The Use of Particular Natural Oils in Formulations

Total Page:16

File Type:pdf, Size:1020Kb

The Use of Particular Natural Oils in Formulations Tony O’Lenick – Siltech LLC, US WAXES AND BUTTERS The use of particular natural oils in formulations ABSTRACT CH2-OH O CH2-OC(O)-R Natural oils have become a common additive to personal care products. They CH-OH +3 RC-OH CH-OC(O)-R + 3 H2O fit the definition of natural, sustainable and can be organic and even organic. CH OH CH -O-C(O)-R While these classifications are 2 2 sometimes unclear in meaning, the reason we formulate with a particular oil Glycerin Fatty acid Triglyceride Water is often just as obscure. Is it marketing, or carbon distribution or aesthetics or Figure 1: The reaction. perhaps a particular benefit rendered to the oil by a particular native material The selection of a particular natural oil in triglycerides. Fats have a titer point of (antioxidants)? This article will look at a personal care application depends upon over 40.5˚C, oils have a titer point of some of these properties. what the formulator wants to achieve with below 40.5˚C. Butters have a titer below the particular formulation. The simplest 40.5˚C but above 20˚C. Oils are liquid choice is when the choice is simply a at room temperature and we now use results in a very wide melting ‘range’ for marketing choice. The product profile this word to describe any compound these compounds. For this reason, titer may say that the product should contain that is a liquid and is insoluble in water. point is generally determined on fats, oils, a particular oil like olive oil or argan oil. As a result, jojoba is referred to as an oil, waxes and butters. The aesthetics are dictated in large despite the fact it is really a liquid wax. amount by two properties, carbon number Because oils, fats, butters and waxes Triglycerides and amount of unsaturation (measured are complex mixtures of homologues of Triglycerides are the tri-esters of glycerin by iodine value). Finally, there may be a similar chemical structures, it is difficult with three equivalents of organic acid. particular reason to use an oil with an to obtain a true melting point. The term Fatty acids are defined as those acids antioxidant or other active that is natural titer is therefore used to define the having alkyl or alkylene groups being to the oil. While seaming simple, once the re-solidification point of the melted oil, C-5 and higher. The reaction is shown oil is chosen, the process by which the fat, butter or wax. The procedure is to in Figure 1. oil was prepared becomes the controlling heat the product to be tested until it is When the triglyceride is saponified to factor. We will address each of these completely liquid, then to cool it slowly by make a surfactant, such as soap, glycerin variables. stirring. This is done until the temperature is liberated. When a wax is saponified, stays constant for 30 seconds, or begins a fatty alcohol is liberated. Saponification Definitions to rise. The titer point is the highest is a general term to define the chemical The terms oils, fats, butters and waxes temperature indicated by this rise.1 reaction that breaks the ester linkage. have been misused over the years. The As the lower molecular weight fractions This makes it possible to produce very historical definition of wax has previous melt, they act as solvents to dissolve the different kinds of products using the two been given. Butters, oils and fats are all higher molecular weight products. This types of materials. Table 1: Oil composition example. Table 2: Carbon number calculation for oil example in Table 1. Component % Weight (a) (b) C16 20 Component % Weight Carbon atoms Calculation in component (a)*(b) C18 20 C18:1† 20 C16 20 16 3.2 C20 40 C18 20 18 3.6 C18:1 20 18 3.6 Total 100 C20 40 20 8.0 †Note: C18:1 is our short to indicate the presence of 1 double bond or unsatuartion. Total 100 18.4 So C18:1 would be oleic acid Therefore for the Carbon number = 18.4 March 2016 PERSONAL CARE 1 WAXES AND BUTTERS Glycerin, produced as a by-product of saponification is water soluble and fatty 40 insoluble. The fatty alcohol produced as a by- product of the saponification of a wax is 30 water insoluble and generally fatty-soluble. Triglycerides are commonly encountered as natural products. Plants use enzymatic 20 systems to make triglycerides, effectively at ambient temperatures. 