Effect of Temperature on the Metabolism, Behaviour and Oxygen Requirements of Sparus Aurata

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Temperature on the Metabolism, Behaviour and Oxygen Requirements of Sparus Aurata Vol. 7: 115–123, 2015 AQUACULTURE ENVIRONMENT INTERACTIONS Published online September 3 doi: 10.3354/aei00141 Aquacult Environ Interact OPENPEN ACCESSCCESS Effect of temperature on the metabolism, behaviour and oxygen requirements of Sparus aurata Mette Remen1,*, Marit A. J. Nederlof2, Ole Folkedal1, Grethe Thorsheim1, Ariadna Sitjà-Bobadilla3, Jaume Pérez-Sánchez3, Frode Oppedal1, Rolf Erik Olsen1,4 1Institute of Marine Research, 5984 Matredal, Norway 2Department of Aquaculture and Fisheries, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands 3Institute of Aquaculture Torre la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain 4Present address: Norwegian University of Science and Technology, Department of Biology, 7491 Trondheim, Norway ABSTRACT: We investigated the effect of temperature on the limiting oxygen saturation (LOS) of gilthead sea bream Sparus aurata. This threshold was defined as the % O2 saturation where fish no longer upheld their routine metabolic rate (RMR, the metabolic rate of fed and active fish) dur- ing a progressive decline in oxygen saturation. S. aurata (398 ± 10 g, mean ± SE) were kept in 3 replicate tanks and subjected to 3 changes in temperature: 16 to 20°C, 20 to 16°C and 16 to 12°C. At each temperature, fish were left to acclimatize for 8 to 10 d, before daily feed intake (DFI), the −1 −1 routine oxygen consumption rate (routine MO2, mg kg min ) and the LOS were measured. In addition, at 20°C the swimming speed was measured in fish subjected to a decline in O2 from full air saturation to levels below the LOS (minimum of 8−10% O2). For the temperature range tested (12−20°C), DFI, MO2 and LOS increased exponentially with temperature (7.5-, 3.6- and 2.2-fold, respectively) with mean (± SE) LOS being 17 ± 1, 21 ± 0 and 35 ± 5% O2 at 12, 16 and 20°C, respec- tively. A gradual decline in swimming activity was observed as O2 declined below the LOS, indi- cating increasing metabolic stress and/or a ‘sit-out’ coping strategy which may prolong survival time in severe hypoxia. The results show the importance of temperature as an influential variable over the environmental O2 requirements of S. aurata. KEY WORDS: Hypoxia · Aquaculture · Metabolism · Behaviour · Pcrit · Scrit · Oxygen threshold · Feeding rate · Temperature INTRODUCTION obic metabolism (Fry 1947, 1971). Studies in Atlantic salmon sea cages have revealed that O2 may drop to Gilthead sea bream Sparus aurata is an important alarmingly low levels, at times down to 30% O2. aquaculture species in countries surrounding the Factors contributing to these low O2 levels include Mediterranean Sea, with 154 000 t produced glob- water temperature, fish stocking density, algal den- ally in 2011 (FAO 2013). The growth phase is prima- sity and water exchange rate (Crampton et al. 2003, rily carried out in floating sea cages (Basurco et al. Johansson et al. 2006, 2007, Oppedal et al. 2011). 2011) where fish performance and welfare are There is currently little information on the sea cage closely linked to environmental conditions within O2 levels in S. aurata aquaculture, but variation in the sea cage (Fry 1971, Huntingford & Kadri 2008). the above mentioned factors is expected to cause The sea cage oxygen (O2) level is particularly variable levels of O2 in S. aurata production systems important as it is the main limiting factor of fish aer- as well. In order to develop production strategies © The authors 2015. Open Access under Creative Commons *Corresponding author: [email protected] by Attribution Licence. Use, distribution and reproduction are un restricted. Authors and original publication must be credited. Publisher: Inter-Research · www.int-res.com 116 Aquacult Environ Interact 7: 115–123, 2015 that ensure proper physiological