Cycloaddition

Total Page:16

File Type:pdf, Size:1020Kb

Cycloaddition ____________________________________________________________________________________________________ Subject Chemistry Paper No and Title 9; Organic Chemistry-III Module No and Title 30 : Cycloaddition Module Tag CHE_P9_M30 CHEMISTRY PAPER No.9: Organic Chemistry-III MODULE No.30 : Cycloaddition ____________________________________________________________________________________________________ TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Stereochemistry and Woodward-Hoffmann rules for cycloaddition 4. Classes of cycloaddition reaction 4.1 Diels Alder reaction 4.2 1, 3-dipolar cycloaddition 4.3[4+2] cycloaddition of cations and anions 4.4 [2+2] addition of ketenes 5. Summary CHEMISTRY PAPER No.9: Organic Chemistry-III MODULE No.30 : Cycloaddition ____________________________________________________________________________________________________ 1. Learning Outcomes After studying this module, you shall be able to • Know what are cycloaddition reactions • Learn mechanism of cycloaddition reactions • Identify factors influencing Diels Alder reaction • Evaluate mechanism of 1, 3-dipolar cycloaddition • Analyze stereochemistry of product formation in cycloaddition reactions 2. Introduction Cycloaddition reaction is a reaction in which two reactants form a cyclic product. Cycloaddition of two different, π bond-containing molecules to form a cyclic compound are a special class of pericyclic reactions. For cycloaddition reaction, each of the reactants loses a π bond, and the resulting cyclic product has two new σ bonds. With a few exceptions, cycloaddition are concerted reactions. As a class of addition reactions, cycloaddition allows carbon-carbon bond formation without the use of a nucleophile or electrophile. Among the pericyclic reactions, cycloaddition are most abundant and useful set of reactions. Following is an example of [4+2] cycloaddition known as Diels-Alder reaction. + Diene Dienophile Adduct 3. Stereochemistry and Woodward-Hoffmann rules for cycloaddition Cycloaddition reactions involve bond formation at the ends of both the reacting molecules i.e diene and dienophile. This requires proper orientation of orbitals so that effective overlap may give rise to product formation. For the Diels Alder reaction between butadiene and ethene, the p- orbitals must therefore approach each other head on. Of note is the fact that the two new bonds forming at C-1 and C-4 of the diene are being formed at the bottom surface of the conjugated system. CHEMISTRY PAPER No.9: Organic Chemistry-III MODULE No.30 : Cycloaddition ____________________________________________________________________________________________________ 2 1 3 4 1' 2' Reactions where the new bonds being formed are on the same surface are called suprafacial on that component. Since for the dienophile also the new bonds are being formed at the same surface so the reaction is suprafacial on both the diene and the dienophile as well. On the other hand antarafacial reaction requires bond formation between orbitals at two different surfaces. Diagrammatically this is depicted below. 2 1 2 1 1' 1' 3 3 Suprafacial components 4 2' 2' 4 2 1 2 1 1' 1' 3 3 Antarafacial components 4 2' 4 2' Orbitals overlap required for 4+2 cycloaddition The Woodward-Hoffmann rules for cycloaddition predict feasibility of reaction and stereochemistry of product formed. Both, supra/supra and supra/antara combinations are allowed based on orbital symmetry however the geometric constrain associated with antara process makes it impossible for the reaction to take place. Therefore, almost all pericyclic cycloaddition reactions go by suprafacial mode on both the components. That is, if the diene with substituents at each end forms new bonds to one surface, the product will have a preserved stereochemistry. In the following example the trans, trans diene and diethyl acetylene dicarboxylate give the adduct which has cis phenyl substituents on the cyclohexane ring. CHEMISTRY PAPER No.9: Organic Chemistry-III MODULE No.30 : Cycloaddition ____________________________________________________________________________________________________ Table 1: Woodward-Hoffmann rules for cycloaddition i+j Thermal Photochemical 4n supra,antara supra,supra antara, supra antara, antara 4n+2 supra,supra supra,antara antara, antara antara, supra Another example of Diels Alder reaction with preserved stereochemistry of products is reaction