Direct Thermal Energy Conversion Materials, Devices, and Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HEAT and TEMPERATURE Heat Is a Type of ENERGY. When Absorbed
HEAT AND TEMPERATURE Heat is a type of ENERGY. When absorbed by a substance, heat causes inter-particle bonds to weaken and break which leads to a change of state (solid to liquid for example). Heat causing a phase change is NOT sufficient to cause an increase in temperature. Heat also causes an increase of kinetic energy (motion, friction) of the particles in a substance. This WILL cause an increase in TEMPERATURE. Temperature is NOT energy, only a measure of KINETIC ENERGY The reason why there is no change in temperature at a phase change is because the substance is using the heat only to change the way the particles interact (“stick together”). There is no increase in the particle motion and hence no rise in temperature. THERMAL ENERGY is one type of INTERNAL ENERGY possessed by an object. It is the KINETIC ENERGY component of the object’s internal energy. When thermal energy is transferred from a hot to a cold body, the term HEAT is used to describe the transferred energy. The hot body will decrease in temperature and hence in thermal energy. The cold body will increase in temperature and hence in thermal energy. Temperature Scales: The K scale is the absolute temperature scale. The lowest K temperature, 0 K, is absolute zero, the temperature at which an object possesses no thermal energy. The Celsius scale is based upon the melting point and boiling point of water at 1 atm pressure (0, 100o C) K = oC + 273.13 UNITS OF HEAT ENERGY The unit of heat energy we will use in this lesson is called the JOULE (J). -
A Comprehensive Review of Thermal Energy Storage
sustainability Review A Comprehensive Review of Thermal Energy Storage Ioan Sarbu * ID and Calin Sebarchievici Department of Building Services Engineering, Polytechnic University of Timisoara, Piata Victoriei, No. 2A, 300006 Timisoara, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-256-403-991; Fax: +40-256-403-987 Received: 7 December 2017; Accepted: 10 January 2018; Published: 14 January 2018 Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included. Keywords: storage system; phase-change materials; chemical storage; cold storage; performance 1. Introduction Recent projections predict that the primary energy consumption will rise by 48% in 2040 [1]. On the other hand, the depletion of fossil resources in addition to their negative impact on the environment has accelerated the shift toward sustainable energy sources. -
Work and Energy Summary Sheet Chapter 6
Work and Energy Summary Sheet Chapter 6 Work: work is done when a force is applied to a mass through a displacement or W=Fd. The force and the displacement must be parallel to one another in order for work to be done. F (N) W =(Fcosθ)d F If the force is not parallel to The area of a force vs. the displacement, then the displacement graph + W component of the force that represents the work θ d (m) is parallel must be found. done by the varying - W d force. Signs and Units for Work Work is a scalar but it can be positive or negative. Units of Work F d W = + (Ex: pitcher throwing ball) 1 N•m = 1 J (Joule) F d W = - (Ex. catcher catching ball) Note: N = kg m/s2 • Work – Energy Principle Hooke’s Law x The work done on an object is equal to its change F = kx in kinetic energy. F F is the applied force. 2 2 x W = ΔEk = ½ mvf – ½ mvi x is the change in length. k is the spring constant. F Energy Defined Units Energy is the ability to do work. Same as work: 1 N•m = 1 J (Joule) Kinetic Energy Potential Energy Potential energy is stored energy due to a system’s shape, position, or Kinetic energy is the energy of state. motion. If a mass has velocity, Gravitational PE Elastic (Spring) PE then it has KE 2 Mass with height Stretch/compress elastic material Ek = ½ mv 2 EG = mgh EE = ½ kx To measure the change in KE Change in E use: G Change in ES 2 2 2 2 ΔEk = ½ mvf – ½ mvi ΔEG = mghf – mghi ΔEE = ½ kxf – ½ kxi Conservation of Energy “The total energy is neither increased nor decreased in any process. -
IB Questionbank
Topic 3 Past Paper [94 marks] This question is about thermal energy transfer. A hot piece of iron is placed into a container of cold water. After a time the iron and water reach thermal equilibrium. The heat capacity of the container is negligible. specific heat capacity. [2 marks] 1a. Define Markscheme the energy required to change the temperature (of a substance) by 1K/°C/unit degree; of mass 1 kg / per unit mass; [5 marks] 1b. The following data are available. Mass of water = 0.35 kg Mass of iron = 0.58 kg Specific heat capacity of water = 4200 J kg–1K–1 Initial temperature of water = 20°C Final temperature of water = 44°C Initial temperature of iron = 180°C (i) Determine the specific heat capacity of iron. (ii) Explain why the value calculated in (b)(i) is likely to be different from the accepted value. Markscheme (i) use of mcΔT; 