Lehigh Preserve Institutional Repository

Total Page:16

File Type:pdf, Size:1020Kb

Lehigh Preserve Institutional Repository Lehigh Preserve Institutional Repository An electron microscope investigation of eight ataxite and one mesosiderite meteorites. Novotny, Paul M. 1981 Find more at https://preserve.lib.lehigh.edu/ This document is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion by an authorized administrator of Lehigh Preserve. For more information, please contact [email protected]. AN ELECTRON MICROSCOPE INVESTIGATION OF EIGHT ATAXITE AND ONE MESOSIDERITE METEORITES by Paul M. Novotny A Thesis Presented to the Graduate Committee of Lehigh University in Candidacy for the Degree of Master of Science in Metallurgy and Materials Engineering Lehigh University 1981 ProQuest Number: EP76217 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest EP76217 Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 CERTIFICATE OF APPROVAL This thesis is accepted in partial fulfillment of the requirements for the degree of Master of Science. (date) (Drofessor in Charge) (Department Chairman) ii TABLE OF CONTENTS Page CERTIFICATE OF APPROVAL ii TABLE OF CONTENTS iii LIST OF TABLES v LIST OF FIGURES vi ABSTRACT 1 INTRODUCTION 3 BACKGROUND Classification of Meteorites 5 Metallic Phases in Meteorites 7 Estherville 14 Ataxites 16 Analytical Electron Microscopy 17 Cooling Rates 24 Fe-Ni Phase Diagram 27 EXPERIMENTAL PROCEDURES Light and Scanning Electron Optical Sample Preparation 29 TEM/STEM Sample Preparation 30 STEM Procedure 31 K-Factor Determination 34 RESULTS Estherville 37 Microstructure - Light and SEM 37 iii Microchemistry 38 Microprobe Analysis 38 STEM Analysis 38 TEM Results 39 Microstructure 39 Diffraction 40 Ataxites 41 Light and SEM Microstructure Examination 41 TEM Results 44 Microchemistry 4 7 K_ ... Results 49 Te-Ni DISCUSSIONS Interfall Measurements 52 X-ray Analysis 56 Estherville 58 Ataxites 67 a Decomposition 72 SUMMARY 75 REFERENCES 161 APPENDIX 167 VITA 169 iv LIST OF TABLES Page Table 1 Comparison of Structural and Chemical 80 Classes Table 2 Ataxites Investigated in This Study 81 FIGURE TITLES Pa PP Figure 1 Log-log plot of gallium vs. nickel. The 82 chemical groupings of the iron meteorites are shown. Figure 2 Log-log plot of germanium vs. nickel. Note 82 the similar groupings" as in Figure 1. Figure 3 Fe-Ni and Fe-Ni(P) Phase Diagrams. 83 Figure k Austcnite start and martensite start 83 temperatures for the Fe-Ni binary system. Figure 5 M-shaped composition profile across a kamacite- 84 taenite-plessite-taenite-kamacite region. Figure 6 Schematic composition profiles of plessite 85 a+ formation. a) y •+ a+y b) Y "* <*2 "* Y Figure 7 Light photomicrograph of the cloudy zone in 86 a taenite lamellae in Estherville. Figure 8 TEM bright field photomicrograph of the cloudy 86 zone in Carlton. Figure 9 Schematic ray diagram of a TEM/STEM. 87 Figure 10 Rapid method for determining the cooling rates 88 of iron meteorites. Figure 11 Light photomicrograph of taenite (T) finger 88 in kamacite (K) matrix. 2% Nital etch. vi Figure 12 Light photomicrograph of cloudy zone (C.Z.) 89 with its rim of cleartaenite (C.T.). 22 Nital etch. Figure 13 Microprobe trace (black dots) across area 89 to be made into TEM/STEM disc. Polarized light reveals ordered taenite as regions of light and dark contrast within the clear taenite. Unetched. Polarized light. Figure 14 SEK photomicrograph of taenite finger. Note 90 veinlikc network within the cloudy zone. 27. Nital etch. Figure 15 SEM photomicrograph of cloudy zone in 90 Estherville. A vein of taenite is seen as well as the expected honeycomb structure. The kamacite appears as the etched out phase. 2% Nital etch. Figure 16 SEM photomicrograph of Estherville cloudy 91 zone near clear taenite. 