Amanita Caesarea and A

Total Page:16

File Type:pdf, Size:1020Kb

Amanita Caesarea and A 124 Nibha Gupta. et al. / Vol 4 / Issue 3 / 2014 / 124-129. International Journal of Innovative Drug Discovery e ISSN 2249 - 7609 Print ISSN 2249 - 7617 www.ijidd.com NUTRITIVE PROPERTIES AND ANTIOXIDATIVE ACTIVITY OF AMANITA CAESAREA AND A. LOOSII WILD EDIBLE MUSHROOMS FROM ODISHA Sushri Shanta Tripathy, Ashutosh Rajoriya and Nibha Gupta* Regional Plant Resource Centre, Bhubaneswar -751015 Odisha, India. ABSTRACT The aim of this study to determine the nutritional , mineral and antioxidant properties of two species of mushrooms Amanita caesaria and Amanita loosii, collected from dry deciduous forest of Odisha India. These edible mushrooms were analysed in terms of macro and micronutrient, mineral contents and antioxidant properties through various biochemical and spectrophotometrical analysis. Antioxidant properties were determined by evaluating the presence of phenolic content, ascorbic acid, carotenoids and flavonoids. The average protein content ranged 3.13 – 8.66 mg/gm. And carbohydrate ranged 23.61-26.00 g/100g were found. Both mushrooms have exhibited 72-73 % DPPH scavenging activity. More amounts of Fe and Zn found in Amanita caesaria as compared to A. loosii. The examined mushroom species were rich in protein and carbohydrate. The variations in both edible mushrooms are attributed to different species and/or growth stages. Results obtained through various nutritional and biochemical analysis b exhibited the exploitable potential of these species for cultivation and commercialization. KEY WORDS: Distribution, Antioxidants, Amanita. INTRODUCTION Mushrooms are widely distributed all over the mushroom species collected from different parts of world world and some of them have nutraceutical and have been reported for usefulness of their antioxidant pharmaceutical importance. In general the fruiting bodies of activity [9]. Still there are several varieties of wild edible mushrooms contain about 56.8% carbohydrate, 25.05% mushrooms whose nutritive and medicinal properties have protein, 5. 7 % fat and 12. 5 % ash on a dry weight basis [1]. not been studied. Amanita caeserea and A. loosii from Mushrooms are also gaining importance due to high protein Odisha, India are one such edible mushroom is required to content (19-35 %) in comparison to wheat (13.3%) and to be studied in detail. milk (25.2 %); besides low fat content and vitamin C and B The Genus Amanita contains about 600 species [2-4]. In addition the mushrooms are important source of including some of most toxic as well as some edible species. food and gain income in both developing and developed In India approximately 100 species are reported [10]. It is countries [5,6]. found in North Africa and southern Europe, particularly in Edible mushrooms attract much attention due to its the hills of northern Italy. The mushroom is also distributed medicinal value. Mushrooms are reported to protect heart in Hungary, Mexico and China. Amanita caesarea is listed health, prevent the risk of cancer and help to control blood in the Red Data book of Ukraine and it is protected by law sugar level etc [7]. Many of the diseases/disorders are in Croatia, Slovenia. This species has also been reported in mainly linked to oxidative stress due to free radical Arunachal Pradesh and Khasi hill of Meghalaya in India. formation Barros et al [8] reported the presence of The species has been found in Similipal forest of Odisha antioxidant compounds in food diets, which act as agents to India. It has been observed that local tribals use it is as one reduce oxidative damage in human body. Several of their food items. Corresponding Author:- Nibha Gupta Email:- [email protected] 125 Nibha Gupta. et al. / Vol 4 / Issue 3 / 2014 / 124-129. Similipal, located in the northern Odisha has a (Analytic Jena, Germany). D-glucose at concentration of green moist deciduous forests and climate in spring and 0.5mg/ml used to make standard. The mean value expressed autumn provides ideal conditions for fungal growth with in mg of carbohydrate per gram of mushroom sample. temperature ranging between 18-28°C. Local tribal community utilizes the forest product like mushrooms Estimation of reducing sugar (wild) for their livelihood by collecting and selling them in Reducing sugar was determined by treating 100 mg local tribal market with minimal cost. Only these people dried powder with 5 ml of 80% ethanol [13]. The reaction know edible mushrooms and are able to identify them. mixture was heated at 90 °C till the complete evaporation of Tribal forests dwellers are finding few wild edible ethanol. Residue was added with 5 ml of ethanol and mixed. mushrooms and use them as food. Due to scattered and 100 µl of this was added with 3 ml of DNS reagent (200mg minimal population of some wild mushrooms in the area, crystalline phenol + 50 mg sodium sulphite in 100 ml of 1% they may not include as