function and sur- The LOS is expected to increase with any factor vival of the fish, it is important to define a limit for that increases the aerobic metabolic rate (Fry 1971, acceptable drops in O2. Neill et al. 1994). One of the main factors influencing When subjected to a gradual decline in O2, sparid metabolic rate is temperature (Fry 1947, 1971), which species are able to uphold their oxygen consumption is closely correlated with LOS and Scrit (e.g. Schur- rate (MO2) over a relatively wide range of O2 satura- mann & Steffensen 1997, Claireaux & Lagardère tions (Cerezo & García García 2004, Valverde et al. 1999, Barnes et al. 2011, Richards 2011, Mamun et al. 2006). They do this mainly by increasing gill ventila- 2013, Remen et al. 2013). In order to develop an tion and perfusion (Perry et al. 2009). At a certain applicable oxygen threshold for the S. aurata indus- level of O2, regulatory mechanisms are no longer suf- try, it is therefore necessary to investigate the rela- ficient to uphold MO2 and it starts to decrease with tionship between temperature and LOS for this spe- further reductions in O2 (Pörtner & Grieshaber 1993). cies. Further, it is important to do so under conditions This threshold is termed the critical oxygen satura- as similar to production conditions as possible (fed, tion (Scrit or Pcrit if O2 is presented in units of gas pres- undisturbed and swimming fish in groups), as RMR, sure, when determined in resting, fasted fish at a and thus the LOS, can be expected to vary consider- known, stable temperature, i.e. in fish with standard ably, e.g. with meal size (e.g. Guinea & Fernandez meta bolic rates (Schurmann & Steffensen 1997, 1997) and swimming speed (e.g. Steinhausen et al. Claire aux & Lagardère 1999, Behrens & Steffensen 2010) at a given temperature. 2007). However, when this threshold is determined The main aim of this study was to determine the in fed fish engaged in voluntary swimming activity, relationship between temperature (12−20°C) and i.e. fish with routine metabolic rates (RMRs), this LOS for S. aurata. To mimic an aquaculture setting, threshold has been termed the limiting oxygen satu- LOS was determined in fed and undisturbed fish. ration (LOS). The LOS departs from Scrit in being a Further, swimming speed and behaviour of S. aurata continuum which correlates with RMR at a given at O2 declining from full saturation to levels below temperature (e.g. Claireaux et al. 2000, Claireaux & the LOS were investigated in order to study the La gardère 1999, Remen et al. 2013). The LOS may behavioural response of this species to a progressive therefore change according to swimming speed drop in O2. (Stein hausen et al. 2010), specific dynamic action (SDA; the post-prandial increase in metabolism; reviewed by Secor 2009) or other factors that cause MATERIALS AND METHODS variation in RMR. In the present paper, the threshold O2 level below which MO2 decreases is presented as All experimental work was conducted in accor- LOS, since it is determined in fed S. aurata engaged dance with the laws and regulations for experiments in voluntary swimming activity, and because units of and procedures on live animals in Norway, following oxygen saturation (% of air saturation) are most com- the Norwegian Regulation on Animal Experimenta- monly used by aquaculturists. tion 1996. The experiment was approved by Forsøks- When O2 decreases below the LOS, the fish must dyrutvalget (FOTS ID 4580). increase their anaerobic metabolic rate to compen- sate for the decreasing ATP production (reviewed by Pörtner & Grieshaber 1993). Anaerobic ATP produc- Fish material and experimental facilities tion is far less efficient than aerobic ATP production, and the duration of survival becomes dependent on Sparus aurata juveniles (5 g) were purchased from the availability of substrates for anaerobiosis Ferme Marine de Douhet hatchery, Ile d’Oléron, (Richards 2009, 2011). Further, a drop in O2 to levels France, and transported to the