The Journal of North American Herpetology

Total Page:16

File Type:pdf, Size:1020Kb

The Journal of North American Herpetology ISSN 2333-0694 JNAHThe Journal of North American Herpetology Volume 2017(1): 11-18 29 March 2017 jnah.cnah.org NOCTURNAL ARBOREALITY IN SNAKES IN THE SWAMPLANDS OF THE ATCHAFALAYA BASIN OF SOUTH-CENTRAL LOUISIANA AND BIG THICKET NATIONAL PRESERVE OF SOUTHEAST TEXAS BRAD M. GLORIOSO1,2 AND J. HARDIN WADDLE1 1U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Blvd., Lafayette, LA 70506, USA 2 Corresponding author: [email protected] ABSTRACT — The southeastern United States is home to a diverse assemblage of snakes, but only one species, the Rough Greensnake (Opheodrys aestivus), is considered specialized for a predominantly arboreal lifestyle. Other species, such as Ratsnakes (genus Pantherophis) and Ribbonsnakes/ Gartersnakes (genus Thamnophis), are widely known to climb into vegetation and trees. Some explanations given for snake climbing behavior are foraging, thermoregulation, predator avoidance, and response to flood. Reports of arboreality in snake species typically not associated with life in the trees (such as terrestrial, aquatic, and even fossorial species) usually come from single observations, with no knowledge of prevalence of the behavior. Here, we report on arboreality of snake species detected during 8 years of night surveys in the Atchafalaya Basin of south-central Louisiana and 5+ years of night surveys in Big Thicket National Preserve in southeast Texas. We recorded a total of 1,088 detections of 19 snake species between the two study areas, with 348 detections above ground level (32%). The Rough Greensnake and Western Ribbonsnake (Thamnophis proximus) accounted for nearly 75% of total arboreal detections among the two study areas. However, with one exception, all snake species detected more than once between both study areas had at least one arboreal detection. These observations demonstrate that snakes with widely varying natural histories may be found in the trees at night, and for some species, this behavior may be more common than previously believed. INTRODUCTION into the trees for various reasons. Snakes may climb Like many things in the natural world, arboreality in into trees to exploit seasonally available food sources. snakes exists in a continuum (Lillywhite and Henderson For instance, large colubrid snakes in the United States 1993). There are bona fide tree snakes that confine all often forage in trees each spring as they seek bird eggs of their activities to the vegetation above ground. These and chicks as prey (e.g. Cunningham 1955; Mullin et snakes are most common in the tropics, and typically al. 2000; Sajdak 2010). Copperheads (Agkistrodon exhibit large eyes, slender bodies, long prehensile tails, contortrix) are known to climb to prey upon seasonally and remarkable camouflage (Lillywhite and Henderson abundant cicadas (Gloyd and Conant 1990; Beaupre and 1993). On the other side of the spectrum, there are Roberts 2001; Sajdak 2010). Snakes may climb into decidedly terrestrial or aquatic snake species with poor trees to avoid terrestrial predators (Martins 1993; Sajdak climbing ability that are rarely found off of the ground. 2010). The North American Racer, Coluber constrictor, Then there are snake species that are intermediate in is well documented to flee into trees to avoid capture their use of arboreal situations, sometimes referred to (Conant and Collins 1998; Mitchell et al. 2000; Sajdak as semi-arboreal species, which may use both habitats 2010). In Amazonian forests, many diurnal snake efficiently for different purposes, possibly following regular species, even categorically terrestrial species, were found diel or seasonal patterns (Lillywhite and Henderson at night sleeping on low vegetation, perhaps in avoidance 1993). Still other terrestrial or aquatic snake species of terrestrial predators (Dixon and Soini 1986; Martins may ascend vegetation, sometimes at great heights, 1993). Snakes may ascend into trees for better basking