of maleate and fumarate esters with butadiene to give diastereomeric products. Such reactions where, one stereoisomer gives rise to only one stereoisomeric product are called stereospecific in nature. This is among the most important features of Diels-Alder reaction, as the reaction involves creation of four new stereocentres with stereospecificity. In Diels Alder reaction when a conjugated system carries a substituent Z, then during the reaction, it may orient itself pointing away from the conjugated system of the other component or it may sit under it. The first situation is called exo mode of attack and the second one endo mode of attack. In the endo conformation, there might be repulsion between the substituent Z and the p- orbitals, however for Diels-Alder reactions such endo mode of attack has been experimentally observed. CHEMISTRY PAPER No.9: Organic Chemistry-III MODULE No.30 : Cycloaddition ____________________________________________________________________________________________________ The most widely accepted explanation for the origin of Endo mode of attack is a favorable interaction between the dienophile substituent's π system and the diene's though dipolar and van der Waals attractions which are collectively called as secondary orbital effects. 4. Classes of cycloaddition reactions Now let us look at the important classes of pericyclic cycloaddition reactions. 4.1 Diels-Alder reaction 4.2 1, 3-dipolar cycloaddition 4.3 [4+2] cycloaddition of cations and anions 4.4 [2+2] addition of ketenes 4.1 Diels-Alder reaction The most important type of cycloaddition reactions are Diels-Alder reactions. It is defined as the cycloaddition between a conjugated diene and a dienophile [4+2] leading to formation of a cyclic product. Like other pericyclic reactions, Diels-Alder reactions are concerted and stereospecific, i.e. stereochemical information in the reactants is retained in the products. The dienophiles which are in configuration E- and Z, results in adducts which has stereochemistry Syn or anti respectively. The reaction is slow for unsubstituted dienophiles and rate of reaction is enhanced by attaching suitable electron withdrawing substituents (carbonyl, nitrile and nitro) at the terminal alkenes. Substitution on the diene also enhances rate of reaction, provided the substituents are electron donating (methyl, alkoxy and amine). Following are examples of some reactions, where due to change in nature of the dienophile, there were drastic changes in the rate of reaction. CHEMISTRY PAPER No.9: Organic Chemistry-III MODULE No.30 : Cycloaddition ____________________________________________________________________________________________________ 150 °C, 10 days + 85 % O O 190 °C, 72h + 71 % O O N N + -50 °C, 0.5h N Ph N Ph 61 % N N O O For the dienes along with electron donating substituents, cyclization also greatly enhances the rate of cycloaddition reactions, owning to proper geometric orientation of double bonds. This is because a diene can participate in Diels Alder reaction only when it is in the s-cis conformation. If it were to react in the s-trans conformation then the resulting cyclohexene would have a trans double bond in the cyclohexene system which is very high energy. The regioselectivity of Diels Alder reaction depends on the number and nature of substituent on diene and dienophile along with the reaction conditions such as catalyst, temperature, pressure, solvent etc. Generally 1- and 2- substituted butadienes reacts with mono-substituted dienophiles to give mainly ortho and para adducts, respectively. Even with a small substituent such as methyl the degree of regioselectivity is high. The important feature of this pattern is the fact that whether a substituent is electron withdrawing or donating, it holds good for almost all combinations. COOMe COOMe COOMe + 20 °C, 1 year + 84% 1-substituted Major diene COOMe COOMe 20 °C, 7 months + + 54% COOMe 2-substituted Major diene Although by definition pericyclic reactions don’t need catalyst, nevertheless it has been shown that Lewis acids such as ZnCl2, SnCl4, and AlCl3 etc. can enhance rate of a normal Diels–Alder CHEMISTRY PAPER No.9: Organic Chemistry-III MODULE No.30 : Cycloaddition ____________________________________________________________________________________________________ reactions by coordination to the dienophile. In some cases Lewis acid catalysis has also been shown to enable Diels-Alder reactions to proceed at low