2% Nital etch. Figure 17 SEM photomicrograph of Estherville cloudy 91 zone. Taenite crystallites can be seen starting to coalesce at several locations. 2% Nital etch. Figure 18 SEM photomicrograph of taenite finger in 92 cloudy zone. Note how some taenite vii crystallites appear to have coalesced or grown together. 22 Nital etch. Figure 19 SEM photomicrograph showing region of 92 Estherville sample that was spark machined into 3 mm rod, 2% Nital. Figure 20 Composition profile obtained from the micro- 93 probe trace across the taenite shown in Figure 13. Figure 21 Composition profile obtained from SEM 94 trace across the Widmanstatten a/clear taenite interface in Estherville. Figure 22 Composition profile obtained from STEM 95 trace across the clear taenite/cloudy zone interface. Figure 23 Composition profile obtained from STEM 96 trace across a single y crystallite bordered by martensite within the cloudy zone. Figure 24 TEM bright field image of cloudy zone in 97 Estherville (T=taenite). Figure 25 TEM bright field image of cloudy zone. Note 97 the fine structure within the bec phase. Figure 2C TEM bright field image of cloudy zone showing 98 the fine structure within the bec phase. viii Figure 27 TEM bright field of the cloudy zone. The 98 lath-like fine structure of the bec phase is clearly evident. Figure 28 [100] zone axis diffraction pattern from 99 clear taenite. Note the superlattice spots indicating ordering. Figure 29 [100] zone axis diffraction pattern from 99 clear taenite. Note Che superlattice spots. Figure 30 [100 ] zone axis diffraction pattern from 100 clear taenite. Note the superlattice spots. Figure 31 a) [l00] zone axis microdiffraction pattern 101 from clear taenite. Note the superlattice spots. b) Indexed 1100] pattern with all superlattice spots. Figure 32 f122 ] clear taenite zone axis diffraction 102 pattern with superlattice spots. Figure 33 Bright field (a) and centered dark field (b) 103 from ordered spot in diffraction pattern shown in Figure 33c. Note small particles of ordered taenite in 33b. 33d shows the indexed diff- raction pattern. ix Figure 34 Microdiffraction pattern from a single 105 Y crystallite in the cloudy zone. The pattern is a [100] zone axis with [001] superlattice spots. Figure 35 Microdiffraction pattern from a single 105 Y crystallite in the cloudy zone. [l00] zone axis with [001] superlattice spots. Figure 36 Bright field (a) centered dark field 106 from Y spot (b) and centered dark field from superlattice spot (c) from diffraction pattern (d) of cloudy zone. Note particulate nature of both Y and ordered Y in the cloudy zone. Figure 37 Bright field (a) centered dark field from 108 Y spot (b) and centered dark field from superlattice spot (c) from diffraction pattern (d) of the cloudy zone. Note par- ticulate nature of both Y and ordered Y. A V Figure 38 Microdiffraction patterns from two adjacent 110 Y crystallites in the cloudy zone. [100] zone axis patterns. Note the superlattice spots. Figure 39 a) Microdiffraction pattern from clear 111 adjacent to the cloudy zone, b) Microdiffraction pattern from y crystallite within the cloudy zone. Figure 40 a) Selected area diffraction pattern of 112 the cloudy zone. b) Indexed pattern showing Nishyama-Wassterman orientation. Figure 41 Light photomicrograph of Arltunga. 2% 113 Nital etch. Figure 42 SEM photomicrograph of Arltunga. Note 113 Widmanstatten a grains with taenite rims. 2% Nital etch. Figure A3 SEM photomicrograph of Arltunga. Note 114 internal structure of the taenite rims. 2Z Nital etch. Figure 44 SEM photomicrograph of Arltunga. Internal 114 structure within the taenite is very evident. 22 Nital etch. Figure 45 Light photomicrograph of Nordheiin. Large 115 Widmanstatten a platelets can be seen in center of picture. 