0.58×c×[180-44]=0.35×4200×[44-20]; c=447Jkg-1K-1≈450Jkg-1K-1; (ii) energy would be given off to surroundings/environment / energy would be absorbed by container / energy would be given off through vaporization of water; hence final temperature would be less; hence measured value of (specific) heat capacity (of iron) would be higher; This question is in two parts. Part 1 is about ideal gases and specific heat capacity. Part 2 is about simple harmonic motion and waves. Part 1 Ideal gases and specific heat capacity State assumptions of the kinetic model of an ideal gas. [2 marks] 2a. two Markscheme point molecules / negligible volume; no forces between molecules except during contact; motion/distribution is random; elastic collisions / no energy lost; obey Newton’s laws of motion; collision in zero time; gravity is ignored; [4 marks] 2b. -
Energy Harvesting for Low-Power Sensor Systems
White Paper – RX100 Microcontroller Family Energy Harvesting for Low-Power Sensor Systems By: David Squires, Squires Consulting; Forrest Huff, Renesas Electronics America Inc. Feb. 2015 Abstract This white paper details important design issues associated with designing the very-low-power remote sensors that play important roles in the feedback control loops of embedded electronic systems. Using a basic configuration for a standalone sensor system as a reference, the discussion covers sensor/transducer types, power budgets, power sources (especially devices that harvest ambient energy) and energy-storage solutions. It also summarizes microcontroller requirements and highlights the latest power-management chips and wireless ICs. Special emphasis is placed on the concept and reality of energy harvesting as a viable method for powering standalone embedded systems for extended periods of time. An example security alarm design is described and explained to provide engineering context and perspective. Index I. Introduction – III. Additional Insights on Very-Low-Power Sensor Products 2 Sensor Components 7 II. Basic System Design Issues 2 • Sensors 7 • Sensors 3 • Energy Storage Devices 7 • Power Budgets 3 • Energy Harvesting Solutions 12 • Energy Storage Devices 3 • MCUs 15 • Energy Harvesting Solutions 4 • Power Management Devices 18 • Microcontrollers (MCUs) 6 • Wireless Connectivity Modules 20 • Power Management Devices 6 IV. Example Design: Glass Break Sensor 22 • Wireless Connectivity Modules 6 V. Summary 28 VI. Appendix 28 White Paper – Energy Harvesting for Low-Power Sensor Systems Page 1 of 29 I. Introduction – Very-Low-Power Sensor Products Modern low-power sensors enable precise local, remote or autonomous control of a vast range of products. Their use is rapidly proliferating in vehicles, appliances, HVAC systems, hospital intensive care suites, oil refineries, and military and security systems. -
Thermal Energy: Using Water to Heat a School
Thermal Energy: Using Water to Heat a School Investigation Notebook NYC Edition © 2018 by The Regents of the University of California. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without permission in writing from the publisher. Teachers purchasing this Investigation Notebook as part of a kit may reproduce the book herein in sufficient quantities for classroom use only and not for resale. These materials are based upon work partially supported by the National Science Foundation under grant numbers DRL-1119584, DRL-1417939, ESI-0242733, ESI-0628272, ESI-0822119. The Federal Government has certain rights in this material. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. These materials are based upon work partially supported by the Institute of Education Sciences, U.S. Department of Education, through Grant R305A130610 to The Regents of the University of California. The opinions expressed are those of the authors and do not represent views of the Institute or the U.S. Department of Education. Developed by the Learning Design Group at the University of California, Berkeley’s Lawrence Hall of Science. Amplify. 55 Washington Street, Suite 800 Brooklyn, NY 11201 1-800-823-1969 www.amplify.com Thermal Energy: Using Water to Heat a School -
The Mechanical Equivalent of Heat
THE MECHANICAL EQUIVALENT OF HEAT INTRODUCTION This is the classic experiment, first performed in 1847 by James Joule, which led to our modern view that mechanical work and heat are but different aspects of the same quantity: energy. The classic experiment related the two concepts and provided a connection between the Joule, defined in terms of mechanical variables (work, kinetic energy, potential energy. etc.) and the calorie, defined as the amount of heat that raises the temperature of 1 gram of water by 1 degree Celsius. Contemporary SI units do not distinguish between heat energy and mechanical energy, so that heat is also measured in Joules. In this experiment, work is done by rubbing two metal cones, which raises the temperature of a known amount of water (along with the cones, stirrer, thermometer, etc,). The ratio of the mechanical work done (W) to the heat which