components of their livelihood. NaOH).The reaction mixture was kept in boiling water bath The two species covered in this paper i. e. Amanita for 5 min. followed by addition of 1ml 40% Rochelle’s salt caesaria and A. loosii have not been explored till date for (Sod. Potassium tartarate).The absorbance was measured at their taxonomic characterization, identification and 510 nm. Glucose was used as standard to calculate the specialty for nutritional and medicinal properties though concentration of reducing sugar and expressed in terms of local people use it occasionally as food. Hence, it is mg per gram dry weight of the samples. necessary to have some basic information to avoid the The amount of non reducing sugar was calculated poisoning factors associated with some the mushrooms. as differential amount of total carbohydrate and reducing Hence, the samples collected from this area were evaluated sugar and expressed in terms of g/100g of dry wt. of for some nutritional and antioxidant properties and samples. described here. DPPH Free Radical scavenging activity MATERIALS & METHODS The DPPH activity was estimated in the Collection and characterization of Mushrooms methanolic extracts by a colorimetric method [14]. 1 gm of Mushrooms samples: Healthy, fresh and succulent samples was added with 20 ml methanol. Methanolic extract mushroom from two species of Amanita caesarea and A. was added with 2 ml of DPPH solution (1:2) and incubated loosii were collected from Tropical moist deciduous and for 30 min. in dark after vigorous mixing. Absorbance was semi evergreen forest of Similipal. measured at 517 .Scavenging activity of each extract on Macroscopic examination for the pileus, stipe, veil, DPPH radical was calculated using the following equation: ring, volva, lamellae and gills etc. for the identification was Scavenging activity (%) = (1- Absorbance of done according to Largent, 1981).The mushrooms samples sample/Absorbance of control) ×100. were carried into the laboratory and preserved in AEAC: (Ascorbic acid Equivalent Antioxidant Capacity) Microbiology laboratory of Regional Plant Resource Centre, was calculated by calibrating the value of above absorbance Bhubaneswar, Odisha, India as specimen as well as further in standard ascorbic acid curve and expressed in mg per analytical and biochemical processing. gram of dried sample. Estimation of protein Determination of Carotenoid content in mushroom The protein content was determined from dried The carotenoid was estimated in 500 mg of dried powder of mushroom (100 mesh size). 1 gram of dried mushroom powder treated with 10 ml of 80% acetone and powder of mushroom was treated with 10 ml of phosphate centrifuged at 3000 rpm for 10 minutes at 4⁰ C. This buffer (pH 7.6), and centrifuged fro 20 min at 8000rpm at procedure was repeated until the residue became colorless. 20 °C. 100 µl of supernatant was mixed with 5 ml of The residue was made upto 10ml with 80% acetone and Bradford, incubated in dark (10 min.) and absorbance was measured for absorbance at 480, 645 and 663 nm recorded at 595nm. The values were expressed in mg separately. The quantity of carotenoids was calculated by protein per gram of dried sample [11]. using following formula and values were expressed in mg/gm by using formula [15] Estimation of Total carbohydrate Carotenoid = A.480+ (0.114×A.663 - 0.638 × A.645). The total carbohydrate was estimated by Phenol Where A= Absorbance. Sulphuric acid method [12]. The total carbohydrate content in dried mushroom powder was estimated by boiling of 100 Estimation of Flavonoids mg samples in 5 ml of 2.5 N HCl. The flavonoid content of dried sample was The mixture was neutralized with sodium estimated from methanolic extract. 100 µl of extract was carbonate until the effervescence ceases. The final volume diluted with 1.5 ml of methanol and incubated for 5 min at was made up to 100 ml and centrifuged. The absorbance room temperature. 0.1ml of AlCl3 was added and again was measured at 490 nm using UV-spectrophotometer incubated at room temperature for 5 min. The reaction 126 Nibha Gupta. et al. / Vol 4 / Issue 3 / 2014 / 124-129. mixture was mixed with 0.1ml of Potassium acetate (1M) (g) Estimation of mineral content and total volume was made upto 5 ml with dist. water. All the samples were weighed 0.5gram and kept in 100µl of methanolic extract was taken in a clean 10 ml concentrated Nitric acid overnight. Then the samples test tube later 1.5ml of methanol was added and incubated were heated till the emergence of white fume and treated for 5 minutes at room temperature then 0.1 ml of AlCl3 was with diacid (Hydrochloric acid and Perchloric acid in 2:1) added again followed by 5 minutes of incubation at room with the help of Microwave digestion system (Milestone temperature followed by addition of Potassium acetate, total stat D, Germany) .The sample volume made up to 100 ml volume was made upto 5ml, finally absorbance was with distilled water.