either sporadically or opportunistically (Lillywhite and sites and shelter (Brown 1992; Sajdak 2010). For Henderson 1993; Sajdak 2010). Even fossorial snakes example, in Canada, hundreds of Red-sided Gartersnakes have been known to climb occasionally (e.g. Stidham (Thamnophis sirtalis parietalis) were observed ascending 2001; Olsen and Lee 2007; Langford and Janovy 2011). into low trees during the day when thermal reversals Snake species that are typically associated with aquatic, caused by rain showers caused the ground to have lower terrestrial, or fossorial habitats may be driven to ascend temperatures than what was available in the trees (Shine Journal of North American Herpetology 2017(1) 11 et al. 2005). The motivations of snake climbing behavior et al. 2012; but see Avila-Villegas 2008; Graham 2013). from other reports may be related to courtship or ecdysis Here, we report on arboreality of snake species detected (e.g. Galbraith 2001; Rudolph et al. 2004; Bartz and during 8 years of night surveys in the Atchafalaya Basin Sajdak 2004; Gray 2009). of south-central Louisiana and 5+ years of night surveys The Rough Greensnake, Opheodrys aestivus, is the in Big Thicket National Preserve in southeast Texas. We only truly arboreal species in snake assemblages in the include data on relative rates of arboreality by species, southeastern United States. In addition, the semi-arboreal perch heights, lengths of snakes found in arboreal habits of Ratsnakes (Pantherophis) and Gartersnakes/ situations, and the surfaces on which snakes were Ribbonsnakes (Thamnophis) are well known (e.g. Tinkle observed. 1957; Jackson 1976; Leonard and Leonard 1996; Mullin and Cooper 2002; Shine et al. 2005). There are reports of MATERIALS AND METHODS arboreality in other snake species from the southeastern Study Area — We conducted our study in the Atchafalaya United States, but these are usually based on one or few Basin of south-central Louisiana (2008-2015), and the Big observations at one point in time with little or no data Thicket National Preserve in southeastern Texas (2010- on how prevalent the behavior is in a population (e.g. 2015). The two study areas are of similar latitude and Mitchell et al. 2000; Beaupre and Roberts 2001; Cupp separated by about 230 km (Figure 1). The Atchafalaya Figure 1. Map of the study sites within the two study areas, showing their similar latitudes and relative distances from one another (top). Study sites are also shown over aerial imagery at both Big Thicket National Preserve in Texas (bottom left) and the Atchafalaya Basin of south-central Louisiana (bottom right) to show general habitats. © The Center for North American Herpetology 12 Basin encompasses 339,100 ha of bottomland hardwoods, headlamps, nighttime visual encounter surveys (VES), forested wetlands, bayous, and back-water lakes (Piazza which included searching under cover objects, were 2014). The original extent of the Atchafalaya Basin was the sole means by which snakes were observed during likely double that of today’s estimate, but the boundaries surveys at both study areas. There were typically two were changed after the Great Mississippi River Flood of searchers per survey, where one person would generally 1927, when the East and West Atchafalaya Protection focus on ground searching while the other would search Levees were built to eliminate catastrophic flood loss the vegetation and trees. We surveyed a subset of sites (Piazza 2014). The National Park Service manages over each night beginning 30 minutes after sunset and usually 40,000 ha of public land at Big Thicket National Preserve, ending before 1:00 a.m. Surveys were both time and which represents a small fraction of the estimated spatially constrained. In the Atchafalaya Basin, we initially 405,000–810,000 ha original extent of the Big Thicket performed 1 person-hr VES at each site, but by mid-2010 (Parks and Cory 1936; Cozine 2004). The Big Thicket of this was changed to 20-min surveys. We performed 10- southeastern Texas is known for its dense forests and min