temperatures, i.e. without thermal activation. Hetero Diels-Alder reactions are also known, where at least one of the reactant (diene or dienophile) has a hetero atom (such as N, O, S) taking part in the cycloaddition reaction. Ph Ph Ph COOMe r.t, -120 °C + + 1-8d, 40-92% COOMe NC NC N COOMe NC COOEt COOEt COOEt Hetero-diene Dienophile Diels-Alder reactions can be made to take place in reverse direction i.e. retro Diels-Alder reactions when the products do not react with each other rapidly. The retro Diels-Alder reaction proceeds with ease, if the diene or dienophile has some special stabilization present in the diene or dienophile such as extrusion of stable N2 molecule. NH N HgO
Recommended publications
  • Organic Chemistry
    Wisebridge Learning Systems Organic Chemistry Reaction Mechanisms Pocket-Book WLS www.wisebridgelearning.com © 2006 J S Wetzel LEARNING STRATEGIES CONTENTS ● The key to building intuition is to develop the habit ALKANES of asking how each particular mechanism reflects Thermal Cracking - Pyrolysis . 1 general principles. Look for the concepts behind Combustion . 1 the chemistry to make organic chemistry more co- Free Radical Halogenation. 2 herent and rewarding. ALKENES Electrophilic Addition of HX to Alkenes . 3 ● Acid Catalyzed Hydration of Alkenes . 4 Exothermic reactions tend to follow pathways Electrophilic Addition of Halogens to Alkenes . 5 where like charges can separate or where un- Halohydrin Formation . 6 like charges can come together. When reading Free Radical Addition of HX to Alkenes . 7 organic chemistry mechanisms, keep the elec- Catalytic Hydrogenation of Alkenes. 8 tronegativities of the elements and their valence Oxidation of Alkenes to Vicinal Diols. 9 electron configurations always in your mind. Try Oxidative Cleavage of Alkenes . 10 to nterpret electron movement in terms of energy Ozonolysis of Alkenes . 10 Allylic Halogenation . 11 to make the reactions easier to understand and Oxymercuration-Demercuration . 13 remember. Hydroboration of Alkenes . 14 ALKYNES ● For MCAT preparation, pay special attention to Electrophilic Addition of HX to Alkynes . 15 Hydration of Alkynes. 15 reactions where the product hinges on regio- Free Radical Addition of HX to Alkynes . 16 and stereo-selectivity and reactions involving Electrophilic Halogenation of Alkynes. 16 resonant intermediates, which are special favor- Hydroboration of Alkynes . 17 ites of the test-writers. Catalytic Hydrogenation of Alkynes. 17 Reduction of Alkynes with Alkali Metal/Ammonia . 18 Formation and Use of Acetylide Anion Nucleophiles .
    [Show full text]
  • Solvent Effects on Structure and Reaction Mechanism: a Theoretical Study of [2 + 2] Polar Cycloaddition Between Ketene and Imine
    J. Phys. Chem. B 1998, 102, 7877-7881 7877 Solvent Effects on Structure and Reaction Mechanism: A Theoretical Study of [2 + 2] Polar Cycloaddition between Ketene and Imine Thanh N. Truong Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, UniVersity of Utah, Salt Lake City, Utah 84112 ReceiVed: March 25, 1998; In Final Form: July 17, 1998 The effects of aqueous solvent on structures and mechanism of the [2 + 2] cycloaddition between ketene and imine were investigated by using correlated MP2 and MP4 levels of ab initio molecular orbital theory in conjunction with the dielectric continuum Generalized Conductor-like Screening Model (GCOSMO) for solvation. We found that reactions in the gas phase and in aqueous solution have very different topology on the free energy surfaces but have similar characteristic motion along the reaction coordinate. First, it involves formation of a planar trans-conformation zwitterionic complex, then a rotation of the two moieties to form the cycloaddition product. Aqueous solvent significantly stabilizes the zwitterionic complex, consequently changing the topology of the free energy surface from a gas-phase single barrier (one-step) process to a double barrier (two-step) one with a stable intermediate. Electrostatic solvent-solute interaction was found to be the dominant factor in lowering the activation energy by 4.5 kcal/mol. The present calculated results are consistent with previous experimental data. Introduction Lim and Jorgensen have also carried out free energy perturbation (FEP) theory simulations with accurate force field that includes + [2 2] cycloaddition reactions are useful synthetic routes to solute polarization effects and found even much larger solvent - formation of four-membered rings.