Recommended publications
  • Molecular Phylogenetic Studies in the Genus Amanita
    1170 Molecular phylogenetic studies in the genus Amanita I5ichael Weiß, Zhu-Liang Yang, and Franz Oberwinkler Abstracl A group of 49 Amanita species that had been thoroughly examined morphologically and amtomically was analyzed by DNA sequence compadson to estimate natural groups and phylogenetic rclationships within the genus. Nuclear DNA sequences coding for a part of the ribosomal large subunit were determined and evaluated using neighbor-joining with bootstrap analysis, parsimony analysis, conditional clustering, and maximum likelihood methods, Sections Amanita, Caesarea, Vaginatae, Validae, Phalloideae, and Amidella were substantially confirmed as monophyletic groups, while the monophyly of section Lepidell.t remained unclear. Branching topologies between and within sections could also pafiially be derived. Stbgenera Amanita an'd Lepidella were not supported. The Mappae group was included in section Validae. Grouping hypotheses obtained by DNA analyses are discussed in relation to the distribution of morphological and anatomical chamcters in the studied species. Key words: fungi, basidiomycetes phylogeny, Agarrcales, Amanita systematics, large subunit rDNA, 28S. R6sum6 : A partir d'un groupe de 49 esp,ces d'Amanita prdalablement examinees morphologiquement et anatomiquement, les auteurs ont utilisd la comparaison des s€quences d'ADN pour ddfinir les groupes naturels et les relations phylog6ndtiques de ce genre. Les sdquences de I'ADN nucl6aire codant pour une partie de la grande sous-unit6 ribosomale ont 6t6 ddterminEes et €valu6es en utilisant l'analyse par liaison en lacet avec le voisin (neighbor-joining with bootstrap), l'analyse en parcimonie, le rcgroupement conditionnel et les m€thodes de ressemblance maximale. Les rdsultats confirment substantiellement les sections Afiarira, Caesarea, Uaqinatae, Ualidae, Phalloideae et Amidella, comme groupes monophyldtiques, alors que la monophylie de la section Lepidella demerxe obscure.
