Battery Electric Aircraft Feasibility Investigation Including a Battery-In-Wing Conceptual Design
Total Page:16
File Type:pdf, Size:1020Kb
A BATTERY ELECTRIC AIRCRAFT FEASIBILITY INVESTIGATION INCLUDING A BATTERY-IN-WING CONCEPTUAL DESIGN A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Mechanical Engineering by Mark H. Shushnar June 2014 © 2014 Mark H. Shushnar ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: A Battery Electric Aircraft Feasibility Investigation Including a Battery-in-Wing Conceptual Design AUTHOR: Mark H. Shushnar DATE SUBMITTED: June 2014 COMMITTEE CHAIR: Dr. Joseph Mello, PhD Professor of Mechanical Engineering COMMITTEE MEMBER: Dr. Patrick Lemieux, PhD Associate Professor of Mechanical Engineering COMMITTEE MEMBER: Dr. Kurt Colvin, PhD Professor of Industrial and Manufacturing Engineering iii ABSTRACT A Battery Electric Aircraft Feasibility Investigation Including a Battery-In-Wing Conceptual Design Mark H. Shushnar The feasibility of converting an existing internal combustion powered general aviation aircraft to battery electric propulsion was studied. The theoretical performance of various types of airframes with battery electric propulsion systems was compared to determine which type of airframe would be best suited for conversion. It was found that battery electric propulsion is best used in aircraft intended for slow speed, efficient flight and carrying limited payload which is a mission typically flown in motor gliders. A reference motor glider was selected and a conceptual power system packaging design study was performed. The study determined that a critical component of the power system packaging design was the technical feasibility of packaging the batteries inside of the wing structure. This was driven by center of gravity restrictions. Technical concerns related to a battery-in-wing design were investigated, included wing aeroelastic performance, wing stiffness and wing strength. The results showed that aeroelastic flutter was not a driving design criteria for the reference airframe used as the physical size of the battery did not allow for them to be packaged in wing locations that detrimentally affected flutter performance. The battery packaging layout was instead driven by access for battery maintenance, battery safety and the battery thermal management system. Overall weight change from packaging the batteries in the wing compared to the fuselage was found to be negligible. The resulting aircraft conceptual design indicated a powered flight range with reserves of over 200 miles and a powered flight endurance of greater than 3 hours with 2 persons onboard. iv TABLE OF CONTENTS LIST OF TABLES………………………………………………………………………..ix LIST OF FIGURES……………………………………………………………………...xii LIST OF SYMBOLS……………………………………………………………………xvi CHAPTER 1: Introduction ................................................................................................. 1 1.1 Thesis Roadmap and Scope.................................................................................. 3 CHAPTER 2: Existing Electric Aircraft ............................................................................. 5 2.1 2011 NASA Green Flight Challenge ................................................................... 5 2.2 Airbus Siemens E-Star 2 Hybrid Aircraft .......................................................... 10 2.3 Airbus/EADS E-Fan ........................................................................................... 12 2.4 Chapter Conclusion ............................................................................................ 15 CHAPTER 3: Battery Technology ................................................................................... 16 3.1 Battery Cells ....................................................................................................... 16 3.1.1 Battery Technology ..................................................................................... 16 3.1.2 Battery Cell Safety Features ....................................................................... 17 3.1.3 Battery Pack Assembly ............................................................................... 21 3.1.4 Battery Management System ...................................................................... 22 3.1.5 Battery Cell Selection ................................................................................. 22 3.2 Existing Automotive Battery Pack Methods ...................................................... 24 3.2.1 Nissan Leaf Battery Pack ............................................................................ 24 3.2.2 Chevrolet Volt Battery Pack ....................................................................... 25 3.2.3 AC Propulsion and the BMW Mini E Battery Pack ................................... 27 3.2.4 Tesla Motors Battery Pack .......................................................................... 29 3.2.5 Boeing 787 Battery Design and Safety ....................................................... 31 3.3 Battery Energy Density for Design Study .......................................................... 35 3.4 Battery Design Requirements and Best Practices .............................................. 36 CHAPTER 4: Electric Motor and Controller Technology ............................................... 38 4.1 Motors ................................................................................................................ 38 4.2 Controllers .......................................................................................................... 43 4.3 Motor and Controller Requirements .................................................................. 46 v 4.4 Motor and Controller Metrics ............................................................................ 46 CHAPTER 5: Rubber Component Concept ..................................................................... 47 CHAPTER 6: Airframe Performance Analysis ................................................................ 49 6.1 Airframe Selection ............................................................................................. 50 6.2 Airframe requirements and feasibility evaluation .............................................. 50 6.3 Electric Propulsion System for various Airframes ............................................. 51 6.4 Drag, Thrust Power and Traction Battery Drain ................................................ 52 6.5 Battery Pack Efficiency ...................................................................................... 56 6.6 Estimation of Electric Propulsion System Component Weight ......................... 57 6.7 Aircraft Cruise Endurance and Range at Various Speeds .................................. 58 CHAPTER 7: Battery Electric Propulsion System Layout in a Motor Glider ................. 74 7.1 Pipistrel Sinus Motorglider Overview................................................................ 74 7.2 Weight and Balance ........................................................................................... 75 7.3 Pipistrel Sinus Battery Electric Propulsion System Layout ............................... 81 7.3.1 Battery Pack Layout .................................................................................... 81 7.3.2 Wing Module Layout .................................................................................. 82 7.3.3 Battery Pack Discharge Efficiency ............................................................. 83 7.3.4 Motor Selection and Efficiency .................................................................. 83 7.3.5 Controller Selection and Efficiency ............................................................ 85 CHAPTER 8: Aeroelasticity Theory ................................................................................ 88 8.1 Aeroelasticity Definition and Requirements ...................................................... 88 8.2 Wing Divergence: .............................................................................................. 91 8.3 Dynamic Aeroelasticity ...................................................................................... 94 8.4 V-g Flutter Method Using Assumed Modes ...................................................... 95 8.4.1 Discretization of the Model ........................................................................ 99 8.4.2 Flexibility Influence Coefficient Matrix Calculation ............................... 100 8.4.3 Mode Shape and Natural Frequency Development .................................. 100 8.4.4 Flutter Determinant Development ............................................................ 102 8.4.5 Potential and Kinetic Energy .................................................................... 102 8.4.6 Structural Damping ................................................................................... 104 8.4.7 Generalized Forces.................................................................................... 105 vi 8.4.8 Equation of Motion Development ............................................................ 106 8.4.9 Assumption of Simple Harmonic Motion ................................................. 107 8.4.10 Summary of Flutter Methodology ............................................................ 109 8.5 Flutter Flight Testing ........................................................................................ 110 8.6 Chapter Summary ............................................................................................. 111 CHAPTER 9: Wing Structural Design Requirements ...................................................