Institute of Aquacul- below the LOS can be expected to induce stress ture Torre de la Sal in Spain in July 2011. Fish were (increased plasma levels of corticosteroids and cate- fed to satiety (EFICO YM 554, BioMar) and kept in an cholamines) and lactic acidosis (Van Raaij et al. 1996, open flow system (salinity 37.5 ppt) with natural pho- Vianen et al. 2001, Petersen & Gamperl 2011, Remen toperiod and water temperature until they reached et al. 2012, 2013). The LOS can therefore be imple- 150 g. They were then transported to Matre Research mented in aquaculture as the lower limit for accept- Station, Institute of Marine Research in Norway in able O2 levels with regard to the physiological func- January 2012. No fish died during transport. On tion and welfare of farmed fish (Huntingford & Kadri arrival, a total of 99 fish were distributed into three 2008). 500 l squared flow-through experimental tanks with Remen et al.: Temperature and O2 requirements of S. aurata 117 lids fitted with 18W fluorescent light tubes and auto- (12−20°C) was used because 12°C is a minimum tem- matic feeders (Arvo-Tec T drum 2000, www.arvotec.fi). perature for growth (Mingarro et al. 2002, Hernán- Feed was provided twice daily during the entire dez et al. 2003) and because 20°C was the maximum experiment (Amber Neptun 100, 5 mm, Skretting, temperature possible in the laboratory. The change Norway), aiming for >30% overfeeding. Spill feed in temperature was changed in a stepwise manner at was weighed, and feed intake was estimated accord- a rate of 2°C d−1. At each new temperature (20, 16, ing to the method of Helland et al. (1996). Calcula- 12°C) the fish were left to acclimatize for 8 to 10 d tions for estimation of the tank biomass over time are before measurements of MO2 and LOS (Days 12, 20 shown in ‘Calculations and statistics’ below. Fish and 28, respectively). After the final LOS measure- were kept on a 12:12 h light:dark h cycle at 34 ppt, ment on Day 28, all fish were anaesthetized (MS-222, −1 16°C and O2 saturation > 80% until fish reached a 150 mg l ) and weights and lengths measured.
Recommended publications
  • Sanitization: Concentration, Temperature, and Exposure Time
    Sanitization: Concentration, Temperature, and Exposure Time Did you know? According to the CDC, contaminated equipment is one of the top five risk factors that contribute to foodborne illnesses. Food contact surfaces in your establishment must be cleaned and sanitized. This can be done either by heating an object to a high enough temperature to kill harmful micro-organisms or it can be treated with a chemical sanitizing compound. 1. Heat Sanitization: Allowing a food contact surface to be exposed to high heat for a designated period of time will sanitize the surface. An acceptable method of hot water sanitizing is by utilizing the three compartment sink. The final step of the wash, rinse, and sanitizing procedure is immersion of the object in water with a temperature of at least 170°F for no less than 30 seconds. The most common method of hot water sanitizing takes place in the final rinse cycle of dishwashing machines. Water temperature must be at least 180°F, but not greater than 200°F. At temperatures greater than 200°F, water vaporizes into steam before sanitization can occur. It is important to note that the surface temperature of the object being sanitized must be at 160°F for a long enough time to kill the bacteria. 2. Chemical Sanitization: Sanitizing is also achieved through the use of chemical compounds capable of destroying disease causing bacteria. Common sanitizers are chlorine (bleach), iodine, and quaternary ammonium. Chemical sanitizers have found widespread acceptance in the food service industry. These compounds are regulated by the U.S. Environmental Protection Agency and consequently require labeling with the word “Sanitizer.” The labeling should also include what concentration to use, data on minimum effective uses and warnings of possible health hazards.