VES surveys at Big Thicket sites because there was high biodiversity, but much of the area was heavily logged less search area compared to Atchafalaya sites. Surveys in the 19th and 20th centuries (Cozine 2004). each year generally began in February and ended in Study Sites — In the Atchafalaya Basin, there were a total of 70 sites, with 40 sites accessible by truck occurring north of Interstate 10 (hereafter I-10) in the Sherburne Wildlife Management Area, Atchafalaya National Wildlife Refuge, and Indian Bayou areas, and 30 sites accessible only by boat occurring on state lands and the Attakapas Wildlife Management Area south of I-10 (Figure 1). Six of the northern Atchafalaya sites were suspended after 2008 (these sites are not depicted in Figure 1), but the remaining 34 sites were surveyed 4-6 times every year from 2008-2015. Fourteen sites were added mid-season in the southern Atchafalaya Basin in 2008, and 16 more were added before surveys began in 2009. All 30 southern Atchafalaya sites were surveyed 4-6 times from 2009- 2013, after which surveys in that area were suspended. The hydrology at sites in the northern Atchafalaya Basin is primarily influenced by local rainfall, as inner levees prevent river water from spreading out over the floodplain until it reaches near I-10. The hydrology at southern sites, however, is influenced primarily by Mississippi River water levels, and can fluctuate in backwater areas from 2–3 m within a typical season, with higher pulses during floods (USGS, unpubl. data). Northern sites contained mixed hardwoods, with cypress-tupelo near wetlands, whereas southern sites were mostly cypress-tupelo- willow, with some mixed hardwoods along higher spoils. In the Big Thicket National Preserve, there were 52 total sites, all along tributaries of the Neches River near Beaumont, Texas, with 32 southern sites occurring along Lake Bayou and 10-Mile Creek, and 20 northern sites in Cooks Lake and along Pine Island Bayou (Figure 1). The southern sites were surveyed once in 2010, and 4-6 times from 2011-2015.
Recommended publications
  • Resource Selection by an Ectothermic Predator in a Dynamic Thermal Landscape
    Received: 2 May 2017 | Revised: 16 August 2017 | Accepted: 17 August 2017 DOI: 10.1002/ece3.3440 ORIGINAL RESEARCH Resource selection by an ectothermic predator in a dynamic thermal landscape Andrew D. George1 | Grant M. Connette2 | Frank R. Thompson III3 | John Faaborg1 1Division of Biological Sciences, University of Missouri, Columbia, MO, USA Abstract 2Smithsonian Conservation Biology Institute, Predicting the effects of global climate change on species interactions has remained Front Royal, VA, USA difficult because there is a spatiotemporal mismatch between regional climate models 3U.S.D.A. Forest Service Northern Research and microclimates experienced by organisms. We evaluated resource selection in a Station, Columbia, MO, USA predominant ectothermic predator using a modeling approach that permitted us to Correspondence assess the importance of habitat structure and local real- time air temperatures within Andrew D. George, Department of Biology, Pittsburg State University, Pittsburg, KS USA. the same modeling framework. We radio- tracked 53 western ratsnakes (Pantherophis Email: [email protected] obsoletus) from 2010 to 2013 in central Missouri, USA, at study sites where this spe- cies has previously been linked to prey population demographics. We used Bayesian discrete choice models within an information theoretic framework to evaluate the sea- sonal effects of fine- scale vegetation structure and thermal conditions on ratsnake resource selection. Ratsnake resource selection was influenced most by canopy cover, canopy cover heterogeneity, understory cover, and air temperature heterogeneity. Ratsnakes generally preferred habitats with greater canopy heterogeneity early in the active season, and greater temperature heterogeneity later in the season. This sea- sonal shift potentially reflects differences in resource requirements and thermoregula- tion behavior.