10 INCI nomenclature of Number triglycerides INCI names require the genus and species of the plants or insects that produce a given wax, oil, butter or fat and all products 0 which are derived from the various oils, Below 16 16-17 17-18 Over 18 Carbon number fats, butters and waxes. This is due, in part, to the European Union’s use of the Figure 2: Carbon number of common triglycerides. Latin names for ingredient listings. This information is very helpful to the formulator predominant species is not very 16 to 18. Today there is a growing trend in understanding the source of the fatty enlightening to the formulator as to the toward using materials with carbon portion of the surfactant. source of the raw material. numbers of 22 or more for conditioning. It is also quite interesting that nature Since few oils offer these high carbon Classification has provided many triglycerides that have numbers, manufacturers often fractionate In order to simplify the information, we very similar carbon numbers. In fact, methyl esters to pure compounds or, have divided the raw materials that we of 38 triglycerides presented here, 31 alternatively, they hydrogenate unsaturated discuss into two groups: those derived from have carbon numbers between 17 and 18. oils to make saturated compounds having animal sources and those derived from This also explains why the other important high carbon numbers. plant sources. Within each of these groups variable, unsaturation, is critical in In general, double bonds lower the one finds additional classes depending choosing an oil for a specific application titer point of the triglyceride, resulting upon the carbon distribution of the raw (Figs. 2 & 3). in a triglyceride that stays liquid at lower material. It is very interesting that there are only temperatures. Conjugated double bonds three triglycerides having a carbon number (i.e. those with only one carbon between Carbon number below 16. Since this is a key number for two double bonds (-C=C-C=C-), are very In addition to classifying products by their detergents, it becomes clear why coconut effective in depressing titer point, but can sources (animal or plant) and by their oil is so important to the surfactant present problems with rancidity, a process chemistry (triglyceride or ester), we have industry. There has been a growing by which the double bond is oxidised and classified them within these groups by demand for products based upon oils ultimately broken. This releases many carbon number and unsaturation level. having a carbon number over 18 (for different molecules, many of which have Carbon number is the value obtained by example behenic derivatives). In order to objectionable odors. Rancidity can be multiplying the percentage of a component get these products, one must choose a mitigated at times with the addition of in a product by the number of carbon different class of oils. The selection of the antioxidants, prior to the start of the atoms in the component, then adding up oil is a major variable, which normally rancidity process. all the components. eludes the formulator, being made more Finally, upon additional processing, For example, if an oil had the commonly by the derivative manufacturer. many oils, fats, butters and waxes lose composition shown in Table 1, the carbon Oil selection is assuredly one important their identity as oils and become known by number calculation would be as seen in factor in formulating cosmetic products. Table 2. There are several types of oils that have Effect of carbon number 5 8 very similar carbon numbers; consequently, One major factor that affects the 5 we have classified them further by functionality of both the oil itself and any unsaturation. One can expect derivatives potential derivative is the number of carbon from oils having very similar carbon atoms in the chain. Other factors include numbers and levels of unsaturation to the number and location of double bonds have very similar, often identical functional and the presence of additional functional properties. In this instance, the choice of groups. which of the many oils to use depends Generally, as one evaluates the tactile n Below 16 n 16-17 upon the economics of the oil and the properties of an oil on the skin, the lower n 17-18 formulator’s desire to name the oil for label the molecular weight is, the less oily the n Over 18 and marketing purposes. As will become feel of the compound will be. Conversely, clear, there are many different fats, oils, the higher the molecular weight is, the waxes and butters, which when derivatised, more greasy the feel will be. In surfactant 82 result in compounds of strikingly similar preparation, detergent products and high- carbon distributions, while having their foaming products generally peak between a source oil, wax, fat or butter being quite carbon number of 12 and 14. Conditioners Figure 3: Carbon number percentage shown different. Thus, naming the material by the and softeners have a carbon number of in common triglycerides. 2 PERSONAL CARE March 2016 WAXES AND BUTTERS the fatty names of the predominant species Table 3: Carbon number and iodine value for common triglycerides.