has passed to the water plus parts (Q), determines the constant J (J = W/Q). THE EXPERIMENT CAUTION: The apparatus must not be operated without oil between the cones. The cones have to be cleaned and a tiny drop of oil put between the rubbing surfaces (caution! too much oil will reduce the friction excessively and make the experiment impossible). The apparatus is shown in Figure 1. The heat generated in the system is absorbed by different parts: the water, the inner and outer cones, the stirrer and the immersed part of the temperature probe. The total increase in heat, including all these contributions, is therefore: Q = (MCw + M′Cbr + v Cth) ∆T = constant1 × ∆T (1) -1 -1 Cw = specific heat of water = 1.00 cal g C (by definition of the calorie) -1 ° -1 Cbr = specific heat of brass (cones and stirrer) = 0.089 cal g C -3 ° -1 Cth = heat capacity per unit volume of temperature probe = 0.013 cal cm C M = mass of water (in g) M′ = mass of cones and stirrer (in g) v = volume of the immersed part of the temperature probe (in cm3). -
Thermal Profiling of Residential Energy Consumption
1 Thermal profiling of residential energy consumption Adrian Albert and Ram Rajagopal Abstract—Demand Response (DR) programs aim to dynami- the thermal mass of the premise may act as “thermal bat- cally match consumption on the grid with available supply in tery”. Affecting the thermally-sensitive load may be typically real-time. Understanding the patterns in demand of individuals achieved through direct load control of the HVAC system (e.g., is now being facilitated by granular consumption data collected load curtailment or automatic adjustment of the thermostat via smart meter sensors that power utility companies have rolled setpoint), through adjustable rates (e.g., critical peak pricing), out at scale. In this paper we propose a dynamic model that uses or through incentive schemes [4], [5]. hourly electricity and weather readings to characterize residential users’ thermally-sensitive consumption. From this model we Here we propose a simple model of consumption for a extract useful benchmarks to build profiles of individual users residential premise that is driven by unobserved “occupancy for use with DR programs that focus on temperature-dependent states” that have different responses to ambient weather. These consumption such as air conditioning or heating. We present are consumption regimes of a given household that depend on example profiles generated using our model on real consumers, lifestyle (work schedule, familial composition etc.), premise and show its performance on a large sample of residential characteristics (heating/cooling mass, square footage etc.), users. We then compute metrics that allow us to segment the appliance stock, and weather patterns. It is a daunting task population dynamically for the purpose of a thermally-motivated to disentangle how much energy each of these components DR program. -
Planar Dual Polarized Metasurface Array for Microwave Energy Harvesting
electronics Article Planar Dual Polarized Metasurface Array for Microwave Energy Harvesting Maged A. Aldhaeebi 1 and Thamer S. Almoneef 2,* 1 Department of Electronics and Communication Engineering, Hadhramout University, Mukalla 50512-50511, Yemen; [email protected] 2 Electrical Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia * Correspondence: [email protected] Received: 26 October 2020; Accepted: 18 November 2020; Published: 24 November 2020 Abstract: The design of a dual polarized metasurface collector based on the metamaterial full absorption concept for electromagnetic energy harvesting is introduced. Unlike previous metamaterial absorber designs, here the power absorbed is mostly dissipated across a resistive load rather than within the dielectric substrate. This is achieved by channeling the absorbed power to an optimal resistive load through a via hole. The simulation results show that a power absorption efficiency of 98% is achieved at an operating frequency of 2 GHz for a single unit cell. A super unit cell consisting of four cells with alternating vias was also designed to produce a dual polarized metasurface. The simulation results yielded a radiation to AC efficiency of around 98% for each polarization. Keywords: planar meatsurface; dual polarized absorbers; energy harvesting; rectenna 1. Introduction The microwave energy harvesting system (MEHS) has recently received much attention in the field of developing rectenna arrays based on metamaterials [1]. The two main components of any microwave energy harvesting system are an antenna and a rectification circuit. The antenna is used for collecting incident electromagnetic radiated power and converting it to AC (Radiation to AC efficiency), whereas a rectification circuit is used for converting the collected AC power to DC (AC to DC efficiency) [2]. -
Introducing Electric Thermal Energy Storage (ETES) – Putting Gigawatt Hours of Energy at Your Command
