On the Necessity of Combining Ethnobotany
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Is a Tree in the Mediterranean Basin Hotspot? a Critical Analysis
Médail et al. Forest Ecosystems (2019) 6:17 https://doi.org/10.1186/s40663-019-0170-6 RESEARCH Open Access What is a tree in the Mediterranean Basin hotspot? A critical analysis Frédéric Médail1* , Anne-Christine Monnet1, Daniel Pavon1, Toni Nikolic2, Panayotis Dimopoulos3, Gianluigi Bacchetta4, Juan Arroyo5, Zoltán Barina6, Marwan Cheikh Albassatneh7, Gianniantonio Domina8, Bruno Fady9, Vlado Matevski10, Stephen Mifsud11 and Agathe Leriche1 Abstract Background: Tree species represent 20% of the vascular plant species worldwide and they play a crucial role in the global functioning of the biosphere. The Mediterranean Basin is one of the 36 world biodiversity hotspots, and it is estimated that forests covered 82% of the landscape before the first human impacts, thousands of years ago. However, the spatial distribution of the Mediterranean biodiversity is still imperfectly known, and a focus on tree species constitutes a key issue for understanding forest functioning and develop conservation strategies. Methods: We provide the first comprehensive checklist of all native tree taxa (species and subspecies) present in the Mediterranean-European region (from Portugal to Cyprus). We identified some cases of woody species difficult to categorize as trees that we further called “cryptic trees”. We collected the occurrences of tree taxa by “administrative regions”, i.e. country or large island, and by biogeographical provinces. We studied the species-area relationship, and evaluated the conservation issues for threatened taxa following IUCN criteria. Results: We identified 245 tree taxa that included 210 species and 35 subspecies, belonging to 33 families and 64 genera. It included 46 endemic tree taxa (30 species and 16 subspecies), mainly distributed within a single biogeographical unit. -
Phytochemical Investigation of Phoenix Canariensis Hort. Ex Chabaud Leaves and Pollen Grains
Journal of Applied Pharmaceutical Science Vol. 6 (12), pp. 103-109, December, 2016 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2016.601214 ISSN 2231-3354 Phytochemical investigation of Phoenix canariensis Hort. ex Chabaud leaves and pollen grains Mohamed S. Hifnawy, Amr M. K. Mahrous, Rehab M. S. Ashour* Pharmacognosy Department, Faculty of pharmacy, Cairo University, Kasr El-Aini 11562, Egypt. ABSTRACT ARTICLE INFO Article history: Phoenix canariensis is a commonly grown, yet understudied, palm plant. The phytochemical screening of leaves Received on: 08/09/2016 and pollens revealed the presence of flavonoids, saponins, tannins, sterols and/or triterpenes. Quantitative Revised on: 09/10/2016 estimation of constituents, revealed that the total polyphenolics were higher in the leaves (69.9) than in pollens Accepted on: 22/11/2016 (29.98) expressed in mg gallic acid equivalent/g d.wt, the total flavonoids calculated as rutin equivalent were Available online: 28/12/2016 (23.86 mg/g) in leaves and (17.20 mg/g) in pollens, the total tannins content were 55.18 and 3.31 mg tannic acid equivalent/g fresh wt, while the total steroids content were 2.6 and 12.4 mg β-sitosterol equivalent/g d.wt, in Key words: leaves and pollens, respectively. Eighteen phenolic compounds and ten flavonoids were identified by HPLC. Phoenix canariensis, Lipids, GLC analysis of lipids, revealed the identification of phytosterols (4.93 and 28.90%), saturated (35.35 and Headspace volatiles, 40.56%) and unsaturated (62.42 and 59.01%) fatty acids in leaves and pollens, respectively. Proximate analysis Flavonoids, Phenolics, revealed a total moisture content of (6.4 and 7.7 %), crude fiber (32.22 and 39.50%), total ash (12.1 and 8.1%) Steroids. -
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
Chamaerops Humilis Chamaerops Is a Genus of Flowering Plants in the Palm Family Arecaceae