Recommended publications
  • AN-Iodine-Value.Pdf
    MANTECH INC. 160 Southgate Drive, Unit 2 Guelph, Ontario, Canada N1G 4P5 P: (519) 763-4245 www.mantech-inc.com Iodine Value Introduction: Iodine value refers to the percentage of iodine absorbed by a substance such as a fat or oil 1. It is an indication of a fat’s potential to be oxidized as it measures the reaction of iodine with the double bonds of unsaturated fatty acids 2. Since fats with a greater number of double bonds provide more sites for oxidation, the iodine value of a fat helps predict fat stability 2. Normally, iodine is absorbed quite slowly but this method makes use of Wijs, which is a stable solution consisting of iodine monochloride (ICl) in acetic acid that reduces absorption time to approximately half an hour. The iodine monochloride halogenates the double bonds in the fat, and the residual ICl is reduced to free iodine in the presence of potassium iodide (KI) 3. The free iodine can then be titrated with sodium thiosulfate. The reaction is as follows: ICl + H2O → HIO + HCl residual iodine water hypoiodus hydrochloric monochloride acid acid - + HIO + I + H → H 2O + I 2 hypoiodus iodide water iodine acid 2- - 2- I2 + 2S 2O3 → 2I + S 4O6 iodine thiosulfate iodide tetrathionate This document will show that the PC-Titrate automated titration system is capable of accurately and precisely measuring the % Iodine in various fatty samples. Please contact your local Man-Tech sales representative to find out how this method can work for you. Conforms To: AOAC Official Method 993.2, AOCS Tg 1a-64, ASTM method D1959-97 Sample: Fats and Oils Concentration Range: Tested between 0.02 and 15% Apparatus: 1.
    [Show full text]
  • Essential Wholesale & Labs Carrier Oils Chart
    Essential Wholesale & Labs Carrier Oils Chart This chart is based off of the virgin, unrefined versions of each carrier where applicable, depending on our website catalog. The information provided may vary depending on the carrier's source and processing and is meant for educational purposes only. Viscosity Absorbtion Comparible Subsitutions Carrier Oil/Butter Color (at room Odor Details/Attributes Rate (Based on Viscosity & Absorbotion Rate) temperature) Description: Stable vegetable butter with a neutral odor. High content of monounsaturated oleic acid and relatively high content of natural antioxidants. Offers good oxidative stability, excellent Almond Butter White to pale yellow Soft Solid Fat Neutral Odor Average cold weather stability, contains occlusive properties, and can act as a moistening agent. Aloe Butter, Illipe Butter Fatty Acid Compositon: Palmitic, Stearic, Oleic, and Linoleic Description: Made from Aloe Vera and Coconut Oil. Can be used as an emollient and contains antioxidant properties. It's high fluidiy gives it good spreadability, and it can quickly hydrate while Aloe Butter White Soft Semi-Solid Fat Neutral Odor Average being both cooling and soothing. Fatty Acid Almond Butter, Illipe Butter Compostion: Linoleic, Oleic, Palmitic, Stearic Description: Made from by combinging Aloe Vera Powder with quality soybean oil to create a Apricot Kernel Oil, Broccoli Seed Oil, Camellia Seed Oil, Evening Aloe Vera Oil Clear, off-white to yellow Free Flowing Liquid Oil Mild musky odor Fast soothing and nourishing carrier oil. Fatty Acid Primrose Oil, Grapeseed Oil, Meadowfoam Seed Oil, Safflower Compostion: Linoleic, Oleic, Palmitic, Stearic Oil, Strawberry Seed Oil Description: This oil is similar in weight to human sebum, making it extremely nouirshing to the skin.
    [Show full text]
  • GENERAL AGREEMENT on °90M '2£Ft& TARIFFS and TRADE Limited
    RESTRICTED 0M GENERAL AGREEMENT ON °9 '2£ft& TARIFFS AND TRADE Limited Distribution Oonaitteg II - Expansion of Trade DOCUMENTATION FOR FUTURE WORK OF COMMITTEE II Addendum Attached for the information of the Committee is the revised summary schedule of non-tariff devices affecting vegetable oils. COM.ll/85/Add.4 VEGETABLE OILS Page 2/3 Income and Price Support Aids, to Exports (3) (7) (8) (9) (10) (11) (12) (1) (2) Consumer (4) (5) (6) Surplus Quantitative State Mixing Other Non-tariff GATT Tariff Production Other Forms of Income and Subsidy Subsidy Financing Indirect Disposal Restrictions Trading Regulations Devices and Remarks Bindings Subsidy Price Support of Losses Aids United States Seo column (2) Cottonseed ( non-mandatory) Export of cottons.ied, See column See column (4) Foes on flaxseed and linseed The United States Purchase programme for Olive oil, kapok C0M.II/2(J)/Rev.l Loans on farm-stored cotton­ tung oil and flaxseed (4) oil of 502 ad valorem under takes the position edible grados of pea-r seed oil, C0tUI/2(j)/Rev.l/ seed purchases. by CCC at less than Section 22. that the activities nuts of less than top cottonseed oil, Add.l Soyabeans and flaxseed domestic market Section 22 quotas for peanuts of the CCC do not quality for crushing palm kernel oil, COM. 11/37 (non-mandatory) prices. (global). constitute State into oil. Soil bank sesame oil, COM. 11/59 Loans to producers. Imports peanut oil and/or trading within the (conservation reserve coconut oil, L/1048 Purchase Agreement. withdrawal from warehouses meaning of programme).