    [Show full text]
  • The Arene–Alkene Photocycloaddition
    The arene–alkene photocycloaddition Ursula Streit and Christian G. Bochet* Review Open Access Address: Beilstein J. Org. Chem. 2011, 7, 525–542. Department of Chemistry, University of Fribourg, Chemin du Musée 9, doi:10.3762/bjoc.7.61 CH-1700 Fribourg, Switzerland Received: 07 January 2011 Email: Accepted: 23 March 2011 Ursula Streit - [email protected]; Christian G. Bochet* - Published: 28 April 2011 [email protected] This article is part of the Thematic Series "Photocycloadditions and * Corresponding author photorearrangements". Keywords: Guest Editor: A. G. Griesbeck benzene derivatives; cycloadditions; Diels–Alder; photochemistry © 2011 Streit and Bochet; licensee Beilstein-Institut. License and terms: see end of document. Abstract In the presence of an alkene, three different modes of photocycloaddition with benzene derivatives can occur; the [2 + 2] or ortho, the [3 + 2] or meta, and the [4 + 2] or para photocycloaddition. This short review aims to demonstrate the synthetic power of these photocycloadditions. Introduction Photocycloadditions occur in a variety of modes [1]. The best In the presence of an alkene, three different modes of photo- known representatives are undoubtedly the [2 + 2] photocyclo- cycloaddition with benzene derivatives can occur, viz. the addition, forming either cyclobutanes or four-membered hetero- [2 + 2] or ortho, the [3 + 2] or meta, and the [4 + 2] or para cycles (as in the Paternò–Büchi reaction), whilst excited-state photocycloaddition (Scheme 2). The descriptors ortho, meta [4 + 4] cycloadditions can also occur to afford cyclooctadiene and para only indicate the connectivity to the aromatic ring, and compounds. On the other hand, the well-known thermal [4 + 2] do not have any implication with regard to the reaction mecha- cycloaddition (Diels–Alder reaction) is only very rarely nism.
    [Show full text]
  • Predictive Models for Kinetic Parameters of Cycloaddition
    Predictive Models for Kinetic Parameters of Cycloaddition Reactions Marta Glavatskikh, Timur Madzhidov, Dragos Horvath, Ramil Nugmanov, Timur Gimadiev, Daria Malakhova, Gilles Marcou, Alexandre Varnek To cite this version: Marta Glavatskikh, Timur Madzhidov, Dragos Horvath, Ramil Nugmanov, Timur Gimadiev, et al.. Predictive Models for Kinetic Parameters of Cycloaddition Reactions. Molecular Informatics, Wiley- VCH, 2018, 38 (1-2), pp.1800077. 10.1002/minf.201800077. hal-02346844 HAL Id: hal-02346844 https://hal.archives-ouvertes.fr/hal-02346844 Submitted on 5 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 0DQXVFULSW &OLFNKHUHWRGRZQORDG0DQXVFULSW&$UHYLVLRQGRF[ Predictive models for kinetic parameters of cycloaddition reactions Marta Glavatskikh[a,b], Timur Madzhidov[b], Dragos Horvath[a], Ramil Nugmanov[b], Timur Gimadiev[a,b], Daria Malakhova[b], Gilles Marcou[a] and Alexandre Varnek*[a] [a] Laboratoire de Chémoinformatique, UMR 7140 CNRS, Université de Strasbourg, 1, rue Blaise Pascal, 67000 Strasbourg, France; [b] Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya str. 18, Kazan, Russia Abstract This paper reports SVR (Support Vector Regression) and GTM (Generative Topographic Mapping) modeling of three kinetic properties of cycloaddition reactions: rate constant (logk), activation energy (Ea) and pre-exponential factor (logA).