    [Show full text]
  • The Effect of Carbon Monoxide Sources and Meteorologic Changes in Carbon Monoxide Intoxication: a Retrospective Study
    Cilt: 3 Sayı: 1 Şubat 2020 / Vol: 3 Issue: 1 February 2020 https://dergipark.org.tr/tr/pub/actamednicomedia Research Article | Araştırma Makalesi THE EFFECT OF CARBON MONOXIDE SOURCES AND METEOROLOGIC CHANGES IN CARBON MONOXIDE INTOXICATION: A RETROSPECTIVE STUDY KARBONMONOKSİT KAYNAKLARININ VE METEOROLOJİK DEĞİŞİKLİKLERİN KARBONMONOKSİT ZEHİRLENMELERİNE ETKİSİ: RETROSPEKTİF ÇALIŞMA Duygu Yılmaz1, Umut Yücel Çavuş2, Sinan Yıldırım3, Bahar Gülcay Çat Bakır4*, Gözde Besi Tetik5, Onur Evren Yılmaz6, Mehtap Kaynakçı Bayram7 1Manisa Turgutlu State Hospital, Department of Emergency Medicine, Manisa, Turkey. 2Ankara Education and Research Hospital, Department of Emergency Medicine, Ankara, Turkey. 3Çanakkale State Hospital, Department of Emergency Medicine, Çanakkale,Turkey. 4Mersin City Education and Research Hospital, Department of Emergency Medicine, Mersin, Turkey. 5Gaziantep Şehitkamil State Hospital, Department of Emergency Medicine, Gaziantep, Turkey. 6Medical Park Hospital, Department of Plastic and Reconstructive Surgery, İzmir, Turkey. 7Kayseri City Education and Research Hospital, Department of Emergency Medicine, Kayseri, Turkey. ABSTRACT ÖZ Objective: Carbon monoxide (CO) poisoning is frequently seen in Amaç: Karbonmonoksit (CO) zehirlenmelerine, özellikle soğuk emergency departments (ED) especially in cold weather. We havalarda olmak üzere acil servis birimlerinde sıklıkla karşılaşılır. investigated the relationship of some of the meteorological factors Çalışmamızda, bazı meteorolojik faktörlerin CO zehirlenmesinin with the sources
    [Show full text]
  • The History of Carbon Monoxide Intoxication
    medicina Review The History of Carbon Monoxide Intoxication Ioannis-Fivos Megas 1 , Justus P. Beier 2 and Gerrit Grieb 1,2,* 1 Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Kladower Damm 221, 14089 Berlin, Germany; fi[email protected] 2 Burn Center, Department of Plastic Surgery and Hand Surgery, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany; [email protected] * Correspondence: [email protected] Abstract: Intoxication with carbon monoxide in organisms needing oxygen has probably existed on Earth as long as fire and its smoke. What was observed in antiquity and the Middle Ages, and usually ended fatally, was first successfully treated in the last century. Since then, diagnostics and treatments have undergone exciting developments, in particular specific treatments such as hyperbaric oxygen therapy. In this review, different historic aspects of the etiology, diagnosis and treatment of carbon monoxide intoxication are described and discussed. Keywords: carbon monoxide; CO intoxication; COHb; inhalation injury 1. Introduction and Overview Intoxication with carbon monoxide in organisms needing oxygen for survival has probably existed on Earth as long as fire and its smoke. Whenever the respiratory tract of living beings comes into contact with the smoke from a flame, CO intoxication and/or in- Citation: Megas, I.-F.; Beier, J.P.; halation injury may take place. Although the therapeutic potential of carbon monoxide has Grieb, G. The History of Carbon also been increasingly studied in recent history [1], the toxic effects historically dominate a Monoxide Intoxication. Medicina 2021, 57, 400. https://doi.org/10.3390/ much longer period of time. medicina57050400 As a colorless, odorless and tasteless gas, CO is produced by the incomplete combus- tion of hydrocarbons and poses an invisible danger.