Same forces. New rules. Introducing Electric Thermal Energy Storage (ETES) – putting gigawatt hours of energy at your command. Impossible is just another word for never done before. 100% renewables is said to be impossible. As were the first flight, space travel, the internet … Now here is something that makes a complete energy transition possible: Electric Thermal Energy Storage (ETES). A proven energy storage solution that is inexpensive, built with 80% off-the-shelf components, and scalable to several GWh. No need to explain that ETES is a giant step – for SGRE and for the energy industry. While the forces of nature remain the same, Electric Thermal Energy Storage has launched a new era. Find out how it will boost the energy transition and how new players, energy-intensive companies and even conventional power plants will profit from it. Or, in short: time for new rules. Welcome TiteltextRule #1: Power in. Power out. ETES is technology that can be charged with electricity or directly with heat and which then releases heat that, in return, can generate electricity. Unlike other storage technologies, it is made of rocks absorbing heat. This makes ETES very sustainable in design and the first gigawatt-hour scale energy storage that can be built almost anywhere – limiting its size and use only to your imagination. Flexible scalability of charging power, discharging power and storage capacity. Proven, reliable technology – discharging technology used for more than a 100 years. Cost-competitive, GWh scale, multiple revenue streams. ETES technology TiteltextRule #2: If it works for you, it works for all. ETES solutions basically prolong the availability of ETES and all of its components are fully scalable energy that otherwise would be “wasted“. -
Fuel Wise Or Fuelish? Grades 9 to 12
LESSON PLAN Fuel Wise or Fuelish? Grades 9 to 12 SUMMARY LESSON OBJECTIVES In this lesson, the students will explore the different impacts Upon completing this lesson the students will: using alternative fuels has on the economy. • Learn how world events affect supply and demand for The students will research and compare different cars. petroleum; They will determine the cost of operation for one year to • Explore why it is important for South Carolinians to use include price, fuel, insurance, property taxes, title, tag, and alternative fuels; and maintenance, as well as determine the most cost-effective choice of vehicle, based on their research. • Make decisions pertinent to choosing a fuel-efficient car. ESSENTIAL QUESTION How have alternative fuels impacted the economy? DURATION The activity requires about one to two weeks to complete. 2014 S.C. SCIENCE STANDARDS CORRELATIONS Standard H.P.3: The student will demonstrate an understanding of how the interactions among objects can be explained and predicted using the concept of the conservation of energy. CONCEPTUAL UNDERSTANDING H.P.3A.: Work and energy are equivalent to each other. Work is defined as the product of displacement and the force causing that displacement; this results in the transfer of mechanical energy. Therefore, in the case of mechanical energy, energy is seen as the ability to do work. This is called the work-energy principle. The rate at which work is done (or energy is transformed) is called power. For machines that do useful work for humans, the ratio of useful power output is the efficiency of the machine. -
Lesson 8 Energy in Chemical Reactions Review
Name __________________________________________________ Date ______________________________ Lesson 8 Energy in Chemical Reactions Review Main Ideas Read each item. Then select the letter next to the best answer. 1. An ice pack is activated and placed on a person’s wrist. After the resulting chemical reaction, the average temperature of the hands-icepack system is lower. Which of the following statements best completes a statement about the transfer of energy in this chemical reaction. This reaction is: A. endothermic, because more thermal energy is absorbed than released. B. endothermic, because more thermal energy is released than absorbed. C. exothermic, because more thermal energy is absorbed than released. D. exothermic, because more thermal energy is released than absorbed. 2. Calcium ammonium nitrate is a chemical used in fertilizers. It can also be used to make an instant ice-pack. When the calcium ammonium nitrate is allowed to mix with the water inside the ice pack, a chemical reaction takes place. This reaction cannot occur on its own because it needs a source of heat to continue until it is complete. Which statement best describes the type of chemical reaction and the source of heat? A. Endothermic reaction, and the heat comes out of the water. B. Exothermic reaction, and the heat comes out of the water. C. Exothermic reaction, and the heat comes out of the reaction. D. Endothermic reaction, and the heat comes out of the reaction. 3. When a candle burns, a chemical reaction occurs changing wax and oxygen into carbon dioxide and water vapor. The average temperature of the candle-room system increases.