    [Show full text]
  • Aromatic Substitution Reactions: an Overview
    Review Article Published: 03 Feb, 2020 SF Journal of Pharmaceutical and Analytical Chemistry Aromatic Substitution Reactions: An Overview Kapoor Y1 and Kumar K1,2* 1School of Pharmaceutical Sciences, Apeejay Stya University, Sohna-Palwal Road, Sohna, Gurgaon, Haryana, India 2School of Pharmacy and Technology Management, SVKM’s NMIMS University, Hyderabad, Telangana, India Abstract The introduction or replacement of substituent’s on aromatic rings by substitution reactions is one of the most fundamental transformations in organic chemistry. On the basis of the reaction mechanism, these substitution reactions can be divided into electrophilic, nucleophilic, radical, and transition metal catalyzed. This article also focuses on electrophilic and nucleophilic substitution mechanisms. Introduction The replacement of an atom, generally hydrogen, or a group attached to the carbon from the benzene ring by another group is known as aromatic substitution. The regioselectivity of these reactions depends upon the nature of the existing substituent and can be ortho, Meta or Para selective. Electrophilic Aromatic Substitution (EAS) reactions are important for synthetic purposes and are also among the most thoroughly studied classes of organic reactions from a mechanistic point of view. A wide variety of electrophiles can effect aromatic substitution. Usually, it is a substitution of some other group for hydrogen that is of interest, but this is not always the case. For example, both silicon and mercury substituent’s can be replaced by electrophiles. The reactivity of a particular electrophile determines which aromatic compounds can be successfully substituted. Despite the wide range of electrophilic species and aromatic ring systems that can undergo substitution, a single broad mechanistic picture encompasses most EAS reactions.
    [Show full text]
  • A New Withanolide from the Roots of Withania Somnifera
    Indian Journal of Chemistry Vol. 47B, March 2008, pp. 485-487 Note Synthetic potentiality of α-chloronitrone in The most remarkable feature of both the nitrones 2 aldehyde synthesis: A new approach 1a,b is that they undergo SN reaction with benzyl chloride leading to the formation of benzaldehyde, a Bhaskar Chakraborty* & Manjit Singh Chhetri significant reaction in nitrone chemistry which Organic Chemistry Laboratory, Sikkim Govt. College proceeds through SNi reaction initially and forms Gangtok 737 102, India transient nitrones 2a,b. A new mechanistic pathway E-mail: [email protected] has been suggested for the synthesis of aldehyde (Scheme I). Received 9 August 2007; accepted (revised) 12 December 2007 The lone pair of electrons of the OH group of the i N-Phenyl-N-cyclohexyl-α-chloronitrones have been synthe- nitrones 1a,b play the most significant role in SN sized and a new method of synthesis of aldehyde has been mechanism for the formation of transient nitrones discovered involving SNi and SN2 reactions with benzyl chloride. 2a,b which reacts very quickly with benzyl chloride 2 and results in the formation of benzaldehyde with a Keywords: N-Phenyl-N-cyclohexyl-α-chloronitrone, SN reac- very good yield (72% and 63% respectively) along tion, aldehyde synthesis with furan derivative. The synthesis of N-phenyl-N-cyclohexyl-α-chloro- nitrones1 1a,b and their 1,3-dipolar cycloaddition Experimental Section reaction with different dipolarophiles have been Hand drawn silica gel (E. Merck) plates of 0.5-0.7 already established. Existing reports2-7 already mm thickness are used for TLC.
    [Show full text]
  • Heterocyclic Chemistrychemistry
    HeterocyclicHeterocyclic ChemistryChemistry Professor J. Stephen Clark Room C4-04 Email: [email protected] 2011 –2012 1 http://www.chem.gla.ac.uk/staff/stephenc/UndergraduateTeaching.html Recommended Reading • Heterocyclic Chemistry – J. A. Joule, K. Mills and G. F. Smith • Heterocyclic Chemistry (Oxford Primer Series) – T. Gilchrist • Aromatic Heterocyclic Chemistry – D. T. Davies 2 Course Summary Introduction • Definition of terms and classification of heterocycles • Functional group chemistry: imines, enamines, acetals, enols, and sulfur-containing groups Intermediates used for the construction of aromatic heterocycles • Synthesis of aromatic heterocycles • Carbon–heteroatom bond formation and choice of oxidation state • Examples of commonly used strategies for heterocycle synthesis Pyridines • General properties, electronic structure • Synthesis of pyridines • Electrophilic substitution of pyridines • Nucleophilic substitution of pyridines • Metallation of pyridines Pyridine derivatives • Structure and reactivity of oxy-pyridines, alkyl pyridines, pyridinium salts, and pyridine N-oxides Quinolines and isoquinolines • General properties and reactivity compared to pyridine • Electrophilic and nucleophilic substitution quinolines and isoquinolines 3 • General methods used for the synthesis of quinolines and isoquinolines Course Summary (cont) Five-membered aromatic heterocycles • General properties, structure and reactivity of pyrroles, furans and thiophenes • Methods and strategies for the synthesis of five-membered heteroaromatics
