thymic Tissue Diagnosis by Fine Needle Aspiration D. E. Tunkel, MD; Y. S. Erozan, MD; E. G. Weir, MD c Cervical thymic masses are congenital lesions that result the left side of the neck. At birth he was noted to have very subtle from aberrant thymic migration during embryogenesis. Al- left neck swelling in the submandibular area, which was inter- though most of these masses are asymptomatic, they may preted to be prominent skinfolds and increased subcutaneous fat. cause debilitating symptoms secondary to encroachment His family history, perinatal history, and delivery were unre- on adjacent aerodigestive structures. Preoperative diagno- markable. The patient was managed expectantly, since he contin- sis of ectopic thymic tissue is rare; most cases are clinically ued to gain weight and thrive without dysphagia or respiratory misinterpreted as branchial cleft remnants or cystic hygro- compromise. Although asymptomatic, the cervical lesion persist- mas. De®nitive diagnosis has relied on histopathologic ex- ed and developed a vaguely nodular texture with associated non- amination in nearly all reported cases. However, the in- discrete swelling of the left upper neck. On review of a magnetic resonance imaging scan performed at 9 months of age, a solid, vasiveness of open incisional or excisional biopsy carries homogeneous mass located posterior to the submandibular gland the risk of surgical and anesthetic complications. Inadver- and encroaching on the parapharyngeal space was noted (Figure tent surgical thymectomy may result in cell-mediated im- 1). mune de®ciencies in infants and young children. The utility On physical examination, fullness of the left submandibular of ®ne needle aspiration is gaining wider acceptance in the area was noted without evidence of a discretely palpable mass. diagnostic evaluation of neck masses. We describe an in- The overlying skin was normal, and no tenderness was evident. fant with an asymptomatic cervical thymic mass diagnosed There was no apparent lymphadenopathy. His tonsillar fossae by ®ne needle aspiration. appeared normal, his uvula rose symmetrically, and structures (Arch Pathol Lab Med. 2001;125:278±281) of the midline section of his neck were unremarkable. The pa- tient's hemogram, serum calcium level, and serum electrolyte lev- els were all within normal range. he thymus is a primary lymphoid organ in infancy and A computed tomography±guided FNA was performed with a T early childhood. It initially appears early in fetal life 22-gauge spinal needle. The unenhanced computed tomographic and plays a critical role in the development of cell-medi- image demonstrated an oblong, solid mass that measured ap- ated immunity. Ectopic cervical thymus is rarely reported, proximately 3 3 0.5 cm and was located lateral and super®cial because thymic vestiges often remain asymptomatic and to the left submandibular gland. The mass was isodense with unrecognized by clinicians. Most of these lesions arise as muscle, and although it compressed adjacent structures, it was a consequence of migrational defects during thymic em- noninvasive and distinct from surrounding cervical and peripa- bryogenesis. Since 1901, approximately 90 cases of aber- rotid lymph nodes. Cystic features were not radiologically ap- rant cervical solid and cystic thymic lesions have been re- parent. Review of the aspiration material showed predominantly ported in the literature and were identi®ed at either sur- small, round, monomorphous lymphocytes, which on cell block gery or autopsy.1±3 Nearly two thirds of all reported cases material demonstrated an organoid pattern that was compart- were identi®ed in children younger than 10 years.4 Ectopic mentalized by ®brous trabeculae. In addition, several nests of thymic tissue in the neck is rare in patients older than 20 cytokeratin-positive epithelial cells that formed Hassall corpus- years. Surgical excision has the potential risk of rendering cles were scattered throughout the lesion (Figure 2). There was a child athymic and prone for developing immune dys- no cytologic evidence of a neoplasm. A portion of the aspirate regulation and immunode®ciencies. We report a case of was submitted for ¯ow cytometric analysis, which demonstrated nodular cervical thymic tissue in an infant diagnosed by a lymphocyte population of almost entirely immature T cells that ®ne needle aspiration (FNA). coexpressed