    [Show full text]
  • Cuivre Bryophytes
    Trip Report for: Cuivre River State Park Species Count: 335 Date: Multiple Visits Lincoln County Agency: MODNR Location: Lincoln Hills - Bryophytes Participants: Bryophytes from Natural Resource Inventory Database Bryophyte List from NRIDS and Bruce Schuette Species Name (Synonym) Common Name Family COFC COFW Acarospora unknown Identified only to Genus Acarosporaceae Lichen Acrocordia megalospora a lichen Monoblastiaceae Lichen Amandinea dakotensis a button lichen (crustose) Physiaceae Lichen Amandinea polyspora a button lichen (crustose) Physiaceae Lichen Amandinea punctata a lichen Physiaceae Lichen Amanita citrina Citron Amanita Amanitaceae Fungi Amanita fulva Tawny Gresette Amanitaceae Fungi Amanita vaginata Grisette Amanitaceae Fungi Amblystegium varium common willow moss Amblystegiaceae Moss Anisomeridium biforme a lichen Monoblastiaceae Lichen Anisomeridium polypori a crustose lichen Monoblastiaceae Lichen Anomodon attenuatus common tree apron moss Anomodontaceae Moss Anomodon minor tree apron moss Anomodontaceae Moss Anomodon rostratus velvet tree apron moss Anomodontaceae Moss Armillaria tabescens Ringless Honey Mushroom Tricholomataceae Fungi Arthonia caesia a lichen Arthoniaceae Lichen Arthonia punctiformis a lichen Arthoniaceae Lichen Arthonia rubella a lichen Arthoniaceae Lichen Arthothelium spectabile a lichen Uncertain Lichen Arthothelium taediosum a lichen Uncertain Lichen Aspicilia caesiocinerea a lichen Hymeneliaceae Lichen Aspicilia cinerea a lichen Hymeneliaceae Lichen Aspicilia contorta a lichen Hymeneliaceae Lichen
    [Show full text]
  • The Genus Amanita  3Huv ,1/80%,1,=21( Nepal
    THE GENUS AMANITA 3HUV ,1/80%,1,=21( NEPAL Hari Prasad Aryal * and Usha Budhathoki ** 3DNOLKDZD&DPSXV,QVWLWXWHRI$JULFXOWXUHDQG$QLPDO6FLHQFH%KDLUDKDZD &HQWUDO'HSDUWPHQWRI%RWDQ\7ULEKXYDQ8QLYHUVLW\.LUWLSXU.DWKPDQGX1HSDO Abstract: 'XULQJWKHVXUYH\RIZLOGHGLEOHPXVKURRPVLQWURSLFDOWRWHPSHUDWHEHOWRI1HSDOGXULQJUDLQ\VHDVRQVLQ DQGPDQ\PDFURIXQJDOVSHFLHVZHUHFROOHFWHGDQGLGHQWL¿HG7KHSDSHUKLJKOLJKWVRQWKH¿YHVSHFLHVRI genus Amanita 3HUVLQFOXGLQJQHZVSHFLHV Amanita volvata 3HFN /OR\G ZLWKWKHLULGHQWL¿FDWLRQDQGGRFXPHQWDWLRQ The new species was LGHQWL¿HGDQGWKLVLVEHLQJUHSRUWHGDQGUHGHVFULEHGIRUWKH¿UVWWLPHIURP1HSDO Amanita characterized by stipe with volva or rudiments of volva, annulus present, in some may be absent, clamp connection SUHVHQWRUDEVHQWVSRUHVDP\ORLGRULQDP\ORLG7KHVWXG\DUHDRFFXSLHGVTNPDPRQJWKHVT.PODQG DQGOLHVZLWKLQDQDOWLWXGHEHWZHHQDQGPDVOLQWURSLFDOGHFLGXRXVULYHULQHIRUHVWWRORZHUWHPSHUDWHPL[HG EURDGOHDYHGIRUHVW7KHGULHGVSHFLPHQVDUHKRXVHGLQWKH7ULEKXYDQ8QLYHUVLW\&HQWUDO+HUEDULXP 78&+ .LUWLSXU .DWKPDQGX1HSDO7KHDUHDHPEUDFHVPDQ\P\FRSKDJRXVHWKQLFFRPPXQLWLHV7KHP\FRHOHPHQWVSUHYDLOLQJLQWKLV DUHDQHHGVXVWDLQDEOHFRQVHUYDWLRQDQGXWLOL]DWLRQ Keywords: Tasonomy; %DVLGLRP\FHWHV Amanita volvata; 0DFURIXQJL INTRODUCTION 7KH LQYHVWLJDWLRQ DQG VWXG\ RQ PXVKURRPV RI 1HSDO started since 19 th FHQWXU\ /OR\G %HUNHOH\ 7KH JHQXV Amanita FRQWDLQV RYHU QDPHG VSHFLHV DQG YDULHWLHV $GKLNDUL et al Amanita IURP1HSDOKDVEHHQUHSRUWHGVLQFH th century (Singh, DE VLQFHWKHQVHYHUDOSDSHUVKDYHEHHQSXEOLVKHG 42 species and 2 subspecies of Amanita are reported IURP1HSDO $GKLNDUL et al VLQFHWKHQVHYHUDO
    [Show full text]
  • Forest Fungi in Ireland
    FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix
    [Show full text]
  • Mushroom Toxins & Poisonings in New Jersey
    Mushroom Toxins & Poisonings in New Jersey & Nearby Eastern North America What this document doesn’t do: (1) This document is not intended to be used as a guide for treatment and should not be so used. (2) Mushrooms should not be selected for eating based on the content of this document. [In identifying mushrooms in poisoning cases, this document does not replace expertise that should be obtained by calling NJPIES and obtaining contact with an experienced mycologist.] (3) This document is not a replacement for a detailed toxicological review of the subject of mushroom poisoning. (4) This document is intended for use with a broad set of audiences; for this reasons, it should not be used uncritically in setting protocols [for example, carrying out a Meixner test would be inappropriate for a first responder who would appropriately focus on collecting a poi- soning victim, the relevant objects from the scene of the poisoning, and the critical