    [Show full text]
  • Enthalpy and Free Energy of Reaction
    KINETICS AND THERMODYNAMICS OF REACTIONS Key words: Enthalpy, entropy, Gibbs free energy, heat of reaction, energy of activation, rate of reaction, rate law, energy profiles, order and molecularity, catalysts INTRODUCTION This module offers a very preliminary detail of basic thermodynamics. Emphasis is given on the commonly used terms such as free energy of a reaction, rate of a reaction, multi-step reactions, intermediates, transition states etc., FIRST LAW OF THERMODYNAMICS. o Law of conservation of energy. States that, • Energy can be neither created nor destroyed. • Total energy of the universe remains constant. • Energy can be converted from one form to another form. eg. Combustion of octane (petrol). 2 C8H18(l) + 25 O2(g) CO2(g) + 18 H2O(g) Conversion of potential energy into thermal energy. → 16 + 10.86 KJ/mol . ESSENTIAL FACTORS FOR REACTION. For a reaction to progress. • The equilibrium must favor the products- • Thermodynamics(energy difference between reactant and product) should be favorable • Reaction rate must be fast enough to notice product formation in a reasonable period. • Kinetics( rate of reaction) ESSENTIAL TERMS OF THERMODYNAMICS. Thermodynamics. Predicts whether the reaction is thermally favorable. The energy difference between the final products and reactants are taken as the guiding principle. The equilibrium will be in favor of products when the product energy is lower. Molecule with lowered energy posses enhanced stability. Essential terms o Free energy change (∆G) – Overall free energy difference between the reactant and the product o Enthalpy (∆H) – Heat content of a system under a given pressure. o Entropy (∆S) – The energy of disorderness, not available for work in a thermodynamic process of a system.
    [Show full text]
  • Highly Accelerated Inverse Electron-Demand Cycloaddition of Electron-Deficient Azides with Aliphatic Cyclooctynes
    ARTICLE Received 22 Jul 2014 | Accepted 25 Sep 2014 | Published 10 Nov 2014 DOI: 10.1038/ncomms6378 Highly accelerated inverse electron-demand cycloaddition of electron-deficient azides with aliphatic cyclooctynes Jan Dommerholt1, Olivia van Rooijen2, Annika Borrmann1,Ce´lia Fonseca Guerra2, F. Matthias Bickelhaupt1,2 & Floris L. van Delft1 Strain-promoted azide–alkyne cycloaddition (SPAAC) as a conjugation tool has found broad application in material sciences, chemical biology and even in vivo use. However, despite tremendous effort, SPAAC remains fairly slow (0.2–0.5 M À 1 s À 1) and efforts to increase reaction rates by tailoring of cyclooctyne structure have suffered from a poor trade-off between cyclooctyne reactivity and stability. We here wish to report tremendous acceleration of strain-promoted cycloaddition of an aliphatic cyclooctyne (bicyclo[6.1.0]non-4-yne, BCN) with electron-deficient aryl azides, with reaction rate constants reaching 2.0–2.9 M À 1 s À 1. A remarkable difference in rate constants of aliphatic cyclooctynes versus benzoannulated cyclooctynes is noted, enabling a next level of orthogonality by a judicious choice of azide– cyclooctyne combinations, which is inter alia applied in one-pot three-component protein labelling. The pivotal role of azide electronegativity is explained by density-functional theory calculations and electronic-structure analyses, which indicates an inverse electron-demand mechanism is operative with an aliphatic cyclooctyne. 1 Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands. 2 Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
    [Show full text]
  • Intramolecular Azide to Alkene Cycloadditions for the Construction of Pyrrolobenzodiazepines and Azetidino-Benzodiazepines