    [Show full text]
  • Nutraceutical Potentialities of Tunisian Argan Oil Based on Its
    Hanana et al. Lipids in Health and Disease (2018) 17:138 https://doi.org/10.1186/s12944-018-0782-9 RESEARCH Open Access Nutraceutical potentialities of Tunisian Argan oil based on its physicochemical properties and fatty acid content as assessed through Bayesian network analyses Mohsen Hanana1, Hajer Mezghenni2, Rayda Ben Ayed3*, Ali Ben Dhiab4, Slim Jarradi5, Bassem Jamoussi6 and Lamia Hamrouni2 Abstract Background: Argan oil is traditionally produced by cold pressing in South-western Morocco where rural population uses it as edible oil as well as for its therapeutic properties which give them in counterpart valuable income. Given the economical interest of this oil, several attempts of fraudulency have been registered in the world global market leading to loss of authenticity. Our purpose is to launch a program of Tunisian Argan oil valorization since trees from this species have been introduced sixty years ago in Tunisia. The first step was thus to characterize the physicochemical properties and determine the chemical composition of Tunisian Argan oil in order to assess its quality. Methods: Physicochemical parameters of oil quality were determined according to the international standard protocols. Fatty acid content analysis of Argan oils was performed by gas chromatography coupled to mass spectrophotometry. A comparative study was realized among Tunisian, Moroccan and Algerian samples differing also by their extraction procedure. The impact of geographical localisation on the fatty acids composition was studied by statistical and modeling Bayesian analyses. Results: Physicochemical parameters analysis showed interestingly that Tunisian Argan oil could be classified as extra virgin oil. Argan oil is mainly composed by unsaturated fatty acids (80%), mainly oleic and linoleic acid (linoleic acid was positively influenced by the geographical localization (r =0.899,p = 0.038) and the P/S index (r =0.987,p =0.002)) followed by saturated fatty acids (20%) with other beneficial compounds from the unsaponifiable fraction like polyphenols and carotenoids.
    [Show full text]
  • Rejuveniqe Oil Intensive Vs Moroccan Oil
    Rejuveniqe Oil Intensive vs Moroccan Oil Blend of rare, pure oils from around the world Silicone polymers, synthetic fragrances, argan oil, food coloring, and preservative 1. Meadow foam Oil 2. Abyssinian Oil 1. Cyclopentasiloxane, 3. Camellia Oleifera Oil 2. Dimethicone 4. Tomato Seed Oil 3. Cyclomethicone 5. Carrot Seed Oil 4. Butylphenyl Methylpropional 6. Lemon Peel Oil 5. Argan Oil 7. Lime Oil 6. Linum Usitatissimum (Linseed ) Extract 8. Bergamot Fruit Oil 7. Parfum (Fragrance) 9. Adansonia Digitata Oil 8. D&C Yellow-11 10. Mauritia Flexuosa Fruit Oil 9. D&C Red-17 11. Coconut Oil 10. Benzyl Benzoate 12. Gardenia Tahitensis Flower Extract 11. Alpha-Isomethyl Ionone 13. Moringa Oleifera Seed Oil 14. Caryocar Brasiliense Fruit Oil 15. Sunflower Seed Unique molecular structure – small molecules Large, synthetic, silicon polymer molecules Small molecules that can penetrate and absorb “The molecules in argan oil are too large to penetrate deep in to hair follicle and skin, making it your hair cuticle. Since it can't penetrate, it actually just weightless. sits on top of your hair. This can be a problem if you're using it when your hair is wet, or if you're using too So compatible that it mimics the body’s own much. Applying the oil to damp strands before drying natural oils. will leave your hair feeling smooth for a while, but over time it will actually dry out your hair. The argan oil Can be added to color, bleach, and perms for winds up creating a barrier on top of your hair, which incredibly healthy, shiny results! blocks out any moisturizer trying to get in.” Mark Townsend, Celebrity hair stylist MONAT sources our oils from around the world, The first 3 ingredients of Moroccan Oil carefully vetting each supplier to ensure that what we (Cyclopentasiloxane, Dimethicone and put into our product line meets the strictest standards Cyclomethicone) are large, synthetic, silicon polymer of potency, purity, sustainability and worker molecules built from repeating chemical units.