timing characteristics of the event such as the delay between ingestion and onset of symptoms.] POISON CONTROL: New Jersey “Poison Control” is called NJPIES (New Jersey Poison Information & Education System). Telephone: 1-800-222-1222 [works in all states—(WARN- ING) WILL CONNECT TO A MOBILE PHONE’S HOME STATE—IF YOU’RE UNCERTAIN, USE A LAND- LINE] If the victim is unconscious, call “911.” Background of these notes: This document was originally compiled by Rod Tulloss and Dorothy Smullen for an NJ Mycol. Assoc. workshop, 25 March 2006. Version 2.0 was compiled by Tulloss. When viewed with Acrobat Reader, underlined red or gray words and phrases are “hot linked cross-references.” We have included a few notes on fungal poisons that are not from “mushrooms.” The notes were prepared by mycologists with experience in diagnosis of fungi involved in cases in which ingestion of toxic fungi was suspected.
    [Show full text]
  • Poisonous Mushrooms
    POISONOUS MUSHROOMS DR. SURANJANA SARKAR ASSISTANT PROFESSOR IN BOTANY, SURENDRANATH COLLEGE, KOLKATA Dr. Suranjana Sarkar, SNC INTRODUCTION It was difficult not to since eating wild mushrooms and mushroom poisoning seem to be closely related subjects. This is a rather important topic since mushrooms have apparently been gathered for eating throughout the world, for thousands of years, and it is also likely that during that time many people became ill or died when they inadvertently consumed poisonous mushrooms. Because some mushrooms were known to cause death when consumed, they were also known to be used by assassins. Dr. Suranjana Sarkar, SNC Used as Poison in Assassinations and Murders The most famous of all planned murders was that of Emperor Claudius by his fourth wife, Agrippina, The Younger (also his niece!). The story behind this assassination, as well as the political intrigue that was present during this period of the Roman Empire would have made a great mini series or soap opera. Claudius became emperor, in 41 A.D., following the assassination of his nephew Caligula, and married Agrippina, his fourth wife, after disposing of Messalina, his third wife, for adultery. Agrippina came into the marriage with Nero, a son from a previous marriage and wanted him to follow Claudius as emperor. Agrippina persuaded him to adopt her son so that Nero would be in line to become emperor. Once Nero was adopted, Agrippina plotted to kill Claudius, which involved a number of people. Although ClaudiusDr. Suranjana Sarkar,had SNCa son, Brittanicus, by Messalina, and should have succeeded him as emperor, Claudius shielded him from the responsibilities as heir to the throne and promoted Nero as his successor.
    [Show full text]
  • Toxic Fungi of Western North America
    Toxic Fungi of Western North America by Thomas J. Duffy, MD Published by MykoWeb (www.mykoweb.com) March, 2008 (Web) August, 2008 (PDF) 2 Toxic Fungi of Western North America Copyright © 2008 by Thomas J. Duffy & Michael G. Wood Toxic Fungi of Western North America 3 Contents Introductory Material ........................................................................................... 7 Dedication ............................................................................................................... 7 Preface .................................................................................................................... 7 Acknowledgements ................................................................................................. 7 An Introduction to Mushrooms & Mushroom Poisoning .............................. 9 Introduction and collection of specimens .............................................................. 9 General overview of mushroom poisonings ......................................................... 10 Ecology and general anatomy of fungi ................................................................ 11 Description and habitat of Amanita phalloides and Amanita ocreata .............. 14 History of Amanita ocreata and Amanita phalloides in the West ..................... 18 The classical history of Amanita phalloides and related species ....................... 20 Mushroom poisoning case registry ...................................................................... 21 “Look-Alike” mushrooms .....................................................................................