CD4 and CD8 and showed positivity for the early T-cell markers CD1a and TdT (Figure 3). Together, the cytomor- REPORT OF A CASE phologic and cytometric ®ndings were diagnostic of ectopic cor- tical thymic tissue. The patient tolerated the procedure well. He A 12-month-old, white, male infant was referred to the Pedi- remains asymptomatic with no change in the mass after 4 atric Otolaryngology Clinic for evaluation of a persistent mass on months of follow-up observation. Accepted for publication June 8, 2000. COMMENT From the Departments of Otolaryngology (Dr Tunkel) and Pathology The primordial thymus begins to appear early in the (Drs Erozan and Weir), The Johns Hopkins Medical Institutions, Balti- sixth week of fetal life. It develops primarily from the ven- more, Md. Reprints: Edward G. Weir, MD, Department of Pathology, The Johns tral wing of the third pharyngeal pouch on each side of Hopkins Hospital, Carnegie Bldg, Room 400, 600 N Wolfe St, Balti- the most cephalad portion of the foregut. Lesser more ru- more, MD 21287 (e-mail: [email protected]). dimentary portions of the thymus are derived from the 278 Arch Pathol Lab MedÐVol 125, February 2001 FNA Diagnosis of Cervical ThymusÐTunkel et al Figure 1. T2-weighted image with fat suppression demonstrates a ho- mogeneous mass (arrow) in the left submandibular space, extending toward the left parapharyngeal space. fourth pharyngeal pouch. The proliferation of endodermal cells within the outpouchings gives rise to paired solid structures. By the seventh week of gestation, the thymic primordia lose their connections with the pharyngeal wall and join in the midline. A mesenchymal capsule sur- rounds the developing thymus and maintains the organ in close association with the parietal pericardium. Togeth- er, these structures descend to their ®nal anatomic posi- tions in the anterior mediastinum. The medial-caudal mi- gration pathway forms the thymopharyngeal tract, which runs from the angle of the mandible to the manubrium of the sternum bilaterally. Normally, this tract involutes by Figure 2. (A) Fine needle aspiration biopsy section prepared from cell the completion of development; however, thymic vestiges block material showing lobules of small, round lymphocytes separated may persist anywhere along its course. Lymphocyte in- by vascularized bands of ®brosis. Although monomorphous, the cells vasion occurs at 10 weeks of gestation, whereas subse- lack malignant features (hematoxylin-eosin, original magni®cation quent endodermal regressions form the Hassall corpus- 340). (B) Immunoperoxidase study demonstrating clusters of keratin- positive cells forming Hassall corpuscles (cytokeratin, original magni- cles. Growth and development of the thymus continue af- ®cation 3 60). ter birth until puberty. The thymus later involutes and un- dergoes fatty replacement, rendering it dif®cult to recognize in adults. Cervical thymic anomalies may occur as a consequence in early childhood. Thymic hyperplasia may occur follow- of an arrest in the medial-caudal migration of thymic pri- ing vaccination or in association with an infectious process mordia or sequestration and persistence of thymic vestiges and often resolves with antibiotics or steroid therapy.9 along the course of the thymopharyngeal tract.5,6 It is often Ectopic thymic masses are congenital lesions of either dif®cult to make the distinction between these 2 mecha- solid or cystic nature and usually present between 2 and nisms. In the case of an undescended thymus due to mi- 13 years of age as asymptomatic nodules or neck swellings grational arrest, only half of the normally bilobed thymus on routine examination. Considering that the thymus is present in the mediastinum. However, a normal chest reaches its greatest absolute size at puberty and its great- radiograph, which lacks the absence or diminution of a est relative size between 2 and 4 years of age, presentation thymic shadow, suggests cervical sequestration of thymic and diagnosis during early childhood are not surprising. remnants. Also, several reports have demonstrated the co- Occasionally, large or hyperplastic ectopic thymic tissue existence of thymus and parathyroid glands in lateral cer- may compress or displace neighboring structures and vical masses.6±8 Because the parathyroid glands are de- cause hoarseness, stridor, or dysphagia.10 Most cervical rived from the