    [Show full text]
  • Sea Surface Temperatures on the Great Barrier Reef: a Contribution to the Study of Coral Bleaching
    GREAT BARRIER REEF MARINE PARK AUTHORITY RESEARCH PUBLICATION No. 57 Sea Surface Temperatures on the Great Barrier Reef: a Contribution to the Study of Coral Bleaching JM Lough 551.460 109943 1999 RESEARCH PUBLICATION No. 57 Sea Surface Temperatures on the Great Barrier Reef: a Contribution to the Study of Coral Bleaching JM Lough Australian Institute of Marine Science AUSTRALIAN INSTITUTE GREAT BARRIER REEF OF MARINE SCIENCE MARINE PARK AUTHORITY A REPORT TO THE GREAT BARRIER REEF MARINE PARK AUTHORITY O Great Barrier Reef Marine Park Authority, Australian Institute of Marine Science 1999 ISSN 1037-1508 ISBN 0 642 23069 2 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Great Barrier Reef Marine Park Authority and the Australian Institute of Marine Science. Requests and inquiries concerning reproduction and rights should be addressed to the Director, Information Support Group, Great Barrier Reef Marine Park Authority, PO Box 1379, Townsville Qld 4810. The opinions expressed in this document are not necessarily those of the Great Barrier Reef Marine Park Authority. Accuracy in calculations, figures, tables, names, quotations, references etc. is the complete responsibility of the author. National Library of Australia Cataloguing-in-Publication data: Lough, J. M. Sea surface temperatures on the Great Barrier Reef : a contribution to the study of coral bleaching. Bibliography. ISBN 0 642 23069 2. 1. Ocean temperature - Queensland - Great Barrier Reef. 2. Corals - Queensland - Great Barrier Reef - Effect of temperature on. 3. Coral reef ecology - Australia - Great Barrier Reef (Qld.) - Effect of temperature on.
    [Show full text]
  • Arenicola Marina During Low Tide
    MARINE ECOLOGY PROGRESS SERIES Published June 15 Mar Ecol Prog Ser Sulfide stress and tolerance in the lugworm Arenicola marina during low tide Susanne Volkel, Kerstin Hauschild, Manfred K. Grieshaber Institut fiir Zoologie, Lehrstuhl fur Tierphysiologie, Heinrich-Heine-Universitat, Universitatsstr. 1, D-40225 Dusseldorf, Germany ABSTRACT: In the present study environmental sulfide concentrations in the vicinity of and within burrows of the lugworm Arenicola marina during tidal exposure are presented. Sulfide concentrations in the pore water of the sediment ranged from 0.4 to 252 pM. During 4 h of tidal exposure no significant changes of pore water sulfide concentrations were observed. Up to 32 pM sulfide were measured in the water of lugworm burrows. During 4 h of low tide the percentage of burrows containing sulfide increased from 20 to 50% in July and from 36 to 77% in October A significant increase of median sulfide concentrations from 0 to 14.5 pM was observed after 5 h of emersion. Sulfide and thiosulfate concentrations in the coelomic fluid and succinate, alanopine and strombine levels in the body wall musculature of freshly caught A. marina were measured. During 4 h of tidal exposure in July the percentage of lugworms containing sulfide and maximal sulfide concentrations increased from 17 % and 5.4 pM to 62% and 150 pM, respectively. A significant increase of median sulfide concentrations was observed after 2 and 3 h of emersion. In October, changes of sulfide concentrations were less pronounced. Median thiosulfate concentrations were 18 to 32 FM in July and 7 to 12 ~.IMin October No significant changes were observed during tidal exposure.