27, Nital etch. Figure 46 SEM photomicrograph of Nordheim. Ribbon-like 115 taenite rims are clearly seen surrounding the kamacite. 2% Nital etch. Figure 47 SEM photomicrograph of Nordheim. Multigranular 116 kamacite is seen to be surrounded by taenite. xi 27. Nital etch. Figure 48 SEM photomicrograph of Nordheim. No internal 116 structure is seen within the taenite. 2% Nital etch. Figure 49 Light photomicrograph of Guffey showing 117 Widmanstatten a -♦• a+y type plessite. 27. Nital. Figure 50 SEM photomicrograph of Guffey. Note 117 multigranular kamacite structure with taenite rims. 2% Nital etch. Figure 51 SEM photomicrograph of Guffey. Fine 118 structure within taenite can be seen. 2% Nital. Figure 52 SEM photomicrograph of Guffey. Fine 118 structure within taenite is clearly seen. 2% Nital. Figure 53 Light photomicrograph of Tawallah Valley. H9 Widmanstatten a platelets are shown in a matrix of fine plessite. 2% Nital etch. Figure 54 SEM photomicrograph of Tawallah Valley. 119 Fine plessite from decomposed martensite is present between a platelets. 27. Nital etch. Figure 55 SEM photomicrograph of Tawallah Valley. Fine 120 ■0 plessite structure is evident. 27, Nital etch, xii Figure 56 SEM photomicrograph of Tawallah Valley. 120 Left side of picture shows the part of the Y rim surrounding an a platelet. Note the various size y rods in the plessite. 21 Nital. Figure 57 Light photomicrograph of Hoba. A kamacite 121 platelet surrounded by its taenite rim is shown in the matrix of plessite. 2% Nital etch. Figure 58 SEM photomicrograph of fine plessite structure 121 in Hoba. 2% Nital etch. Figure 59 SEM photomicrograph of fine plessite in 122 Hoba. Martensite decomposition is evident with Y rims around duplex structure. 27. Nital etch. Figure 60 SEM photomicrograph of fine plessite near 122 a platelet in Hoba. Note the different sizes of Y rods which are present.
Recommended publications
  • Handbook of Iron Meteorites, Volume 3
    Sierra Blanca - Sierra Gorda 1119 ing that created an incipient recrystallization and a few COLLECTIONS other anomalous features in Sierra Blanca. Washington (17 .3 kg), Ferry Building, San Francisco (about 7 kg), Chicago (550 g), New York (315 g), Ann Arbor (165 g). The original mass evidently weighed at least Sierra Gorda, Antofagasta, Chile 26 kg. 22°54's, 69°21 'w Hexahedrite, H. Single crystal larger than 14 em. Decorated Neu­ DESCRIPTION mann bands. HV 205± 15. According to Roy S. Clarke (personal communication) Group IIA . 5.48% Ni, 0.5 3% Co, 0.23% P, 61 ppm Ga, 170 ppm Ge, the main mass now weighs 16.3 kg and measures 22 x 15 x 43 ppm Ir. 13 em. A large end piece of 7 kg and several slices have been removed, leaving a cut surface of 17 x 10 em. The mass has HISTORY a relatively smooth domed surface (22 x 15 em) overlying a A mass was found at the coordinates given above, on concave surface with irregular depressions, from a few em the railway between Calama and Antofagasta, close to to 8 em in length. There is a series of what appears to be Sierra Gorda, the location of a silver mine (E.P. Henderson chisel marks around the center of the domed surface over 1939; as quoted by Hey 1966: 448). Henderson (1941a) an area of 6 x 7 em. Other small areas on the edges of the gave slightly different coordinates and an analysis; but since specimen could also be the result of hammering; but the he assumed Sierra Gorda to be just another of the North damage is only superficial, and artificial reheating has not Chilean hexahedrites, no further description was given.
    [Show full text]
  • Asteroid Regolith Weathering: a Large-Scale Observational Investigation
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved.