    [Show full text]
  • Downloaded from Brill.Com10/06/2021 09:29:00AM Via Free Access 42 Luiselli Et Al
    Contributions to Zoology, 74 (1/2) 41-49 (2005) Analysis of a herpetofaunal community from an altered marshy area in Sicily; with special remarks on habitat use (niche breadth and overlap), relative abundance of lizards and snakes, and the correlation between predator abundance and tail loss in lizards Luca Luiselli1, Francesco M. Angelici2, Massimiliano Di Vittorio3, Antonio Spinnato3, Edoardo Politano4 1 F.I.Z.V. (Ecology), via Olona 7, I-00198 Rome, Italy. E-mail: [email protected] 2 F.I.Z.V. (Mammalogy), via Cleonia 30, I-00152 Rome, Italy. 3 Via Jevolella 2, Termini Imprese (PA), Italy. 4 Centre of Environmental Studies ‘Demetra’, via Tomassoni 17, I-61032 Fano (PU), Italy Abstract relationships, thus rendering the examination of the relationships between predators and prey an extreme- A field survey was conducted in a highly degraded barren en- ly complicated task for the ecologist (e.g., see Con- vironment in Sicily in order to investigate herpetofaunal com- nell, 1975; May, 1976; Schoener, 1986). However, munity composition and structure, habitat use (niche breadth and there is considerable literature (both theoretical and overlap) and relative abundance of a snake predator and two spe- empirical) indicating that case studies of extremely cies of lizard prey. The site was chosen because it has a simple community structure and thus there is potentially less ecological simple communities, together with the use of appropri- complexity to cloud any patterns observed. We found an unexpect- ate minimal models, can help us to understand the edly high overlap in habitat use between the two closely related basis of complex patterns of ecological relationships lizards that might be explained either by a high competition for among species (Thom, 1975; Arditi and Ginzburg, space or through predator-mediated co-existence i.e.
    [Show full text]
  • Blackwater NWR Reptiles and Amphibians List
    U.S. Fish & Wildlife Service Blackwater National Wildlife Refuge 2145 Key Wallace Dr. Cambridge, MD 21613 410/228 2677 Fax: 410/221 7738 Blackwater Email: [email protected] http://www.fws.gov/blackwater/ National Wildlife U.S. Fish & Wildlife Service http://www.fws.gov Refuge For Refuge Information 1 800/344 WILD Reptiles & Amphibians Federal Relay Service for the deaf and hard-of-hearing 1 800/877 8339 Voice and TTY July 2008 NT OF E TH TM E R IN A P T E E R D I . O S R . U M A 49 RC H 3, 18 Northern Redbelly Turtle Rachel Woodward/ USFWS Reptiles The vast marshes and Reptiles are cold-blooded vertebrates including turtles, snakes and lizards. Reptiles are characterized by bodies bordering swamps of with dry skin (not slimy) and scales, Blackwater National or scutes. They usually lay eggs. Turtles Northern Redbelly Turtle Wildlife Refuge offer (Pseudemys rubriventris), Common, 10-12.5". Has a smooth, elongated shell that is olive-brown to black with ideal living conditions red vertical forked lines. Prefers larger bodies of fresh water and for an array of reptiles basks like the smaller painted turtle. and amphibians. These Largely vegetarian. Eastern Painted Turtle (Chrysemys p. picta), Common, cold-blooded animals 4-7". The most visible turtle on the refuge can be seen in the summer become dormant in and fall basking on logs in both fresh and brackish water. Has a smooth, flattened, olive to black shell with winter, but as spring yellow borders on seams. Limbs and tail are black with red stripes.