dorsal wing of the third pharyngeal pouch thymic lesions are unilateral and, for unknown reasons, and descend with the thymus, an ectopic thymus-parathy- are more commonly reported on the left side and in male roid complex mechanistically suggests aberrant migration. patients.11,12 They have been known to occur as high as the An additional cause of cervical thymic anomaly is marked mandibular angle and as low as the thoracic inlet and su- hyperplasia of a normally positioned mediastinal thymus perior mediastinum. Thymic masses in the trachea and Arch Pathol Lab MedÐVol 125, February 2001 FNA Diagnosis of Cervical ThymusÐTunkel et al 279 minimally invasive technique of investigating neck masses in children.15 Not only does FNA provide rapid results, but
Recommended publications
  • Diagnostic Approach to Congenital Cystic Masses of the Neck from a Clinical and Pathological Perspective
    Review Diagnostic Approach to Congenital Cystic Masses of the Neck from a Clinical and Pathological Perspective Amanda Fanous 1,†, Guillaume Morcrette 2,†, Monique Fabre 3, Vincent Couloigner 1,4 and Louise Galmiche-Rolland 5,* 1 Pediatric Otolaryngology-Head and Neck Surgery, AP-HP, Hôpital Universitaire Necker Enfants Malades, 75015 Paris, France; [email protected] (A.F.); [email protected] (V.C.) 2 Department of Pediatric Pathology, AP-HP, Hôpital Robert Debré, 75019 Paris, France; [email protected] 3 Department of Pathology, AP-HP, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, 75015 Paris, France; [email protected] 4 Faculté de Médecine, Université de Paris, 75015 Paris, France 5 Department of Pathology, University Hospital of Nantes, 44000 Nantes, France * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Background: neck cysts are frequently encountered in pediatric medicine and can present a diagnostic dilemma for clinicians and pathologists. Several clinical items enable to subclassify neck cyst as age at presentation, anatomical location, including compartments and fascia of the neck, and radiological presentation. Summary: this review will briefly describe the clinical, imaging, pathologi- cal and management features of (I) congenital and developmental pathologies, including thyroglossal duct cyst, branchial cleft cysts, dermoid cyst, thymic cyst, and ectopic thymus; (II) vascular malforma- Citation: Fanous, A.; Morcrette, G.; Fabre, M.; Couloigner, V.; tions, including lymphangioma. Key Messages: pathologists should be familiar with the diagnostic Galmiche-Rolland, L. Diagnostic features and clinicopathologic entities of these neck lesions in order to correctly diagnose them and Approach to Congenital Cystic to provide proper clinical management.
    [Show full text]
  • Sonography of the Salivary Glands and Soft Tissue Lesions of the Neck
    Ultrasound of the liver …. 02.05.2011 08:38 1 EFSUMB – European Course Book Editor: Christoph F. Dietrich Sonography of the salivary glands and soft tissue lesions of the neck Norbert Gritzmann1, Susanne A. Quis1, Rhodri M. Evans2 3Dr. Rhodri M Evans. Consultant Radiologist and Senior Clinical Tutor, Morriston Hospital, Swansea University Medical School, Clinical Director Diagnostics, Abertawe Bro Morgannwg University LHB. E mail: [email protected] Corresponding author1: Univ. Prof. Dr. Norbert Gritzmann Gruppenpraxis für Radiologie Esslinger Hauptstr.89 1220 Vienna Austria Tel 0043 676 84 04 64 Fax 0043 676 84 04 64 email: [email protected] Ultrasound of the liver …. CFD 02.05.2011 08:38 2 Content Content ....................................................................................................................................... 2 Topography and sonographic anatomy of the salivary glands................................................... 3 Sonographic anatomy............................................................................................................. 3 Parotid gland ...................................................................................................................... 3 Color Duplex Doppler.................................................................................................... 3 Submandibular gland.......................................................................................................... 4 Sublingual gland................................................................................................................