Chamaerops humilis Chamaerops is a genus of flowering plants in the palm family Arecaceae. The only currently fully accepted species is Chamaerops humilis, variously called European fan palm or the Mediterranean dwarf palm. It is one of the most cold-hardy palms and is used in landscaping in temperate climates. Taxonomy Apart from the fully accepted Chamaerops humilis, there are a few taxa of unresolved status plus numerous species synonymised under Chamaerops humilis. The genus Chamaerops is closely related to the genus Trachycarpus. The genera differ in that Trachycarpus lacks the clumping habit only forms single stems without basal suckers), the spiny leaf stems (spineless in Trachycarpus), and in small details of the flower anatomy. Description Chamaerops humilis is a shrub-like clumping palm, with several stems growing from a single base. It has an underground rhizome which produces shoots with palmate, sclerophyllous leaves. The stems grow slowly and often tightly together, eventually reaching 2–5 m (10–20 ft) tall with a trunk diameter of 20–25 cm (8–10 in). The petioles are armed with numerous sharp, needle-like spines; these may protect the stem growing point from browsing animals. The flowers are borne in dense, short inflorescences at the tops of the stems. The plants usually, but not invariably, are dioecious with male and female flowers on separate plants. The number of flowers per inflorescence is highly variable for both male and female plants, depending on the size of the inflorescence. The seed (usually 0.6–0.8 g) contains a small cylindrical embryo, which is surrounded by several layers, from inner to outer as follows: a nutritious endosperm, a wide woody layer or endocarp, a fleshy and fibrous mesocarp (the pulp), and the thin outer layer or exocarp. -
A Brief History of the Origin of Domesticated Date Palms
A brief history of the origin of domesticated date palms Gros-Balthazard, Muriel 1 & Flowers, Jonathan M.1 1 Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates Abstract The study of the origins of crops is of interest from both a fundamental evolutionary understanding viewpoint, and from an applied agricultural technology perspective. The date palm (Phoenix dactylifera L.) is the iconic fruit crop of hot and arid regions of North Africa and the Middle East, producing sugar-rich fruits, known as dates. There are many different cultivars each with distinctive fruit traits, and there are many wild Phoenix species too, which in total form a complex of related species. The understanding of plant domestication involves multiple disciplines, including phylogeography, population genetics and archaeology. In the past decade, they have prompted new discoveries on the evolutionary history of date palm, but a complete understanding of its origins remains to be elucidated, along with the genetic architecture of its domestication syndrome. In this chapter, we review the current state of the art regarding the origins of the domesticated date palm. We first discuss whether date palms are domesticated, and highlight how they diverge from their wild Phoenix relatives. We then outline patterns in the population genetic and archaeobotanical data, and review different models for the origins of domesticated date palms by highlighting sources of evidence that are either consistent or inconsistent with each model. We then review the process of date palm domestication, and emphasize the human activities that have prompted its domestication. We particularly focus on the evolution of fruit traits. -
Hybridization in the Genus Phoenix: a Review
Emir. J. Food Agric. 2013. 25 (11): 831-842 doi: 10.9755/ejfa.v25i11.16660 http://www.ejfa.info/ REVIEW ARTICLE Hybridization in the genus Phoenix: A review Muriel Gros-Balthazard* University of Fribourg, Department of Biology, Biochemistry, Chemin du Musée 10, 1700 Fribourg, Switzerland Abstract The genus Phoenix is composed of 14 species naturally distributed in the Old World. This genus comprises the date palm, Phoenix dactylifera L., cultivated for its fruits, the dates, while other species are grown for food, ornament and religious purposes. Phoenix species were, for these reasons, spread out of their natural distribution area. It is therefore common to find species not naturally sympatric, growing together, in cultivation or in the wild. Phoenix species are interfertile