    [Show full text]
  • Yellow-Bellied Water Snake Plain-Bellied Water
    Nature Flashcards Snakes All photos are subject to the terms of the Creative Commons Public License Based on Nature Quiz Attribution-Non-Commercial 3.0 United States unless copyright otherwise By Phil Huxford noted. TMN-COT Meeting November, 2013 Texas Master Naturalist Cradle of Texas Chapter Cradle of Texas Chapter Yellow-bellied Water Snake Plain-bellied Water Snake Nerodia erythrogaster flavigaster Elliptical eye pupils Bright yellow underneath Found around ponds, lakes, swamps, and wet bottomland forests 2 – 3 feet long Cradle of Texas Chapter Broad-banded Water snake Nerodia fasciata confluens Dark, wide bands separated by yellow Bold, dark checked stripes Strong swimmer Cradle of Texas Chapter 2 – 4 feet long Blotched Water Snake Nerodia erythrogaster transversa Black-edged; dark brown dorsal markings Yellow or sometimes orange belly Lives in small ponds, ditches, and rain-filled pools Typically 2 – 5 feet long Cradle of Texas Chapter Diamond-back Water Snake Northern Diamond-back Water Snake Nerodia rhombifer Heavy-bodied, large girth Can be dark brown Head somewhat flattened and wide Texas’ largest Nerodia Strikes without warning and viciously 4 – 6’ long Cradle of Texas Chapter Photo by J.D. Wilson http://srelherp.uga.edu/snakes/ Western Mud Snake Mud Snake Farancia abacura Lives in our area but rarely seen Glossy black above Red belly with black lines in belly Found in wooded swampland and wet areas Does not bite when handled but pokes tail like stinger 3 – 4 feet long Cradle of Texas Chapter Texas Coral Snake Micrurus fulvius tenere Blunt head; shiny, slender body Round pupils Colors red, yellow, black Lives in partly wooded organic material Cradle of Texas Chapter Usually 2 – 3 feet long Record: 47 ¾ inches in Brazoria County ‘Red touches yellow – kill a fellow.
    [Show full text]
  • COTTONMOUTH Agkistrodon Piscivorus
    COTTONMOUTH Agkistrodon piscivorus Agkistrodon is derived from ankistron and odon which in Greek mean “fishhook” and “tooth or teeth;” referring to the curved fangs of this species. Piscivorus is derived from piscis and voro which in Latin mean “fish” and “to eat”. Another common name for cottonmouth is water moccasin. The Cottonmouth is venomous. While its bite is rarely fatal, tissue damage is likely to occur and can be severe if not treated promptly. IDENTIFICATION Appearance: The cottonmouth is a stout- bodied venomous snake that reaches lengths of 30 to 42 inches as adults. Most adults are uniformly dark brown, olive, or black, tending to lose the cross banded patterning with age. Some individuals may have a dark cheek stripe (upper right image). The cottonmouth has the diagnostic features of the pit-viper family such as a wedge-shaped head, sensory pits between the eyes and nostrils, and vertical “cat-like” pupils. Juveniles are lighter and more boldly patterned with a yellow coloration toward the tip of the tail (lower right image). Dorsal scales are weakly keeled, and the subcaudal scales form only one row. Cottonmouths also have a single anal Mike Redmer plate. Subspecies: There are three subspecies of the cottonmouth. The Western Cottonmouth (A. p. leucostoma) is the only subspecies found in the Midwest. The term leucostoma refers to the white interior of mouth. Confusing Species: The non-venomous watersnakes (Nerodia) are commonly confused with Cottonmouths across their range, simply because they are snakes in water. Thus it is important to note that Cottonmouths are only found in southernmost Midwest.
    [Show full text]
  • Northern Watersnake Selection of Fish Prey in Western Kentucky
    Northern Watersnake Diet . Perkins and Eason Northern Watersnake Selection of Fish Prey in Western Kentucky Micah W. Perkins 1, Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292 Perri K. Eason, Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292 Abstract: Watersnakes serve a variety of important roles in aquatic ecosystems with many species being of conservation interest. The northern water- snake (Nerodia sipedon) has some populations of concern, but is found in a wide variety of aquatic habitats throughout North America. Although pre- vious studies have examined the diet of this typically piscivorous species, research has not addressed whether the northern watersnake is preferentially selecting particular fish as prey. In this study, we sampled snake stomach contents and used Chesson’s alpha selection index α( i) to investigate whether northern watersnakes are eating fish families in proportion to their availability or are preferentially selecting or avoiding specific fish families. At the Sloughs Wildlife Management Area in western Kentucky, the northern watersnake fed on fish from six families in 2013 (n = 15) and 2014 (n = 36). Five of those fish families were eaten in proportion to their availability but avoided pirate perch (Aphredoderus sayanus), the lone member of the family Aphredoderidae. This is the first study testing prey preferences in the northern watersnake. Key words: northern watersnake, Nerodia sipedon, diet selection, fish family, pirate perch Journal of the Southeastern Association of Fish and Wildlife Agencies 5:144–149 Many watersnakes are of conservation concern and can poten- igan shifted from a heavily amphibian-based diet to feeding only on tially be used as indicators to understand harmful human impacts fishes (Meyer 1992, Carbone 1993).