    [Show full text]
  • Malignant Ectopic Thymoma in the Neck: a Case Report
    AJNR Am J Neuroradiol 20:1747±1749, October 1999 Case Report Malignant Ectopic Thymoma in the Neck: A Case Report Jung Im Jung, Hak Hee Kim, Seog Hee Park, and Youn Soo Lee Summary: We report a case of malignant ectopic thymoma phytic reddish mass in the left tongue base. Contrast-enhanced in the neck. Contrast-enhanced CT of the neck showed a CT of the neck showed an ill-de®ned, 2 3 3-cm, densely en- well-de®ned inhomogeneously enhancing mass in the left hancing mass in the left tongue base (Fig 1C). Multiple, round, conglomerate lymph nodes with central hypoattenuation and a jugulodigastric chain. One year after surgery, the mass had peripherally enhancing rim were noted in the left posterior metastasized to the tongue base, and CT of the neck neck. Biopsy and subsequent surgery, including hemiglossec- showed an ill-de®ned densely enhancing mass with tomy and radical neck dissection, revealed metastatic malig- lymphadenopathy. nant thymoma (Fig 1D±E). After surgery, radiation therapy was administered. The thymus anatomically originates from the su- perior neck during early fetal life and descends to Discussion the mediastinum. During this descent, remnants of Thymus develops from the ventral portion of the thymic tissue occasionally are implanted along the third and fourth pharyngeal pouches. This descends cervical pathway and may appear later as an ectop- into the anterior mediastinum by the sixth week of ic cervical thymus (1). Although rare, malignant gestation. Thymic ectopia results from failure of thymoma may develop from an ectopic thymus (2). this migration. Aberrant nodules of thymic tissue We present a case of malignant thymoma occurring are found in approximately 20% of humans.
    [Show full text]
  • ECTOPIC CERVICAL THYMUS: a CASE REPORT Timo Ectópico Cervical: Presentación De Un Caso
    case report ECTOPIC CERVICAL THYMUS: A CASE REPORT Timo ectópico cervical: Presentación de un caso Ana María Henao González1 Diego Miguel Rivera2 Melisa Prieto Peralta3 Summary Introduction: Ectopic thymus is a rare disease characterized by a non-painful mass on the neck, which may be cystic or solid, resulting from an alteration in the process of migration of the thymus primordia during gestation. Proper interpretation, within the broad spectrum of differential diagnoses, is very Key words (MeSH) important to avoid unnecessary invasive management. Thymus gland Case presentation: We present the case of an 8 months-old boy, with no relevant Head and neck neoplasms history, with bulging in the right submandibular region, not painful, that in the Magnetic resonance imaging exploration by ultrasound and magnetic resonance imaging characteristics were found identical to the thymus orthotics, constituting a rare case of solid ectopic thymus, which was taken to surgery. The pathology corresponded to ectopic thymus. Palabras clave (DeCS) Discussion: The thymus is an organ located in the anterosuperior mediastinum that Timo plays an important role in cell-mediated immunity. It develops embryologically from the Neoplasias de cabeza y cuello third and fourth brachial arches and migrates through the pharyngeal thymus conduit Imagen por resonancia from the angle of the mandible to the mediastinal cervical junction. Ectopic thymic magnética tissue can occur at any point along the pharyngeal thymus conduit. The incidence is not clearly known. They are more common in the left neck, cystic, in men, between 2 and 13 years and of unilateral presentation. The normal appearance of the thymus, and therefore of the solid ectopic thymus, is exactly the same in the different imaging modalities.