and crossing distinct species leads to fertile hybrid offspring (interspecific hybridization). The introduction of a species in the wild generates gene flows leading to the creation of new hybrids and has conservation implications. In cultivation, such crossings may be spontaneous or are the result of artificial pollination, as several reasons impel doing so. Crossing gives rise to beautiful hybrids and is also useful for the conservation of old palm groves threatened by pests. Moreover, artificial pollination of date palms using another Phoenix species can be of interest given the metaxenic pollen effects. In addition, this process may have some potential benefits in date palm improvements, by the creation of hybrid cultivars. Thus, an increasing need of hybrid detection and characterization exists, particularly as morphology alone is not sufficient for this task. Besides new methods such as traditional and geometric morphometrics that may bring new clues, the advent of genetic and molecular markers helps to detect hybrids, especially based on the combination of nuclear and chloroplastic data. -
Maquetación 1
Rev. Acad. Canar. Cienc., Vol. XXVII, 357-410 (diciembre de 2015) The botany of the three voyages of Captain James Cook in Macaronesia: an introduction Francisco-Ortega 1,2 *, J., Santos-Guerra 3, A., Romeiras 4,5 , M. M. , Carine 6, M. A. , Sánchez-Pinto 7, L. & Duarte 4,8 *, M. C. 1 International Center for Tropical Botany, Latin American and Caribbean Center Department of Biological Sciences Florida International University, University Park, Miami, Florida, U.S.A. 2 Kushlan Tropical Science Institute, Fairchild Tropical Botanic Garden 10901 Old Cutler Road, Coral Gables, Florida , U.S.A. 3 Calle Guaidil 16, Urbanización Tamarco, Tegueste, Tenerife, Spain 4 Tropical Research Institute (IICT), Faculty of Sciences, University of Lisbon, Campo Grande, Portugal 5 Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences University of Lisbon, Campo Grande, Portugal 6 Plants Division, Department of Life Sciences, Natural History Museum Cromwell Road, London, United Kingdom 7 Museo de la Naturaleza y el Hombre, Calle Fuente Morales 2, Santa Cruz de Tenerife, Spain 8 Centre in Biodiversity and Genetic Resources (CIBIO/InBIO), University of Porto Campus Agrário de Vairão, Vairão, Portugal * Corresponding authors: [email protected]; [email protected] ABSTRACT The British naval captain James Cook (1728-1779) was one of the most important figures in the history of scientific exploration. During the 18 th century he was the only ex - plorer to call on the four Macaronesian archipelagos. His first two visits were part of voy - ages that circumnavigated the globe and included celebrated naturalists, notably Sir Joseph Banks (1743-1820) and Daniel Solander (1733-1782) (first voyage) and Johann Reinhold Forster (1729-1798) and his son George Forster (1754-1794) (second voyage). -
Hellenic Plant Protection Journal -10465
Hellenic Plant Protection Journal 10: 46-50, 2017 DOI 10.1515/hppj-2017-0005 SHORT COMMUNICATION Can high pest pressure of the red palm weevil Rhynchophorus ferrugineus beat the defense of Phoenix theophrasti? O. Melita, V. Gkounti, D. Kontodimas, D. Papachristos and F. Karamaouna* Summary The Cretan date palm, Phoenix theophrasti, is a less susceptible and suitable host for the red palm weevil compared to the Canary palm, P. canariensis, even at high pest pressure. Nevertheless, P. theophrasti is not invulnerable to the red palm weevil, hence under continuous and high pest pres- sure young off shoots/palms can be deadly infested. The slow development of the insect in the Cretan date palm should probably allow a larger ‘window of time’ for an eff ective plant protection manage- ment against the pest. Additional keywords: Cretan palm, pest density, suitability, susceptibility Introduction that a gummy secretion observed in infest- ed palms indicates the existence of antibio- The red palm weevil Rhynchophorus ferrug- sis in this species. Kontodimas et al. (2006) ineus (Olivier) was recorded for the fi rst time reported that development of R. ferrugineus in Greece in November 2005 in the island of adults and their emergence was possible at Crete (Kontodimas et al., 2007). Since then, P. theophrasti seedlings after exposure to 6 the pest was established all over the coun- females/palm (simultaneous presence of try, causing severe damage to ornamen- 6 males) in laboratory conditions 26oC and tal palm trees occurring in urban and natu- 16:8 L:D. The current study aimed at assess- ral landscape areas. -