    [Show full text]
  • ELEMENTAL ABUNDANCES in the SILICATE PHASE of PALLASITIC METEORITES Redacted for Privacy Abstract Approved: Roman A
    AN ABSTRACT OF THE THESIS OF THURMAN DALE COOPER for theMASTER OF SCIENCE (Name) (Degree) in CHEMISTRY presented on June 1, 1973 (Major) (Date) Title: ELEMENTAL ABUNDANCES IN THE SILICATE PHASE OF PALLASITIC METEORITES Redacted for privacy Abstract approved: Roman A. Schmitt The silicate phases of 11 pallasites were analyzed instrumen- tally to determine the concentrations of some major, minor, and trace elements.The silicate phases were found to contain about 98% olivine with 1 to 2% accessory minerals such as lawrencite, schreibersite, troilite, chromite, and farringtonite present.The trace element concentrations, except Sc and Mn, were found to be extremely low and were found primarily in the accessory phases rather than in the pure olivine.An unusual bimodal Mn distribution was noted in the pallasites, and Eagle Station had a chondritic nor- malized REE pattern enrichedin the heavy REE. The silicate phases of pallasites and mesosiderites were shown to be sufficiently diverse in origin such that separate classifications are entirely justified. APPROVED: Redacted for privacy Professor of Chemistry in charge of major Redacted for privacy Chairman of Department of Chemistry Redacted for privacy Dean of Graduate School Date thesis is presented June 1,1973 Typed by Opal Grossnicklaus for Thurman Dale Cooper Elemental Abundances in the Silicate Phase of Pallasitic Meteorites by Thurman Dale Cooper A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science June 1974 ACKNOWLEDGMENTS The author wishes to express his gratitude to Prof. Roman A. Schmitt for his guidance, suggestions, discussions, and thoughtful- ness which have served as an inspiration.
    [Show full text]
  • N Arieuican%Mllsellm
    n ARieuican%Mllsellm PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2I63 DECEMBER I9, I963 The Pallasites BY BRIAN MASON' INTRODUCTION The pallasites are a comparatively rare type of meteorite, but are remarkable in several respects. Historically, it was a pallasite for which an extraterrestrial origin was first postulated because of its unique compositional and structural features. The Krasnoyarsk pallasite was discovered in 1749 about 150 miles south of Krasnoyarsk, and seen by P. S. Pallas in 1772, who recognized these unique features and arranged for its removal to the Academy of Sciences in St. Petersburg. Chladni (1794) examined it and concluded it must have come from beyond the earth, at a time when the scientific community did not accept the reality of stones falling from the sky. Compositionally, the combination of olivine and nickel-iron in subequal amounts clearly distinguishes the pallasites from all other groups of meteorites, and the remarkable juxtaposition of a comparatively light silicate mineral and heavy metal poses a nice problem of origin. Several theories of the internal structure of the earth have postulated the presence of a pallasitic layer to account for the geophysical data. No apology is therefore required for an attempt to provide a comprehensive account of this remarkable group of meteorites. Some 40 pallasites are known, of which only two, Marjalahti and Zaisho, were seen to fall (table 1). Of these, some may be portions of a single meteorite. It has been suggested that the pallasite found in Indian mounds at Anderson, Ohio, may be fragments of the Brenham meteorite, I Chairman, Department of Mineralogy, the American Museum of Natural History.
    [Show full text]
  • 3D Laser Imaging and Modeling of Iron Meteorites and Tektites
    3D laser imaging and modeling of iron meteorites and tektites by Christopher A. Fry A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science in Earth Science Carleton University Ottawa, Ontario ©2013, Christopher Fry ii Abstract 3D laser imaging is a non-destructive method devised to calculate bulk density by creating volumetrically accurate computer models of hand samples. The focus of this research was to streamline the imaging process and to mitigate any potential errors. 3D laser imaging captured with great detail (30 voxel/mm2) surficial features of the samples, such as regmaglypts, pits and cut faces. Densities from 41 iron meteorites and 9 splash-form Australasian tektites are reported here. The laser-derived densities of iron meteorites range from 6.98 to 7.93 g/cm3. Several suites of meteorites were studied and are somewhat heterogeneous based on an average 2.7% variation in inter-fragment density. Density decreases with terrestrial age due to weathering. The tektites have an average laser-derived density of 2.41+0.11g/cm3. For comparison purposes, the Archimedean bead method was also used to determine density. This method was more effective for tektites than for iron meteorites. iii Acknowledgements A M.Sc. thesis is a large undertaking that cannot be completed alone. There are several individuals who contributed significantly to this project. I thank Dr. Claire Samson, my supervisor, without whom this thesis would not have been possible. Her guidance and encouragement is largely the reason that this project was completed.