    [Show full text]
  • Classification of Amanita Species Based on Bilinear Networks With
    agriculture Article Classification of Amanita Species Based on Bilinear Networks with Attention Mechanism Peng Wang, Jiang Liu, Lijia Xu, Peng Huang, Xiong Luo, Yan Hu and Zhiliang Kang * College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya’an 625000, China; [email protected] (P.W.); [email protected] (J.L.); [email protected] (L.X.); [email protected] (P.H.); [email protected] (X.L.); [email protected] (Y.H.) * Correspondence: [email protected]; Tel.: +86-186-0835-1703 Abstract: The accurate classification of Amanita is helpful to its research on biological control and medical value, and it can also prevent mushroom poisoning incidents. In this paper, we constructed the Bilinear convolutional neural networks (B-CNN) with attention mechanism model based on transfer learning to realize the classification of Amanita. When the model is trained, the weight on ImageNet is used for pre-training, and the Adam optimizer is used to update network parameters. In the test process, images of Amanita at different growth stages were used to further test the generalization ability of the model. After comparing our model with other models, the results show that our model greatly reduces the number of parameters while achieving high accuracy (95.2%) and has good generalization ability. It is an efficient classification model, which provides a new option for mushroom classification in areas with limited computing resources. Keywords: deep learning; bilinear convolutional neural networks; attention mechanism; trans- fer learning Citation: Wang, P.; Liu, J.; Xu, L.; Huang, P.; Luo, X.; Hu, Y.; Kang, Z.
    [Show full text]
  • Fungi of National Park Mavrovo
    Project “Protection, Economic Development and Promotion of Eco Tourism in Mavrovo National Park” Fungi of National Park Mavrovo Final Report Mitko Karadelev Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University, Skopje, Macedonia 1 Contents 1. Introduction 3 2. Review of Fungi Research in the Area 5 3. Inventory of Fungi Species in Mavrovo NP 7 3.1. Fungi Species from Mavrovo NP on European Fungi Red List 8 3.2. Fungi Species from Mavrovo NP on Preliminary Red List of Macedonia 14 3.3. Threatened Fungi Species from Mavrovo NP - Candidates for Listing in Appendix I of the Bern Convention 17 3.4. Threatened Fungi Species Included in ECCF Atlas of 50 Threatened European Species 18 3.5. Macrofungi Known Only from Mavrovo NP in Macedonia 20 3.6. New Fungi Species for Macedonia Recorded for the First Time from Mavrovo NP in 2009-2010 22 3.7. Species from Mavrovo NP with Globally Significant Status 29 3.8. Key Species from Mavrovo NP 30 4. Species and Habitat Analysis 34 4.1. Edible and Toxic Species in MNR 42 5. Conservation Problems 46 5.1. Gaps in Knowledge of Macromycetes 46 5.2. Fragility 47 6. Protection Measures 47 7. Prime Mushroom Areas 49 8. Recommendations 54 9. References 55 -------------------------------------------------------------------------------------------------- Annex I: List of Published Fungi Species from MNP Annex II: Full List of Recorded Fungi Species from MNP Annex III: List of New Species for MNP (Project Results) Annex IV: List of Edible and Poisonous Fungi in MNP Annex V: List of New Species for MK 2 1.