    [Show full text]
  • 256 DSJUOG Review Article
    DSJUOG Radu Vladareanu et al 10.5005/jp-journals-10009-1473 REVIEW ARTICLE Neck 1Radu Vladareanu, 2Simona Vladareanu, 3Costin Berceanu ABSTRACT craniocaudal succession: 1st arch on day 22nd; 2nd and 1 Cystic hygroma (CH) is the most frequently seen fetal neck mass 3rd arches sequentially on day 24th; 4th arch on day 29th. on the first-trimester ultrasound (US). Overall prognosis is poor with Pharyngeal arches consist of a mesenchymal core – a high association with chromosomal and structural anomalies. mesoderm and neural crest cells – that is covered on When diagnosed prenatally, fetal karyotyping and detailed US the outside with ectoderm and lined on the inside with evaluation should be offered. Prenatal and postnatal surgical or endoderm.1 nonsurgical treatment options are available. Fetal goiter (FG) and fetal thyroid masses are rare fetal conditions and may occur as part Each arch contains a central cartilaginous skeletal of a hypothyroid, hyperthyroid, or euthyroid state. Screening for element, striated muscle rudiments, innervated by an FGs should be carried out in pregnancies of mothers with thyroid arch-specific cranial nerve, and an aortic arch artery.1 disease. If a FG is detected, a detailed US examination should Arterial blood reaches the head via paired vertebral be performed. Congenital high airway obstruction syndrome arteries that form from anastomoses among intersegmen- (CHAOS) is characterized by bilaterally enlarged lungs, flat or inverted diaphragms, dilated tracheobronchial tree, and massive tal arteries and through the common carotid arteries. The ascites. It is usually a lethal abnormality. Fetuses with suspected common carotid arteries branch to form the internal and CHAOS should be referred to a fetal medicine center able to external carotid arteries.
    [Show full text]
  • Ectopic Thymic Tissue As a Rare and Confusing Entity
    ÇI. Büyükyavuz1 S. OtcËu1 ÇI. Karnak1 Z. AkcËören2 Ectopic Thymic Tissue M. E. SËenocak1 as a Rare and Confusing Entity Case Report Abstract Resumen A 16-year-old girl with intrathyroidal ectopic thymic tissue, Presentamos una niæa de 16 aæos con tejido tímico ectópico in- which was diagnosed incidentally after surgery for thyroid nod- tratiroideo que fue diagnosticado casualmente tras cirugía por ule, is reported to emphasise the possible clinical and surgical nódulo tiroideo para destacar las posibles implicaciones clínicas presentations of this rare entity. y quirrgicas de esta rara entidad. Key words Palabras clave Ectopic thymic tissue ´ Thyroid ´ Nodule Tejido tímico ectópico ´ Tiroides ´ Nódulo RØsumØ Zusammenfassung Le cas dune fille de 16 ans avec du tissu thymique ectopique in- Bei einem 16-jährigen Mädchen wurde eine intrathyroidal gele- tra-thyroïdien qui a ØtØ diagnostiquØ aprs chirurgie dun nodule gene Zyste festgestellt, die sich histologisch als ektopes Thymus- thyroïdien est rapportØ pour insister sur les diffØrentes prØsenta- gewebe herausstellte. Die Feinnadelbiopsie hatte keine eindeuti- tions cliniques et chirurgicales de cette entitØ rare. ge Diagnose gebracht, ebenso wenig mehrfache Ultraschallkon- trollen. Die ektope Lage des Thymus in der Schilddrüse ist eine 327 Mots-clØs ungewöhnliche Seltenheit. Tissu thymique ectopique ´ Thyroïde ´ Nodule Schlüsselwörter Ektoper Thymus ´ Schilddrüsengewebe Introduction case of ectopic thymic tissue, which was encountered in associa- tion with a thyroid nodule. Ectopic thymic tissue in the thyroid gland is a very rare entity, and an almost entirely incidental finding at autopsy or at opera- tion (13). Occasionally, intrathyroidal masses can originate from thymic tissue and be misdiagnosed as thyroid neoplasms or oth- er nodular thyroid pathologies (4).