    [Show full text]
  • Cottonmouth Snake Bites Reported to the Toxic North American Snakebite Registry 2013–2017
    Clinical Toxicology ISSN: 1556-3650 (Print) 1556-9519 (Online) Journal homepage: https://www.tandfonline.com/loi/ictx20 Cottonmouth snake bites reported to the ToxIC North American snakebite registry 2013–2017 K. Domanski, K. C. Kleinschmidt, S. Greene, A. M. Ruha, V. Berbata, N. Onisko, S. Campleman, J. Brent, P. Wax & on behalf of the ToxIC North American Snakebite Registry Group To cite this article: K. Domanski, K. C. Kleinschmidt, S. Greene, A. M. Ruha, V. Berbata, N. Onisko, S. Campleman, J. Brent, P. Wax & on behalf of the ToxIC North American Snakebite Registry Group (2019): Cottonmouth snake bites reported to the ToxIC North American snakebite registry 2013–2017, Clinical Toxicology, DOI: 10.1080/15563650.2019.1627367 To link to this article: https://doi.org/10.1080/15563650.2019.1627367 Published online: 13 Jun 2019. Submit your article to this journal Article views: 38 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ictx20 CLINICAL TOXICOLOGY https://doi.org/10.1080/15563650.2019.1627367 CLINICAL RESEARCH Cottonmouth snake bites reported to the ToxIC North American snakebite registry 2013–2017 K. Domanskia, K. C. Kleinschmidtb, S. Greenec , A. M. Ruhad, V. Berbatae, N. Oniskob, S. Camplemanf, J. Brente, P. Waxb and on behalf of the ToxIC North American Snakebite Registry Group aReno School of Medicine, University of Nevada, Reno, NV, USA; bSouthwestern Medical Center, University of Texas, Dallas, TX, USA; cBaylor College of Medicine, Houston, TX, USA; dBanner Good Samaritan Medical Center, Phoenix, AZ, USA; eEmergency Medicine, Medical Toxicology, University of Colorado, Denver, CO, USA; fAmerican College of Medical Toxicology, Phoenix, AZ, USA ABSTRACT ARTICLE HISTORY Introduction: The majority of venomous snake exposures in the United States are due to snakes from Received 9 April 2019 the subfamily Crotalinae (pit vipers).
    [Show full text]
  • Amphibians Present in the Barataria Preserve of Jean Lafitte National Historical Park and Preserve
    Amphibians present in the Barataria Preserve of Jean Lafitte National Historical Park and Preserve. The species list was generated from data compiled from NPS observations and during a 2001-2002 reptile and amphibian inventory conducted by Noah J. Anderson and Dr. Richard A. Seigel, Southeastern Louisiana University, Hammond, Louisiana. Common Name Scientific Name Habitat Association Smallmouth salamander Ambystoma texanum hardwood forests Three-toed amphiuma Amphiuma tridactylum swamp, marsh, restricted to aquatic habitats in hardwood forests Dwarf salamander Eurycea quadridigitata hardwood forests, marsh Eastern newt Notophthalmus viridescens found in and near aquatic habitats Southern dusky salamander Desmognathus auriculatus hardwood forests Lesser siren Siren intermedia swamp, marsh Northern cricket frog Acris crepitans all habitats Gulf coast toad Bufo valliceps all habitats Greenhouse frog Eleutherodactylus planirostris hardwood forests Eastern narrowmouth toad Gastrophryne carolinensis all habitats Bird-voiced treefrog Hyla avivoca hardwood forests, swamp Green treefrog Hyla cinerea all habitats Squirrel treefrog Hyla squirella swamp, hardwood forests Spring peeper Pseudacris crucifer swamp, hardwood forests Chorus frog Pseudacris triseriata hardwood forests, swamp Bullfrog Rana catesbeiana hardwood forests, swamp Bronze frog Rana clamitans all habitats Pig frog Rana grylio marsh Southern leopard frog Rana sphenocephala swamp, marsh Reptiles present in the Barataria Preserve of Jean Lafitte National Historical Park and Preserve.