    [Show full text]
  • Olive Oil Jars Left Behind By
    live oil jars left behind by the ancient Greeks are testament to our centuries- old use of cooking oil. Along with salt and pepper, oil Oremains one of the most important and versatile tools in your kitchen. It keeps food from sticking to pans, adds flavor and moisture, and conducts the heat that turns a humble stick of potato into a glorious french fry. Like butter and other fats, cooking oil also acts as a powerful solvent, unleashing fat-soluble nutrients and flavor compounds in everything from tomatoes and onions to spices and herbs. It’s why so many strike recipes begin with heating garlic in oil rather than, say, simmering it in water. The ancient Greeks didn’t tap many cooking oils. (Let’s see: olive oil, olive oil, or—ooh, this is exciting!—how about olive oil?) But you certainly can. From canola to safflower to grapeseed to walnut, each oil has its own unique flavor (or lack thereof), aroma, and optimal cooking temperature. Choosing the right kind for the task at hand can save you money, boost your health, and improve your cooking. OK, so you probably don’t stop to consider your cooking oil very often. But there’s a surprising amount to learn about What’s this? this liquid gold. BY VIRGINIAWILLIS Pumpkin seed oil suspended in corn oil—it looks like a homemade Lava Lamp! 84 allrecipes.com PHOTOS BY KATE SEARS WHERE TO store CANOLA OIL GRAPESEED OIL are more likely to exhibit the characteristic YOUR OIL flavor and aroma of their base nut or seed.
    [Show full text]
  • Functional Ingredients Personal Care Eco-Design
    functional ingredients personal care eco-design As a formulator or manufacturer, you When natural, functional, stable In the cosmetics and personal are non-renewable, we chose to know that cosmetic innovation is not and sustainable matter care industry, emollients typically look for an alternative made from only about identifying entirely new Today our specialised knowledge make up the largest part of most agricultural sources. Ethanol was sources, ingredients or formulations. in lipid ingredients brings highly formulations, particularly within the best choice due to its easy It is also about finding new ways appreciated benefits to local, regional skin care. This makes them the availability and low environmental and global cosmetic brands. All our to use, improve or replace parts of best place to start when looking impact. them, inspired by evolving demands ingredients originate from renewable, to improve the sustainability profile from consumers, society and natural sources and are carefully of your formulations. Sustainable processing regulators. That’s where we can help. processed to achieve desired functionality, stability and safety. By considering eco-designed With the question of raw materials Specialists in lipids Furthermore, we use low-energy alternatives early on during the addressed, we turned our focus for more than a century processing methods to reduce their design phase, you can create to another crucial dimension of At AAK Personal Care we develop ecological footprint. formulations that will advance eco-design – processing condi- high-performance, active, functional your efforts farther and faster. Our tions. Conventional processes for and natural based lipids for use in Supporting your innovation innovative ester, Lipex SheaLight, making esters require high amounts skin care, hair care, colour cosmetics The development of unique is one such alternative, and an of energy as well as catalysts that and other personal care products.