    [Show full text]
  • Raportul Rectorului
    ROMÂNIA MINISTERUL EDUCAŢIEI ŞI CERCETĂRII ŞTIINŢIFICE UNIVERSITATEA DE MEDICINĂ ŞI FARMACIE "GR.T. POPA" IAŞI RAPORTUL RECTORULUI ANUL UNIVERSITAR 2013 - 2014 Universitatea de Medicină şi Farmacie „Gr. T. Popa” Iaşi 1/4/2015 Raportul anual al Rectorului efectuat conform Legii Educaţiei Naţionale 1/2011 şi actualizat conform datelor de la 1.01.2015 DIRECŢIA ADMINISTRATIVĂ RECTORAT Str. Universităţii nr.16 Str. Universităţii nr.16 700115 Iaşi, România 700115 Iaşi, România Tel: +40-232-301606 Tel: +40-232-211818 +40-232-301607 Fax: +40-232-301640 Fax: +40-232-301650 E-mail: rectorat@umfiasi .ro +40-232-301856 E-mail: [email protected] UNIVERSITATEA DE MEDICINĂ ŞI FARMACIE "GR. T. POPA" IAŞI RAPORTUL RECTORULUI ANUL UNIVERSITAR 2013-2014 UNIVERSITATEA DE MEDICINĂ ŞI FARMACIE "GR. T. POPA" IAŞI COLECTIV DE REDACŢIE Prof. Dr. Dragoş Pieptu – Prorector, Ec. Daniela Druguş – Director General Administrativ, Andreea Dobrea - Secretar Redactori Capitole 1. Studii universitare de licenţă: Prof. Dr. Ileana Cojocaru - Prorector, Prof. Dr. Ioan Costea – Prorector, Mirela Beda – Secretar 2. Studii universitare de masterat: Prof. Dr. Ioan Costea – Prorector 3. Şcoala doctorală: Prof. Dr. Irina Draga Căruntu – Director C.S.U.D., Prof. Dr. Lenuţa Profire – Director C.S.D., Consuela Mitasov – Secretar, Renata Bandol – Secretar 4. Studii postuniversitare: Prof. Dr. Maria Stamatin – Prorector, Ani Donos – Secretar 5. Facultatea de Medicină: Prof. Dr. Doina Azoicăi – Decan, Conf. Dr. Lăcrămioara Ionela Şerban – Prodecan, Oana Crâşmaru – Secretar şef facultate 6. Facultatea de Medicină Dentară: Prof. Dr. Norina Forna – Decan; Monica Copacinschi – Secretar şef facultate 1. Facultatea de Farmacie: Prof. Dr. Monica Hăncianu – Decan, Conf. Dr. Cornelia Mircea, Conf.
    [Show full text]
  • Studies of Thymic Function with Emphasis on the Role of the Thymus in Oncogenesist
    [CANCER RESEARCH 26 Part I, 551-574, April 1966] Studies of Thymic Function with Emphasis on the Role of the Thymus in Oncogenesist LLOYDW. LAW National Cancer Institute, Bethesda, Maryland This presentation will be concerned with 2 general topics: organ to other sites occurs with a selective seeding in spleen (a) our present knowledge of thymic structure and function, lymph nodes, and other lymphoid organs. but particularly the latter, as revealed by the results of recent For a more detailed discussion of the ontogeny of the thymus experiments in several species of animals following early thymic and its microscopic anatomy, the reader is referred to the studies ablation, and (b) consideration of the precise role of the thymus in of Smith (97) and of Ruth et al. (92). the initiation and suppression of neoplastic growths. Pertaining to Thymic Structure and Function Origin and Early Structure of the Thymus In most species the thymus is located in the upper anterior The thymus is a compound organ consisting of 3 quite different part of the chest. Exceptions are the chicken and guinea pig. cell systems: (a) lymphoid cells, (b) reticulum cells, and (c) The absolute size varies from species to species but the absolute e[)ithehal cells. The latter 2 may be referred to as the epithelial size of thymic lobules appears to be remarkably uniform in the reticulum cell complex. The thymus in mammals arises as various species, suggesting that there may be a critical limit for paired structures from the endoderm of the 3rd and 4th branchial the size of a thymic lobule.