    [Show full text]
  • By a Nine-Banded Armadillo (Dasypus Novemcinctus) in Santa Rosa National Park, Costa Rica
    Edentata: in press Electronic version: ISSN 1852-9208 Print version: ISSN 1413-4411 http://www.xenarthrans.org FIELD NOTE Predation of a Central American coral snake (Micrurus nigrocinctus) by a nine-banded armadillo (Dasypus novemcinctus) in Santa Rosa National Park, Costa Rica Eduardo CarrilloA and Todd K. FullerB,1 A Instituto Internacional en Conservación y Manejo de Vida Silvestre, Universidad Nacional, Apdo. 1350, Heredia, Costa Rica. E-mail: [email protected] B Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts 01003, USA. E-mail: [email protected] 1 Corresponding author Abstract We describe the manner in which a nine-banded armadillo (Dasypus novemcinctus) killed a Cen- tral American coral snake (Micrurus nigrocinctus) that it subsequently ate. The armadillo repeatedly ran towards, jumped, flipped over in mid-air, and landed on top of the snake with its back until the snake was dead. Keywords: armadillo, behavior, food, predation, snake Depredación de una serpiente de coral de América Central (Micrurus nigrocinctus) por un armadillo de nueve bandas (Dasypus novemcinctus) en el Parque Nacional Santa Rosa, Costa Rica Resumen En esta nota describimos la manera en que un armadillo de nueve bandas (Dasypus novemcinc- tus) mató a una serpiente de coral de América Central (Micrurus nigrocinctus) que posteriormente comió. El armadillo corrió varias veces hacia adelante, saltó, se dio vuelta en el aire y aterrizó sobre la serpiente con la espalda hasta que la serpiente estuvo muerta. Palabras clave: armadillo, comida, comportamiento, depredación, serpiente Nine-banded armadillos (Dasypus novemcinc- The ~4-kg nine-banded armadillo is distributed tus) feed mostly on arthropods such as beetles, ter- from the southeast and central United States to Uru- mites, and ants, but also consume bird eggs and guay and northern Argentina, Granada, Trinidad “unusual items” such as fruits, fungi, and small verte- and Tobago, and the Margarita Islands (Loughry brates (McBee & Baker, 1982; Wetzel, 1991; Carrillo et al., 2014).
    [Show full text]
  • Caudal Distraction by Rat Snakes (Colubridae, Elaphe): a Novel Behavior Used When Capturing Mammalian Prey
    Great Basin Naturalist Volume 59 Number 4 Article 8 10-15-1999 Caudal distraction by rat snakes (Colubridae, Elaphe): a novel behavior used when capturing mammalian prey Stephen J. Mullin University of Memphis, Memphis, Tennessee Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Mullin, Stephen J. (1999) "Caudal distraction by rat snakes (Colubridae, Elaphe): a novel behavior used when capturing mammalian prey," Great Basin Naturalist: Vol. 59 : No. 4 , Article 8. Available at: https://scholarsarchive.byu.edu/gbn/vol59/iss4/8 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Great Ba....in Naturalist 59(4), ©1999, pp. 361....167 CAUDAL DISTRACTION BY RAT SNAKES (COLUBHIDAE, ELAPHE): A NOVEL BEHAVIOR USED WHEN CAPTURING MAMMALIAN PREY Stephen]. Mullin1 AJ3S11UCT.--el.mthtl movement in snakes trulY serve ei.ther a pl'Cdatory (e.g., caudal luring) or defensive (e.g., rattling, aposem,ttism) fUllction, I descliho n new behavioral pattern of tai.l movement in snakes. Gray rat snakl.'$ (Elaphe OhSO!etd spiloid.es) fi)raging on ~ma11 mmnmnls (Mus d01ne~·ticus) Inoved. their tails in un erratic, whiplike fashion uIter detecting prey in their vidnity. The thrashing movement in the horizontal plfme was audibly and visually obviolls, resulting in dis­ placement of leaf litter around the hlil. All subjects displayed the behavior, hilt not in all foraging episodes.