    [Show full text]
  • Oxygen Three-Isotope Measurements on the First Artificial Meteorites (The Esa ‘Stones’ Experiment): Contrasting Behaviour of Dolomite and a Simulated Martian Soil
    Lunar and Planetary Science XXXI 1717.pdf OXYGEN THREE-ISOTOPE MEASUREMENTS ON THE FIRST ARTIFICIAL METEORITES (THE ESA ‘STONES’ EXPERIMENT): CONTRASTING BEHAVIOUR OF DOLOMITE AND A SIMULATED MARTIAN SOIL. M. F. Miller1, A. Brack 2, P. Baglioni3, R. Demets3, I. A. Franchi1, G. Kurat4 and C. T. Pill- inger1, 1Planetary Sciences Research Institute, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom (e-mail correspondence: [email protected]), 2Centre de Biophysique Moleculaire, CNRS, Rue Charles Sadron 45071 Orléans cedex 2, France. (e-mail correspondence: [email protected]), 3ESA Director- ate of Manned Spaceflight and Microgravity, ESTEC, Postbus 299, NL-2200 AG Noordwijk, The Netherlands, 4Naturhistorisches Museum, Postfach 417, A-1014 Wien, Austria. Introduction: The ‘Stones’ experiment is an cemented by gypsum (mixing proportion 80:20). The autonomous investigation of the Microgravity space samples were attached to the heat shield of Foton-12, flight program of the European Space Agency (ESA). which was launched from Pletsetsk (Russia) on 9th It is led by Dr A Brack (Principal Investigator) and is September 1999 and flew for 16 days before re-entry. designed to assess physical, chemical and isotopic Nominal orbital parameters were: perigee 220km; apo- modifications experienced by meteorites during their gee 380km; inclination 62.8°. The landing site was passage through the Earth’s atmosphere, by measure- near the Kazakhstan/Russian border. Unfortunately, the ments made on geological samples attached to the heat basalt sample was lost during flight. However, the shield of a recoverable Foton space capsule. Such arti- dolomite and ‘Martian soil analog’ survived and were ficial meteorites offer a unique means of identifying successfully recovered.
    [Show full text]
  • The Formation of the Widmanstätten Structure in Meteorites
    Meteoritics & Planetary Science 40, Nr 2, 239–253 (2005) Abstract available online at http://meteoritics.org The formation of the Widmanstätten structure in meteorites J. YANG* and J. I. GOLDSTEIN Department of Mechanical and Industrial Engineering, College of Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA *Corresponding author. E-mail: [email protected] (Received 16 October 2003; revision accepted 13 November 2004) Abstract–We have evaluated various mechanisms proposed for the formation of the Widmanstätten pattern in iron meteorites and propose a new mechanism for low P meteoritic metal. These mechanisms can also be used to explain how the metallic microstructures developed in chondrites and stony-iron meteorites. The Widmanstätten pattern in high P iron meteorites forms when meteorites enter the three- phase field α + γ + Ph via cooling from the γ + Ph field. The Widmanstätten pattern in low P iron meteorites forms either at a temperature below the (α + γ)/(α + γ + Ph) boundary or by the decomposition of martensite below the martensite start temperature. The reaction γ → α + γ, which is normally assumed to control the formation of the Widmanstätten pattern, is not applicable to the metal in meteorites. The formation of the Widmanstätten pattern in the vast majority of low P iron meteorites (which belong to chemical groups IAB–IIICD, IIIAB, and IVA) is controlled by mechanisms involving the formation of martensite α2. We propose that the Widmanstätten structure in these meteorites forms by the reaction γ → α2 + γ → α + γ, in which α2 decomposes to the equilibrium α and γ phases during the cooling process.