    [Show full text]
  • Temperature Relationships of Great Lakes Fishes: By
    Temperature Relationships of Great Lakes Fishes: A Data Compilation by Donald A. Wismer ’ and Alan E. Christie Great Lakes Fishery Commission Special Publication No. 87-3 Citation: Wismer, D.A. and A.E. Christie. 1987. Temperature Relationships of Great Lakes Fishes: A Data Compilation. Great Lakes Fish. Comm. Spec. Pub. 87-3. 165 p. GREAT LAKES FISHERY COMMISSION 1451 Green Road Ann Arbor, Ml48105 USA July, 1987 1 Environmental Studies & Assessments Dept. Ontario Hydro 700 University Avenue, Location H10 F2 Toronto, Ontario M5G 1X6 Canada TABLE OF CONTENTS Page 1.0 INTRODUCTION 1 1.1 Purpose 1.2 Summary 1.3 Literature Review 1.4 Database Advantages and Limitations 2.0 METHODS 2 2.1 Species List 2 2.2 Database Design Considerations 2 2.3 Definition of Terms 3 3.0 DATABASE SUMMARY 9 3.1 Organization 9 3.2 Content 10 4.0 REFERENCES 18 5.0 FISH TEMPERATURE DATABASE 29 5.1 Abbreviations 29 LIST OF TABLES Page Great Lakes Fish Species and Types of Temperature Data 11 Alphabetical Listing of Reviewed Fish Species by 15 Common Name LIST OF FIGURES Page Diagram Showing Temperature Relations of Fish 5 1.0 INTRODUCTION 1.1 Purpose The purpose of this report is to compile a temperature database for Great Lakes fishes. The database was prepared to provide a basis for preliminary decisions concerning the siting, design, and environ- mental performance standards of new generating stations and appropriate mitigative approaches to resolve undesirable fish community interactions at existing generating stations. The contents of this document should also be useful to fisheries research and management agencies in the Great Lakes Basin.
    [Show full text]
  • Biotransformation: Basic Concepts (1)
    Chapter 5 Absorption, Distribution, Metabolism, and Elimination of Toxics Biotransformation: Basic Concepts (1) • Renal excretion of chemicals Biotransformation: Basic Concepts (2) • Biological basis for xenobiotic metabolism: – To convert lipid-soluble, non-polar, non-excretable forms of chemicals to water-soluble, polar forms that are excretable in bile and urine. – The transformation process may take place as a result of the interaction of the toxic substance with enzymes found primarily in the cell endoplasmic reticulum, cytoplasm, and mitochondria. – The liver is the primary organ where biotransformation occurs. Biotransformation: Basic Concepts (3) Biotransformation: Basic Concepts (4) • Interaction with these enzymes may change the toxicant to either a less or a more toxic form. • Generally, biotransformation occurs in two phases. – Phase I involves catabolic reactions that break down the toxicant into various components. • Catabolic reactions include oxidation, reduction, and hydrolysis. – Oxidation occurs when a molecule combines with oxygen, loses hydrogen, or loses one or more electrons. – Reduction occurs when a molecule combines with hydrogen, loses oxygen, or gains one or more electrons. – Hydrolysis is the process in which a chemical compound is split into smaller molecules by reacting with water. • In most cases these reactions make the chemical less toxic, more water soluble, and easier to excrete. Biotransformation: Basic Concepts (5) – Phase II reactions involves the binding of molecules to either the original toxic molecule or the toxic molecule metabolite derived from the Phase I reactions. The final product is usually water soluble and, therefore, easier to excrete from the body. • Phase II reactions include glucuronidation, sulfation, acetylation, methylation, conjugation with glutathione, and conjugation with amino acids (such as glycine, taurine, and glutamic acid).