G2.5A South-Aegean Phoenix Grove
European Red List of Habitats - Forests Habitat Group G2.5a South-Aegean Phoenix grove Summary The tertiary relict Phoenix theophrasti woods of Crete and south-western Anatolia are restricted to damp, mostly sandy coastal valleys below 250 m, either on the banks of fresh or brackish waters, or in seasonally or episodically flooded coastal valleys. The most significant threat is from manipulation of ground-water for irrigation of horticulture and there is some pressure by domestic animals and tourism. The naturalness of the Phoenix stands can also be affected by planted Eucalyptus and too frequent fires can be damaging. Control of all these threats is required for conservation. Synthesis The habitat, although having a very restricted range and area, is assessed at the Least Concern status, because no decline has been recorded to the extent and the quality characteristics of the habitat over the last 50 years and no threats are foreseen for the near future. Overall Category & Criteria EU 28 EU 28+ Red List Category Red List Criteria Red List Category Red List Criteria Least Concern - Least Concern - Sub-habitat types that may require further examination All the Aegean palm groves with Phoenix theophrasti have been assigned to the Nerio-Tamaricetea vegetation and are restricted to semiarid climate (generally with 400-600 mm annual precipitation). The habitat might be differentiated in two ecological subtypes: a) a riparian subtype (with the palm forming temporarily inundated gallery forest along permanent fresh or brackish waters), b) a subtype occuring on seasonally or episodically flooded coastal valleys. In the latter, the palm trees are generally more scattered, and they may be restricted to rocky low slopes. -
Diversidad Genética En Especies Del Género Phoenix L
Universidad Miguel Hernández de Elche (España) Doctorado en Recursos y Tecnologías Agroalimentarias DIVERSIDAD GENÉTICA EN ESPECIES DEL GÉNERO PHOENIX L. TESIS DOCTORAL ENCARNACIÓN CARREÑO SÁNCHEZ ORIHUELA (ESPAÑA) 2017 Diversidad genética en especies del género Phoenix L. Tesis Doctoral realizada por Encarnación Carreño Sánchez, Licenciada en Ciencias Biológicas en la Universidad de Murcia y Máster Universitario en Agroecología, Desarrollo Rural y Agroturismo en la Universidad Miguel Hernández de Elche (Alicante), para la obtención del grado de Doctor. Fdo.: Encarnación Carreño Sánchez Orihuela, 15 de junio de 2017 Dr. José Ramón Díaz Sánchez, Dr. Ingeniero Agrónomo, Catedrático de Universidad y Director del Departamento de Tecnología Agroalimentaria de la Universidad Miguel Hernández, INFORMA: Que atendiendo al informe presentado por los Dres. Concepción Obón de Castro profesora Titular del Departamento de Biología Aplicada de la Universidad Miguel Hernández de Elche, Diego Rivera Núñez Catedrático de Universidad del Departamento de Biología Vegetal de la Universidad de Murcia, y Francisco Alcaraz Ariza Catedrático de Universidad del Departamento de Biología Vegetal de la Universidad de Murcia, la Tesis Doctoral titulada “Diversidad genética en especies del género Phoenix” de la que es autora la licenciada en Biología y Master en Agroecología Desarrollo Rural y Agroturismo Dña. Encarnación Carreño Sánchez ha sido realizada bajo la dirección de los Doctores citados, puede ser presentada para su correspondiente exposición pública. Y para que conste a los efectos oportunos firmo el presente informe en Orihuela a _______de ________ de 2017. Fdo.: Dr. José Ramón Díaz Sánchez Dr. Concepción Obón de Castro, Profesora Titular del Departamento de Biología Aplicada de la Universidad Miguel Hernández de Elche, CERTIFICA: Que la Tesis Doctoral titulada “Diversidad genética en especies del género Phoenix” de la que es autor la licenciada en Biología y Master en Agroecología Desarrollo Rural y Agroturismo Da. -