    [Show full text]
  • Cooking Oil Facts
    Cooking Oil Facts As you enter a department store, you behold an array of cooking oils sporting all types of jargon on the packaging -- saturated fats, unsaturated fats, refined, filtered, ricebran oil, vanaspati, etc. Confused already? With so much variety and so many brands flooding the market today, buying the right cooking oil can prove a tough task. Different oils fill different needs - for health, taste and cooking. For good health, our bodies need a variety of healthy fats that are found naturally in different oils. When cooking, it's essential to know which oils are best for baking, sautéing and frying and which are healthiest used raw. Why have Oil (fats)? Contrary to popular belief, fat is actually a valuable part of one's diet, allowing people to absorb nutrients that require fat in order to metabolize in the body. Natural fats contain varying ratios of three types of fats: saturated, monounsaturated and polyunsaturated. • Saturated fats are hard at room temperature. They're stable, resist oxidation, and are found primarily in meat, dairy, palm and coconut oil. • Polyunsaturated fats are liquid at room temperature and the least stable. They oxidize easily and are found in seafood corn, safflower, soybean, and sunflower oils. • Monounsaturated fats are more stable than polyunsaturated fats. They're found in canola, nut and olive oils. It is recommended to limit saturated fats in the diet due to their association with cardiovascular disease. Also, you should try to rely more on monounsaturated than polyunsaturated fats. What are the varieties of Oil available in the market? Choosing which oil should be used in cooking is a big issue and concern for many people because of the fat and cholesterol contents of cooking oil.
    [Show full text]
  • The Effect of Linseed Oil on the Properties of Lime-Based Restoration Mortars
    Allma Mater Studiiorum – Uniiversiità dii Bollogna DOTTORATO DI RICERCA Science for Conservation Ciclo XXII Settore/i scientifico disciplinari di afferenza: CHIM/12 TITOLO TESI THE EFFECT OF LINSEED OIL ON THE PROPERTIES OF LIME-BASED RESTORATION MORTARS Presentata da: Eva Čechová Coordinatore Dottorato Relatore Prof. Rocco Mazzeo Prof. Ioanna Papayianni Esame finale anno 2009 Abstract THE EFFECT OF LINSEED OIL ON THE PROPERTIES OF LIME-BASED RESTORATION MORTARS The traditional lime mortar is composed of hydrated lime, sand and water. Besides these constituents it may also contain additives aiming to modify fresh mortar´s properties and/or to improve hardened mortar´s strength and durability. Already in the first civilizations various additives were used to enhance mortar´s quality, among the organic additives, linseed oil was one of the most common. From literature we know that it was used already in Roman period to reduce water permeability of a mortar, but the mechanism and the technology, e.g. effects of different dosages, are not clearly explained. There are only few works studying the effect of oil experimentally. Knowing the function of oil in historical mortars is important for designing a new compatible repair mortar. Moreover, linseed oil addition could increase the sometimes insufficient durability of lime-based mortars used for reparation and it could be a natural alternative to synthetic additives. In the present study, the effect of linseed oil on the properties of six various lime- based mortars has been studied. Mortars´ compositions have been selected with respect to composition of historical mortars, but also mortars used in a modern restoration practise have been tested.
    [Show full text]
  • Journal of Food Science and Technology 1978 Volume.15 No.3
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY ASSOCIATION OF FOOD SCIENTISTS & TECHNOLOGISTS, INDIA VOL 15 NO. 3 MAY-JUNE 1978 ASSOCIATION OF FOOD SCIENTISTS AND TECHNOLOGISTS (INDIA) The Association is a professional and educational organization of Food Scientists and Technologists AFFILIATED TO THE INSTITUTE OF FOOD TECHNOLOGISTS, USA Objects: 1. To stimulate research on various aspects of Food Science and Technology. 2. To provide a forum for the exchange, discussion and dissemination of current developments in the field of Food Science and Technology. 3. To promote the profession of Food Science and Technology. The ultimate object is to serve humanity through better food. Major Activities: 1. Publication of Journal of Food Science and Technology—bi-monthly. 2. Arranging lectures and seminars for the benefit of members. 3. Holding symposia on different aspects of Food Science and Technology. Membership : Membership is open to graduates and diploma holders in Food Science and Technology, and to those engaged in the profession. All the members will receive the Journal published by the Association. Regional branches of the Association have been established in Eastern, Northern, Central and Western zones of India. Membership Subscription Annual Journal Subscription Life Membership Rs 250 Inland Rs 80 Corporate Members Foreign: (for firms, etc.) (per year) Rs 250 Surface Mail $ 20 Members 55 Rs 15 Air Mail $ 28 Associate Members (for students, etc.) 55 Rs 10 Admission 55 Re 1 For membership a.id other particulars kindly address The Honorary Executive Secretary Association of Food Scientists and Technologists, India Central Food Technological Research Institute. Mysore-13, India Editor JOURNAL OF FOOD SCIENCE D.