    [Show full text]
  • Anomalies in Coral Reef Community Metabolism and Their Potential Importance in the Reef CO2 Source-Sink Debate
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 6566–6569, May 1998 Population Biology Anomalies in coral reef community metabolism and their potential importance in the reef CO2 source-sink debate JOHN R. M. CHISHOLM* AND DAVID J. BARNES Australian Institute of Marine Science, Private Mail Bag No. 3, Mail Centre, Townsville, Queensland 4810, Australia Communicated by Andrew A. Benson, University of California, San Diego, CA, March 20, 1998 (received for review September 23, 1997) ABSTRACT It is not certain whether coral reefs are ratio of photosynthesis to respiration on unperturbed reefs sources of or sinks for atmospheric CO2. Air–sea exchange of over 24 h is considered to be close to unity (10). CO2 over reefs has been measured directly and inferred from In March 1996, we made an expedition to Lizard Island, changes in the seawater carbonate equilibrium. Such mea- northern Great Barrier Reef, Australia (Fig. 1), to measure surements have provided conflicting results. We provide changes in the O2 concentration and pH of seawater flowing community metabolic data that indicate that large changes in across a 300-m section of the reef flat by using a floating CO2 concentration can occur in coral reef waters via biogeo- instrument package (11–14). Measurements were made in chemical processes not directly associated with photosynthe- March when tides permitted the instrument package to float sis, respiration, calcification, and CaCO3 dissolution. These freely over the reef flat, a short distance above the benthos. processes can significantly distort estimates of reef calcifica- On arriving at Lizard Island, we encountered environmental tion and net productivity and obscure the contribution of coral conditions that we had not anticipated.
    [Show full text]
  • INFLUENCE of TEMPERATURE on DIFFUSION and SORPTION of 237Np(V) THROUGH BENTONITE ENGINEERED BARRIERS
    Clemson University TigerPrints All Theses Theses 5-2017 Influence of emperT ature on Diffusion and Sorption of 237Np(V) through Bentonite Engineered Barriers Rachel Nicole Pope Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Pope, Rachel Nicole, "Influence of emperT ature on Diffusion and Sorption of 237Np(V) through Bentonite Engineered Barriers" (2017). All Theses. 2666. https://tigerprints.clemson.edu/all_theses/2666 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. INFLUENCE OF TEMPERATURE ON DIFFUSION AND SORPTION OF 237Np(V) THROUGH BENTONITE ENGINEERED BARRIERS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Environmental Engineering and Earth Sciences by Rachel Nicole Pope May 2017 Accepted by: Dr. Brian A. Powell, Committee Chair Dr. Mark Schlautman Dr. Lindsay Shuller‐Nickles ABSTRACT Diffusion rates of 237Np(V), 3H, and 22Na through Na‐montmorillonite were studied under variable dry bulk density and temperature. Distribution coefficients were extrapolated for conservative tracers. Two sampling methods were implemented, and effects of each sampling method were compared. The first focused on an exchange of the lower concentration reservoir frequently while the second kept the lower concentration reservoir consistent. In both sampling methods, tritium diffusion coefficients decreased with an increase in dry bulk density and increased with an increase in temperature. Sodium diffusion rates followed the same trends as tritium with the exception of sorption phenomena.
    [Show full text]
  • The Effects of Warm and Cold Water Scuba Finning on Cardiorespiratory Responses and Energy Expenditure
    AN ABSTRACT OF THE THESISOF in Caron Lee Louise Shake for the degreeof Doctor of Philosophy Education presented on April 5, 1989. Scuba Finning on Title: The Effects of Warm and Cold Water Cardiorespiratory Responses and EnergyExpenditure Redacted for privacy Abstract approved: cardiorespiratory and energy This study was designed to determine finning at expenditure responses elicited byrecreational divers while and warm (29°C) water a submaximal intensity(35% max) in cold (18°C) to par- with and without wet suits. Male divers (15) volunteered exercise ticipate in five experimentalprocedures. A maximal graded in 29°C tethered finning test, two submaximal(30 min.) finning tests tests with and without wet suits, and twosubmaximal (30 min.) finning The variables in 18°C with and without wetsuits were performed. (VE), measured were: breathing frequency(BF), minute ventilation (RER), heart rate oxygen consumption (V02)respiratory exchange ratio (HR), and core temperature (CT). Caloric expenditure (kcal) was calculated from RER and V02. A Four-Way ANOVA andrepeated measures 0.05) Two-Way design was used to analyze the data. A significant (p < A significant (p < (suit x time) interaction wasrevealed for BF. 0.01) Three-Way (suit x temp. x time)interaction was revealed forVE, V02, RER, HR, and CT. An inverse relationship exists betweenBF and VE when comparing dives with and without suits. Diving in 18°C with suitselicited higher BF and lower VE than diving in 29°Cwithout suits. V02 increased significantly during threeof the four dives. Diving without suits elicited higher V02values though this was not significant in every case. Diving in a cold environmentelicited lower RER re- higher V02 and VE.