    [Show full text]
  • Posterior Mediastinal Thymus: Case Report and Literature Review
    Iran J Pediatr Case Report Sep 2011; Vol 21 (No 3), Pp: 404-408 Posterior Mediastinal Thymus: Case Report and Literature Review Lihua Jiang1, MD; Baiping Sun1, MD; Yulong Zheng2, MD, and Lizhong Du*1, MD 1. The Children’s Hospital, Zhejiang University, Hangzhou, China 2. The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China Received: Nov 19, 2010; Final Revision: May 04, 2011; Accepted: May 21, 2011 Abstract Background: The incidence of aberrant thymus in the posterior mediastinum is very uncommon. It is difficult to exclude malignancy before surgical procedure. Case Presentation: In a six-month-old male coughing for two weeks prior to admission a posterior mediastinal mass was found incidentally by chest roentgenogram. Thoracotomy was performed. Histologic study revealed normal thymic tissue. Conclusion: When a mass located in the posterior mediastinum, ectopic thymus should be included in differential diagnosis. Imaging techniques may spare thoracotomy. Ectopic thymus has a benign clinical course, and surgical resection is not recommended. Iranian Journal of Pediatrics, Volume 21 (Number 3), September 2011, Pages: 404-408 Key Words: Ectopic Thymus; Mediastinum; Thoracotomy; Pulmonary Atelectasis Introduction mediastinum [1-3]. In rare instances, the thymus extends from its usual anterior mediastinal The thymus plays a critical role in the position into posterior mediastinum. Less than 20 development of immune system during early life. cases have been reported in English literature [4-17]. It is derived from the third and fourth pharyngeal Thymic tissue located in the posterior pouches during sixth week of embryologic mediastinum may enlarge disproportionally and development. Generally, the thymus is located in may cause airway and/or vascular compression.
    [Show full text]
  • Some Aspects of Early Development of the Thymus: Embryological Basis for Ectopic Thymus and Thymopharyngeal Duct Cyst
    Early development of human thymus Rev Arg de Anat Clin; 2011, 3 (1): 22-31 __________________________________________________________________________________________ Original Communication SOME ASPECTS OF EARLY DEVELOPMENT OF THE THYMUS: EMBRYOLOGICAL BASIS FOR ECTOPIC THYMUS AND THYMOPHARYNGEAL DUCT CYST Ivan Varga 1, 2*, Paulina Galfiova1, 2, Veronika Jablonska-Mestanova 3, Stefan Polak 1, 2, Marian Adamkov 4 1 Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia, Europe 2 University Centrum of Reproductive Medicine of the 1st Department of Gynecology and Obstetrics, University Hospital, Bratislava, Slovakia, Europe 3 Institute of Anthropology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia, Europe 4 Institute of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia, Europe RESUMEN explicate some of the “forgotten” embryological terms with respect to their functions in thymic development, such as Introducción. El objetivo principal de nuestro trabajo es el “thymus secundus”, “descensus thymi” (an embryological estudio histológico del desarrollo del timo humano entre la 5ª basis for cervical thymus) and “ductus thymicus” (an y la 8ª semana de gestación. Describimos varios términos embryologic basis for a congenital anomaly called embriológicos poco usados como: timo secundus, descensus thymopharyngeal duct with possible thymic cyst). Material thymi (la base embriológica para situar el timo en la and methods. Our findings are based on the study of 18 garganta), ductus timicus (la base embriológica para el human embryos from 6th to 8th week of development. Results. defecto innato llamado conducto timofaríngeo con posibilidad The first primordia of the thymus and parathyroid glands de formar un quiste).