    [Show full text]
  • Fersman Mineralogical Museum of the Russian Academy of Sciences (FMM)
    Table 1. The list of meteorites in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences (FMM). Leninskiy prospect 18 korpus 2, Moscow, Russia, 119071. Pieces Year Mass in Indication Meteorite Country Type in found FMM in MB FMM Seymchan Russia 1967 Pallasite, PMG 500 kg 9 43 Kunya-Urgench Turkmenistan 1998 H5 402 g 2 83 Sikhote-Alin Russia 1947 Iron, IIAB 1370 g 2 Sayh Al Uhaymir 067 Oman 2000 L5-6 S1-2,W2 63 g 1 85 Ozernoe Russia 1983 L6 75 g 1 66 Gujba Nigeria 1984 Cba 2..8 g 1 85 Dar al Gani 400 Libya 1998 Lunar (anorth) 0.37 g 1 82 Dhofar 935 Oman 2002 H5S3W3 96 g 1 88 Dhofar 007 Oman 1999 Eucrite-cm 31.5 g 1 84 Muonionalusta Sweden 1906 Iron, IVA 561 g 3 Omolon Russia 1967 Pallasite, PMG 1,2 g 1 72 Peekskill USA 1992 H6 1,1 g 1 75 Gibeon Namibia 1836 Iron, IVA 120 g 2 36 Potter USA 1941 L6 103.8g 1 Jiddat Al Harrasis 020 Oman 2000 L6 598 gr 2 85 Canyon Diablo USA 1891 Iron, IAB-MG 329 gr 1 33 Gold Basin USA 1995 LA 101 g 1 82 Campo del Cielo Argentina 1576 Iron, IAB-MG 2550 g 4 36 Dronino Russia 2000 Iron, ungrouped 22 g 1 88 Morasko Poland 1914 Iron, IAB-MG 164 g 1 Jiddat al Harasis 055 Oman 2004 L4-5 132 g 1 88 Tamdakht Morocco 2008 H5 18 gr 1 Holbrook USA 1912 L/LL5 2,9g 1 El Hammami Mauritani 1997 H5 19,8g 1 82 Gao-Guenie Burkina Faso 1960 H5 18.7 g 1 83 Sulagiri India 2008 LL6 2.9g 1 96 Gebel Kamil Egypt 2009 Iron ungrouped 95 g 2 98 Uruacu Brazil 1992 Iron, IAB-MG 330g 1 86 NWA 859 (Taza) NWA 2001 Iron ungrouped 18,9g 1 86 Dhofar 224 Oman 2001 H4 33g 1 86 Kharabali Russia 2001 H5 85g 2 102 Chelyabinsk
    [Show full text]
  • Spectral Properties of Binary Asteroids Myriam Pajuelo, Mirel Birlan, Benoit Carry, Francesca Demeo, Richard Binzel, Jérôme Berthier
    Spectral properties of binary asteroids Myriam Pajuelo, Mirel Birlan, Benoit Carry, Francesca Demeo, Richard Binzel, Jérôme Berthier To cite this version: Myriam Pajuelo, Mirel Birlan, Benoit Carry, Francesca Demeo, Richard Binzel, et al.. Spectral prop- erties of binary asteroids. Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2018, 477 (4), pp.5590-5604. 10.1093/mnras/sty1013. hal-01948168 HAL Id: hal-01948168 https://hal.sorbonne-universite.fr/hal-01948168 Submitted on 7 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MNRAS 00, 1 (2018) doi:10.1093/mnras/sty1013 Advance Access publication 2018 April 24 Spectral properties of binary asteroids Myriam Pajuelo,1,2‹ Mirel Birlan,1,3 Benoˆıt Carry,1,4 Francesca E. DeMeo,5 Richard P. Binzel1,5 and Jer´ omeˆ Berthier1 1IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universites,´ UPMC Univ Paris 06, Univ. Lille, France 2Seccion´ F´ısica, Departamento de Ciencias, Pontificia Universidad Catolica´ del Peru,´ Apartado 1761, Lima, Peru´ 3Astronomical Institute of the Romanian Academy, 5 Cutitul de Argint, 040557 Bucharest, Romania 4Observatoire de la Coteˆ d’Azur, UniversiteC´ oteˆ d’Azur, CNRS, Lagrange, France 5Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA Accepted 2018 April 16.