    [Show full text]
  • Can't Catch My Breath! a Study of Metabolism in Fish. Subjects
    W&M ScholarWorks Reports 2017 Can’t Catch My Breath! A Study of Metabolism in Fish. Subjects: Environmental Science, Marine/Ocean Science, Life Science/ Biology Grades: 6-8 Gail Schweiterman Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, and the Science and Mathematics Education Commons Recommended Citation Schweiterman, G. (2017) Can’t Catch My Breath! A Study of Metabolism in Fish. Subjects: Environmental Science, Marine/Ocean Science, Life Science/Biology Grades: 6-8. VA SEA 2017 Lesson Plans. Virginia Institute of Marine Science, College of William and Mary. https://doi.org/10.21220/V5414G This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Can’t catch my breath! A study of metabolism in fish Gail Schwieterman Virginia Institute of Marine Science Grade Level High School Subject area Biology, Environmental, or Marine Science This work is sponsored by the National Estuarine Research Reserve System Science Collaborative, which supports collaborative research that addresses coastal management problems important to the reserves. The Science Collaborative is funded by the National Oceanic and Atmospheric Administration and managed by the University of Michigan Water Center. 1. Activity Title: Can’t Catch My Breath! A study of metabolism in fish 2. Focus: Metabolism (Ecological drivers); The Scientific Method (Formulating Hypothesis) 3. Grade Levels/ Subject: HS Biology, HS Marine Biology 4. VA Science Standard(s) addressed: BIO.1. The student will demonstrate an understanding of scientific reasoning, logic, and the nature of science by planning and conducting investigations (including most Essential Understandings and nearly all Essential Knowledge and Skills) BIO.4a.
    [Show full text]
  • The Application of Temperature And/Or Pressure Correction Factors in Gas Measurement COMBINED BOYLE’S – CHARLES’ GAS LAWS
    The Application of Temperature and/or Pressure Correction Factors in Gas Measurement COMBINED BOYLE’S – CHARLES’ GAS LAWS To convert measured volume at metered pressure and temperature to selling volume at agreed base P1 V1 P2 V2 pressure and temperature = T1 T2 Temperatures & Pressures vary at Meter Readings must be converted to Standard conditions for billing Application of Correction Factors for Pressure and/or Temperature Introduction: Most gas meters measure the volume of gas at existing line conditions of pressure and temperature. This volume is usually referred to as displaced volume or actual volume (VA). The value of the gas (i.e., heat content) is referred to in gas measurement as the standard volume (VS) or volume at standard conditions of pressure and temperature. Since gases are compressible fluids, a meter that is measuring gas at two (2) atmospheres will have twice the capacity that it would have if the gas is being measured at one (1) atmosphere. (Note: One atmosphere is the pressure exerted by the air around us. This value is normally 14.696 psi absolute pressure at sea level, or 29.92 inches of mercury.) This fact is referred to as Boyle’s Law which states, “Under constant tempera- ture conditions, the volume of gas is inversely proportional to the ratio of the change in absolute pressures”. This can be expressed mathematically as: * P1 V1 = P2 V2 or P1 = V2 P2 V1 Charles’ Law states that, “Under constant pressure conditions, the volume of gas is directly proportional to the ratio of the change in absolute temperature”. Or mathematically, * V1 = V2 or V1 T2 = V2 T1 T1 T2 Gas meters are normally rated in terms of displaced cubic feet per hour.
    [Show full text]