    [Show full text]
  • Summary of Lesions in Regimen B Female Mice in the 2-Year Gavage Study of Chloral Hydrate
    Chloral Hydrate, NTP TR 502 B-1 B-1 APPENDIX B SUMMARY OF LESIONS IN REGIMEN B FEMALE MICE IN THE 2-YEAR GAVAGE STUDY OF CHLORAL HYDRATE TABLE B1 Summary of the Incidence of Neoplasms in Regimen B 100 mg/kg Female Mice in the 2-Year Gavage Study of Chloral Hydrate........................................................................ B-2 TABLE B2 Statistical Analysis of Primary Neoplasms at 2 Years in Regimen B 100 mg/kg Female Mice in the 2-Year Gavage Study of Chloral Hydrate ......................................................................................................................... B-8 TABLE B3 Summary of the Incidence of Nonneoplastic Lesions in Regimen B 100 mg/kg Female Mice in the 2-Year Gavage Study of Chloral Hydrate ......................................................................................................................... B-11 Board Draft NOT FOR DISTRIBUTION OR ATTRIBUTION B-2 Chloral Hydrate, NTP TR 502 TABLE B1 Summary of the Incidence of Neoplasms in Regimen B 100 mg/kg Female Mice in the 2-Year Gavage Study of Chloral Hydratea b Vehicle Control 3 Months 6 Months 12 Months (Stop-Exposure) (Stop-Exposure) (Stop-Exposure) Disposition Summary Animals initially in study 72 48 48 48 3-Month interim evaluation 8 8 6-Month interim evaluation 8 8 12-Month interim evaluation 8 8 Early deaths Moribund 2 2 3 Natural deaths 9 4 6 7 Survivors Terminal sacrifice 37 34 31 33 Animals examined microscopically 72 48 48 48 Systems Examined at 3 Months with No Neoplasms Observed Alimentary System Cardiovascular System
    [Show full text]
  • Toward the Construction of a Vascularized, Hydrogel-Based Lymph Node Model for in Vitro and in Vivo Therapeutic Applications
    Toward the Construction of a Vascularized, Hydrogel-Based Lymph Node Model for In Vitro and In Vivo Therapeutic Applications A THESIS SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Caleb Harff IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Dr. Angela Panoskaltsis-Mortari, Adviser April 2021 © Caleb Harff 2021 i Acknowledgements I am exceedingly grateful for my adviser, Dr. Angela Panoskaltsis-Mortari, without whose patience, direction, and expertise this research and report would not have been possible. I would like to thank my lab managers, Carolyn Meyer and Haylie Helms, for their advice and assistance with a wide variety of procedures and experiments. My colleagues Fanben Meng, Caleb Vogt, Ifeolu Akinnola, and Zachary Galliger provided me with a wealth of knowledge concerning various aspects of tissue engineering, and their insights contributed greatly to the progress of this research. Michael Ehrhardt of the Cytokine Reference Laboratory at the University of MN kindly performed multiple assays to provide me with important data on cytokines. The Visible Heart Laboratory at the University of MN graciously provided me with porcine lymph node tissue for decellularization and analysis. The laboratory of Dr. Brenda Ogle provided me with access to and training for their microplate reader. The laboratories of Dr. Jeffrey Miller, Dr. Bruce Blazar, and Dr. Keli Hippen, at the University of MN, each generously provided me with the central component of my research, peripheral blood mononuclear cells, at different stages of my research. ii Abstract Clinical trials for drugs and vaccines often suffer from the use of culture or animal models that do not accurately recreate the microenvironment of human tissues, including the lymph nodes.
    [Show full text]