    [Show full text]
  • Check List 17 (1): 27–38
    17 1 ANNOTATED LIST OF SPECIES Check List 17 (1): 27–38 https://doi.org/10.15560/17.1.27 A herpetological survey of Edith L. Moore Nature Sanctuary Dillon Jones1, Bethany Foshee2, Lee Fitzgerald1 1 Biodiversity Research and Teaching Collections, Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA. 2 Houston Audubon, 440 Wilchester Blvd. Houston, TX 77079 USA. Corresponding author: Dillon Jones, [email protected] Abstract Urban herpetology deals with the interaction of amphibians and reptiles with each other and their environment in an ur- ban setting. As such, well-preserved natural areas within urban environments can be important tools for conservation. Edith L. Moore Nature Sanctuary is an 18-acre wooded sanctuary located west of downtown Houston, Texas and is the headquarters to Houston Audubon Society. This study compared iNaturalist data with results from visual encounter surveys and aquatic funnel traps. Results from these two sources showed 24 species belonging to 12 families and 17 genera of herpetofauna inhabit the property. However, several species common in surrounding areas were absent. Combination of data from community science and traditional survey methods allowed us to better highlight herpe- tofauna present in the park besides also identifying species that may be of management concern for Edith L. Moore. Keywords Community science, iNaturalist, urban herpetology Academic editor: Luisa Diele-Viegas | Received 27 August 2020 | Accepted 16 November 2020 | Published 6 January 2021 Citation: Jones D, Foshee B, Fitzgerald L (2021) A herpetology survey of Edith L. Moore Nature Sanctuary. Check List 17 (1): 27–28. https://doi.
    [Show full text]
  • Reptiles in Arkansas
    Terrestrial Reptile Report Carphophis amoenus Co mmon Wor msnake Class: Reptilia Order: Serpentes Family: Colubridae Priority Score: 19 out of 100 Population Trend: Unknown Global Rank: G5 — Secure State Rank: S2 — Imperiled in Arkansas Distribution Occurrence Records Ecoregions where the species occurs: Ozark Highlands Boston Mountains Arkansas Valley Ouachita Mountains South Central Plains Mississippi Alluvial Plain Mississippi Valley Loess Plain Carphophis amoenus Common Wormsnake 1079 Terrestrial Reptile Report Habitat Map Habitats Weight Crowley's Ridge Loess Slope Forest Obligate Lower Mississippi Flatwoods Woodland and Forest Suitable Problems Faced KNOWN PROBLEM: Habitat loss due to conversion Threat: Habitat destruction or to agriculture. conversion Source: Agricultural practices KNOWN PROBLEM: Habitat loss due to forestry Threat: Habitat destruction or practices. conversion Source: Forestry activities Data Gaps/Research Needs Genetic analyses comparing Arkansas populations with populations east of the Mississippi River and the Western worm snake. Conservation Actions Importance Category More data are needed to determine conservation actions. Monitoring Strategies More information is needed to develop a monitoring strategy. Carphophis amoenus Common Wormsnake 1080 Terrestrial Reptile Report Comments Trauth and others (2004) summarized the literature and biology of this snake. In April 2005, two new geographic distribution records were collected in Loess Slope Forest habitat within St. Francis National Forest, south of the Mariana
    [Show full text]