    [Show full text]
  • Almond Oil 92
    Iodine value Oil / Fat g/100 g Almond oil 92 - 106 94 - 101 Apricot kernel oil 97 - 110 Argan seed oil 92 - 102 Avocado oil 63 - 95 85 - 90 Babassu oil 10 - 18 10 - 18 Blackcurrent oil 173 182 Camelina oil 127 - 155 130 - 145 Cashew nut oil 79 - 89 Castor oil 82 - 88 81 - 91 Chia oil 190 - 199 196 - 199 Cocoa butter 33 - 40 32 - 40 Coconut oil 6 - 9 6,3 - 11 6 - 11 Coconut oil, cochin 7 - 12 Coconut oil, RBD 7 - 12 Corn oil 127 - 133 Cottonseed oil 103 - 115 100 - 123 100 - 115 Cottonseed oil, RBD 98 - 118 Crambe oil 93 Flaxseed oil 182 - 203 Grape seed oil 130 - 138 128 - 150 Hazelnut oil 85 - 95 Illipe butter 58 - 65 Linseed oil 170 - 204 Maize germ oil 103 - 128 103 - 135 107 - 128 Melon seed oil 124 Mustardseed oil 92 - 125 Oiticica oil 140 - 180 Iodine value Oil / Fat g/100 g Olive oil 75 - 94 Ongokea oil 180 - 205 Palm kernel oil 16 - 23 14,1 - 21 Palm oil 50,6 - 55 51 - 54 50 - 55 Palm olein 56 - 61 Palm stearin Palm oil, neutralized 50 - 55 Palm oil, neutralized and bleached 50 - 55 ≥ 56 Palm oil (RBD/NBD) 50 - 55 Palm olein, crude 56 Palm olein, neutralized 56 Palm olein, neutralized and bleached 56 Palm olein (RBD/NBD) 56 Palm stearin 22 - 49 ≤ 48 Palm superolein ≥ 60 Peanut oil 86 - 107 86 - 107 Peanut oil, Africa 85 - 90 Peanut oil, South America 92 - 110 Perilla oil 192 - 208 Poppyseed oil 130 - 143 Pumpkin seed oil 117 Rapeseed oil 94 - 120 Rapeseed oil (Canola) 110 - 126 Rapeseed oil, erucic acid incl.
    [Show full text]
  • Comparative Study of Argan and Olive Fruits and Oils
    435 Comparative study of argan and olive fruits and oils Dalila Demnati1, Sebastián Sánchez2, Rafael Pacheco2, Mohamed Zahar1 & Leopoldo Martínez2 1- Institut Agronomique et Vétérinaire Hassan. BP 6202, 10101, Rabat, Morocco. Email: [email protected] 2- Universidad de Jaén, Campus Las Lagunillas 23071 Jaén, Spain. Email: [email protected] Abstract This study was conducted to compare argan and olive fruits and virgin oils. Dry argan fruits, traditional and semiautomatic extracted argan oils, from roasted and unroasted seeds, from Essaouira’s area, were studied. Morphological characteristics of argan fruit were determined and compared with the ‘Picual’ olive’s ones. The results showed certain similarities between the two fruits. The quality parameters analyzed were acidity and peroxide value, K270, K232 and ΔK, total phenols and oil stability, comparing them with those of ‘Picual’ virgin olive oil. Quality parameters corresponded to the Moroccan Standard for edible virgin argan oil. Traditional argan oil showed the lowest stability whereas semiautomatic edible oil presented the highest one. However, virgin olive oil showed higher phenol content and better oxidative stability than the virgin argan oils. Keywords: Argan, Olive, Fruit, Quality Parameters, Phenols, Oil Stability. Etude comparative des caractéristiques des fruits et des huiles d’argan et d’olive Résumé Cette étude a pour but de comparer le fruit et l’huile d’argan et d’olive vierges. Les fruits secs d’arganier, les huiles d’argan obtenues par un procédé traditionnel ou semi-automatique, à partir d’amandons torréfiés ou non, de la région d’Essaouira, ont été étudiés. Les caractéristiques morphologiques du fruit de l’arganier ont été déterminées et comparées à ceux de l’olive, variété ‘Picual’.
    [Show full text]