Palmae; Coryphoideae) to Non-Native Flora of Tunisia and North Africa
20/1 • 2021, 19–32 DOI: 10.2478/hacq-2020-0015 Further species within Arecaceae (Palmae; Coryphoideae) to non-native flora of Tunisia and North Africa Ridha El Mokni1, 2, 3 Key words: Alien flora, Phoenix, Abstract Washingtonia, Livistona, Monocots. Five new alien taxa are here recorded from Tunisia. Reported taxa (Livistona chinensis, Phoenix canariensis, P. reclinata, P. theophrasti and Washingtonia robusta) Ključne besede: tujerodna flora, belong to the subfamily Coryphoideae (Arecaceae). Updated nomenclature, brief Phoenix, Washingtonia, Livistona, descriptions, general and national distributions are provided for each species. enokaličnice. Livistona chinensis and Phoenix theophrasti are here reported for the first time in North Africa. Identification keys are also provided. Izvleček V članku predstavljamo pet novih tujerodnih taksonov iz Tunizije. Vsi zabeleženi taksoni (Livistona chinensis, Phoenix canariensis, P. reclinata, P. theophrasti and Washingtonia robusta) pripadajo poddružini Coryphoideae (Arecaceae). Za vsako vrsto smo prikazali posodobljeno nomenklaturo, kratek opis, splošno in nacionalno razširjenost. Livistona chinensis in Phoenix theophrasti sta prvič zabeleženi v severni Afriki. Predstavili smo tudi določevalne ključe. Received: 24. 4. 2020 Revision received: 8. 6. 2020 Accepted: 10. 7. 2020 1 Department of Pharmaceutical Sciences “A”, Laboratory of Botany, Cryptogamy and plant Biology, Faculty of Pharmacy of Monastir, Avenue Avicenna, 5000-Monastir, University of Monastir, Tunisia. E-mail: [email protected] 2 Department of Silvo-pastoral Resources, Laboratory of Silvo-pastoral Resources, Silvo-Pastoral Institute of Tabarka, BP. 345, 8110-Tabarka, University of Jendouba, Tunisia. 3 University of Carthage, Laboratory of Forest Ecology, National Research Institute of Rural Engineering, Water and Forests, Ariana 2080, Tunisia. 19 Ridha El Mokni 20/1 • 2021, 19–32 Further species within Arecaceae (Palmae; Coryphoideae) to non-native flora of Tunisia and North Africa cords. -
An Update to the African Palms (Arecaceae) Floristic and Taxonomic Knowledge, with Emphasis on the West African Region
Webbia Journal of Plant Taxonomy and Geography ISSN: 0083-7792 (Print) 2169-4060 (Online) Journal homepage: http://www.tandfonline.com/loi/tweb20 An update to the African palms (Arecaceae) floristic and taxonomic knowledge, with emphasis on the West African region Fred W. Stauffer, Doudjo N. Ouattara, Didier Roguet, Simona da Giau, Loïc Michon, Adama Bakayoko & Patrick Ekpe To cite this article: Fred W. Stauffer, Doudjo N. Ouattara, Didier Roguet, Simona da Giau, Loïc Michon, Adama Bakayoko & Patrick Ekpe (2017): An update to the African palms (Arecaceae) floristic and taxonomic knowledge, with emphasis on the West African region, Webbia To link to this article: http://dx.doi.org/10.1080/00837792.2017.1313381 Published online: 27 Apr 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tweb20 Download by: [Université de Genève] Date: 27 April 2017, At: 06:09 WEBBIA: JOURNAL OF PLANT TAXONOMY AND GEOGRAPHY, 2017 https://doi.org/10.1080/00837792.2017.1313381 An update to the African palms (Arecaceae) floristic and taxonomic knowledge, with emphasis on the West African region Fred W. Stauffera, Doudjo N. Ouattarab,c, Didier Rogueta, Simona da Giaua, Loïc Michona, Adama Bakayokob,c and Patrick Ekped aLaboratoire de systématique végétale et biodiversité, Conservatoire et Jardin Botaniques de la Ville de Genève, Genève, Switzerland; bUFR des Sciences de la Nature (SN), Université Nangui Abrogoua, Abidjan, Ivory Coast; cDirection de Recherche et Développement (DRD), Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Ivory Coast; dDepartment of Botany, College of Basic & Applied Sciences, University of Ghana, Legon, Ghana ABSTRACT ARTICLE HISTORY The present contribution is the product of palm research on continental African taxa started Received 15 March 2017 7 years ago and represents an update to our taxonomic and floristic knowledge.