    [Show full text]
  • Macrofungi Determined in Uzungöl Nature Park (Trabzon)
    http://dergipark.gov.tr/trkjnat Trakya University Journal of Natural Sciences, 18(1): 15-24, 2017 ISSN 2147-0294, e-ISSN 2528-9691 Research Article/Araştırma Makalesi DOI: 10.23902/trkjnat.295542 MACROFUNGI DETERMINED IN UZUNGÖL NATURE PARK (TRABZON) Ilgaz AKATA1*, Yasin UZUN2 1Ankara University, Faculty of Science, Department of Biology, Ankara, Turkey 2Karamanoğlu Mehmetbey University, Kamil Özdağ Science Faculty, Department of Biology, Karaman, Turkey *Corresponding author: [email protected] Received (Alınış): 28 Fabruary 2017, Accepted (Kabul): 20 March 2017, Online First (Erken Görünüm): 4 April 2017, Published (Basım): 15 June 2017 Abstract: In the present study, macrofungi samples collected from Uzungöl Nature Park (Trabzon) between 2011 and 2013 were identified and classified. After field and laboratory studies, a total of 205 macrofungi species were determined. A list of 212 species, by including the previously reported 7 species in the research area, belonging to 129 genera and 64 families within 2 divisions were given. Fourty-six species were determined to belong to Ascomycota and 166 to Basidiomycota. Key words: Biodiversity, macrofungi, Uzungöl Nature Park, Turkey. Uzungöl Tabiat Parkı (Trabzon)’ndan Belirlenen Makrofunguslar Özet: Bu çalışmada, Uzungöl Tabiat Parkı (Trabzon)’ndan 2011 ve 2013 yılları arasında toplanan makrofungus örnekleri teşhis edilmiş ve sınıflandırılmıştır. Arazi ve laboratuvar çalışmaları sonrasında 205 makromantar türü tespit edilmiştir. Daha önceden araştırma alanından rapor edilmiş 7 tür de dâhil olmak üzere, toplam 2 bölüm içinde yer alan 64 familya ve 129 cinse ait toplam 212 tür verilmiştir. Tespit edilen türlerden 46’sı Ascomycota, 166’sı Basidiomycota bölümüne mensuptur. Anahtar kelimeler: Biyoçeşitlilik, makromantarlar, Uzungöl Tabiat Parkı, Türkiye.
    [Show full text]
  • 2 the Numbers Behind Mushroom Biodiversity
    15 2 The Numbers Behind Mushroom Biodiversity Anabela Martins Polytechnic Institute of Bragança, School of Agriculture (IPB-ESA), Portugal 2.1 ­Origin and Diversity of Fungi Fungi are difficult to preserve and fossilize and due to the poor preservation of most fungal structures, it has been difficult to interpret the fossil record of fungi. Hyphae, the vegetative bodies of fungi, bear few distinctive morphological characteristicss, and organisms as diverse as cyanobacteria, eukaryotic algal groups, and oomycetes can easily be mistaken for them (Taylor & Taylor 1993). Fossils provide minimum ages for divergences and genetic lineages can be much older than even the oldest fossil representative found. According to Berbee and Taylor (2010), molecular clocks (conversion of molecular changes into geological time) calibrated by fossils are the only available tools to estimate timing of evolutionary events in fossil‐poor groups, such as fungi. The arbuscular mycorrhizal symbiotic fungi from the division Glomeromycota, gen- erally accepted as the phylogenetic sister clade to the Ascomycota and Basidiomycota, have left the most ancient fossils in the Rhynie Chert of Aberdeenshire in the north of Scotland (400 million years old). The Glomeromycota and several other fungi have been found associated with the preserved tissues of early vascular plants (Taylor et al. 2004a). Fossil spores from these shallow marine sediments from the Ordovician that closely resemble Glomeromycota spores and finely branched hyphae arbuscules within plant cells were clearly preserved in cells of stems of a 400 Ma primitive land plant, Aglaophyton, from Rhynie chert 455–460 Ma in age (Redecker et al. 2000; Remy et al. 1994) and from roots from the Triassic (250–199 Ma) (Berbee & Taylor 2010; Stubblefield et al.
    [Show full text]
  • Los Alamos National Laboratory
    LA-13385-MS Distribution and Diversity of Fungal Species in and Adjacent to the Los Alamos National Laboratory OF WS DOCUMBff S IWM* Tl Los Alamos NATIONAL LABORATORY Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENC-36. An Affirmative Action/Equal Opportunity Employer This report was prepared as an account of work sponsored by an agency of the United States Government Neither The Regents of the University of California, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of The Regents of the University of California, the United States Government, or any agency thereof. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution,however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. DISCLAIMER Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
    [Show full text]