    Molecules 2014, 19, 16737-16756; doi:10.3390/molecules191016737 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Intramolecular Azide to Alkene Cycloadditions for the Construction of Pyrrolobenzodiazepines and Azetidino-Benzodiazepines Karl Hemming 1,*, Christopher S. Chambers 1,2,†, Faisal Jamshaid 1 and Paul A. O’Gorman 1,† 1 Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire HD1 3DH, UK 2 Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of Czech Republic, Vídeňská 1083, Praha 4, 142 20, Czech Republic † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-(0)-1484-472188; Fax: +44-(0)-1484-472182. External Editor: Derek J. McPhee Received: 31 July 2014; in revised form: 26 September 2014 / Accepted: 13 October 2014 / Published: 17 October 2014 Abstract: The coupling of proline- and azetidinone-substituted alkenes to 2-azidobenzoic and 2-azidobenzenesulfonic acid gives precursors that undergo intramolecular azide to alkene 1,3-dipolar cycloadditions to give imine-, triazoline- or aziridine-containing pyrrolo[1,4]benzodiazepines (PBDs), pyrrolo[1,2,5]benzothiadiazepines (PBTDs), and azetidino[1,4]benzodiazepines. The imines and aziridines are formed after loss of nitrogen from a triazoline cycloadduct. The PBDs are a potent class of antitumour antibiotics. Keywords: cycloaddition; 1,3-dipole; azide; pyrrolobenzodiazepine; azetidinone; antitumour; antibiotic; β-lactam 1. Introduction The pyrrolobenzodiazepines (PBDs), of which the natural products abbeymycin (1), DC-81 (2) and fuligocandin B (3) (Figure 1) are typical examples, are a class of molecule that has attracted significant Molecules 2014, 19 16738 interest due the antitumour and antibiotic activity of several members [1–5].
    [Show full text]
  • Cycloaddition Reactions of the Fulvenes. Leonard Joseph Luskus Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1971 Cycloaddition Reactions of the Fulvenes. Leonard Joseph Luskus Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Luskus, Leonard Joseph, "Cycloaddition Reactions of the Fulvenes." (1971). LSU Historical Dissertations and Theses. 2145. https://digitalcommons.lsu.edu/gradschool_disstheses/2145 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. Wv- t .;1 If' 72-17,783 LUSKUS, Leonard Joseph, 19 35- CYCLOADDITION REACTIONS OF THE FULVENES. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1971 Chemistry, organic »;■£v |S. If University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED. Cycloaddition Reactions of the Fulvenes A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Leonard Joseph Luskus B.S., Pennsylvania State University, 1961 M.S., San Jose State College, 19o7 December, 1971 PLEASE NOTE: Some pages may have indistinct print. Filmed as received. University Microfilms, A Xerox Education Company Carol ii Acknowledgment Dr, Kendall N, Houk Dr, Norman Bhacca for his assistance in the fulvene-tropone nuclear magnetic resonance studies. Those others who made the Baton Rouge experience pleasant.
    [Show full text]
  • Kinetic Solvent Effects on 1,3-Dipolar Cycloadditions of Benzonitrile Oxide
    CORE Metadata, citation and similar papers at core.ac.uk JOURNAL OF PHYSICAL ORGANIC CHEMISTRY Provided by UniversityJ. Phys. of Org. Groningen Chem. Digital2005; Archive18: 908–917 Published online 13 April 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/poc.917 Kinetic solvent effects on 1,3-dipolar cycloadditions of benzonitrile oxide Theo Rispens and Jan B. F. N. Engberts* Physical Organic Chemistry Unit, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands Received 21 December 2004; revised 7 February 2005; accepted 7 February 2005 ABSTRACT: The kinetics of 1,3-dipolar cycloadditions of benzonitrile oxide with a series of N-substituted maleimides and with cyclopentene are reported for water, a wide range of organic solvents and binary solvent mixtures. The results indicate the importance of both solvent polarity and specific hydrogen-bond interactions in governing the rates of the reactions. The aforementioned reactions are examples for which these factors often counteract, leading to a complex dependence of rate constants on the nature of the solvent. For the reactions of N- ethylmaleimide and N-n-butylmaleimide with benzonitrile oxide, isobaric activation parameters have been deter- mined in several organic solvents, water, and water–1-propanol mixtures. Interestingly, the activation parameters reveal significant differences in solvation in different solvents that are not clearly reflected in the rate constants. In highly aqueous mixtures, enforced hydrophobic interactions lead to an increase in rate constant, relative to organic solvents. However, the overall rate enhancement in water is modest, if present at all, because the solvent polarity diminishes the rate constant.
    [Show full text]