    [Show full text]
  • I. Measurements of Pges, Re, Mo, W, and Au in Meteoritic Fe-Ni Metal
    Meteoritics & Planetary Science 39, Nr 10, 1685–1697 (2004) Abstract available online at http://meteoritics.org Differentiation of metal-rich meteoritic parent bodies: I. Measurements of PGEs, Re, Mo, W, and Au in meteoritic Fe-Ni metal M. I. PETAEV1, 2* and S. B. JACOBSEN1 1Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachussetts 02138, USA 2Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachussetts 02139, USA *Corresponding author. E-mail: [email protected] (Received 18 July 2003; revision accepted 26 July 2004) Abstract–We describe an analytical technique for measurements of Fe, Ni, Co, Mo, Ru, Rh, W, Re, Os, Ir, Pt, and Au in bulk samples of iron meteorites. The technique involves EPMA (Fe, Ni, Co) and LA-ICP-MS analyses of individual phases of iron meteorites, followed by calculation of bulk compositions based on the abundances of these phases. We report, for the first time, a consistent set of concentrations of Mo, Ru, Rh, Pd, W, Re, Os, Ir, Pt, and Au in the iron meteorites Arispe, Bennett County, Grant, Cape of Good Hope, Cape York, Carbo, Chinga, Coahuila, Duchesne, Gibeon, Henbury, Mundrabilla, Negrillos, Odessa, Sikhote-Alin, and Toluca and the Divnoe primitive achondrite. The comparison of our LA-ICP-MS data for a number of iron meteorites with high-precision isotope dilution and INAA data demonstrates the good precision and accuracy of our technique. The narrow ranges of variations of Mo and Pd concentrations within individual groups of iron meteorites suggest that these elements can provide important insights into the evolution of parent bodies of iron meteorites.
    [Show full text]
  • An Electron Microscope Investigation of Eight Ataxite and One Mesosiderite Meteorites
    Lehigh University Lehigh Preserve Theses and Dissertations 1-1-1981 An electron microscope investigation of eight ataxite and one mesosiderite meteorites. Paul M. Novotny Follow this and additional works at: http://preserve.lehigh.edu/etd Part of the Materials Science and Engineering Commons Recommended Citation Novotny, Paul M., "An electron microscope investigation of eight ataxite and one mesosiderite meteorites." (1981). Theses and Dissertations. Paper 1944. This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Lehigh Preserve. For more information, please contact [email protected]. AN ELECTRON MICROSCOPE INVESTIGATION OF EIGHT ATAXITE AND ONE MESOSIDERITE METEORITES by Paul M. Novotny A Thesis Presented to the Graduate Committee of Lehigh University in Candidacy for the Degree of Master of Science in Metallurgy and Materials Engineering Lehigh University 1981 ProQuest Number: EP76217 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest EP76217 Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 CERTIFICATE OF APPROVAL This thesis is accepted in partial fulfillment of the requirements for the degree of Master of Science.
    [Show full text]
  • Plessite Textures in the Toluca (Group IA) Iron Meteorite Revealed by the Selective Attack of Chlorine
    MINERALOGICAL MAGAZINE, SEPTEMBER 1983, VOL. 47, PP. 413-15 Plessite textures in the Toluca (Group IA) iron meteorite revealed by the selective attack of chlorine THE use of the selective attack by dry chlorine at varieties of plessite (e.g. acicular, spheroidal, and 350~ on iron meteorites to expose high-nickel comb) in some iron meteorites. In this work 'comb' structures, e.g. schreibersite (rhabdite), has been plessite in the Toluca (Group IA) iron meteorite has described by Easton and Buckley (1979). Chlorine been examined using the selective attack by dry gas has the significant advantage over other con- chlorine technique. ventional etchants (e.g. nital solution) of greater Experimental. The polished surface of a small differential penetration of the polished specimen fragment (16 x 7.5 x 1 mm) of Toluca (BM 33747) surface. The volatilization of ferric chloride from was etched with 10% nital solution (10 ml the low-nickel iron phases and the removal of the HNO3 + 90 ml ethyl alcohol) for 15 mins, dried, and residual non-volatile chlorides by solution means photographed. The specimen was then exposed to that this technique can be used to expose residual attack by chlorine for about 30 mins at 350 ~ high-nickel metal in plessite, an intimate inter- using the method for schreibersite (Easton and growth of low- and high-nickel phases. Plessite may Buckley, 1979). The specimen was stored, after develop in the low-nickel cores of residual taenite removal by solution from its surface of the non- lamellae during the development of octahedrite volatile chlorides, in 'oxygen-free' nitrogen.
    [Show full text]