Journal of Food Science and Technology 1978 Volume.15 No.3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AN-Iodine-Value.Pdf
MANTECH INC. 160 Southgate Drive, Unit 2 Guelph, Ontario, Canada N1G 4P5 P: (519) 763-4245 www.mantech-inc.com Iodine Value Introduction: Iodine value refers to the percentage of iodine absorbed by a substance such as a fat or oil 1. It is an indication of a fat’s potential to be oxidized as it measures the reaction of iodine with the double bonds of unsaturated fatty acids 2. Since fats with a greater number of double bonds provide more sites for oxidation, the iodine value of a fat helps predict fat stability 2. Normally, iodine is absorbed quite slowly but this method makes use of Wijs, which is a stable solution consisting of iodine monochloride (ICl) in acetic acid that reduces absorption time to approximately half an hour. The iodine monochloride halogenates the double bonds in the fat, and the residual ICl is reduced to free iodine in the presence of potassium iodide (KI) 3. The free iodine can then be titrated with sodium thiosulfate. The reaction is as follows: ICl + H2O → HIO + HCl residual iodine water hypoiodus hydrochloric monochloride acid acid - + HIO + I + H → H 2O + I 2 hypoiodus iodide water iodine acid 2- - 2- I2 + 2S 2O3 → 2I + S 4O6 iodine thiosulfate iodide tetrathionate This document will show that the PC-Titrate automated titration system is capable of accurately and precisely measuring the % Iodine in various fatty samples. Please contact your local Man-Tech sales representative to find out how this method can work for you. Conforms To: AOAC Official Method 993.2, AOCS Tg 1a-64, ASTM method D1959-97 Sample: Fats and Oils Concentration Range: Tested between 0.02 and 15% Apparatus: 1. -
International Journal for Scientific Research & Development| Vol. 7, Issue 03, 2019 | ISSN (Online): 2321-0613
IJSRD - International Journal for Scientific Research & Development| Vol. 7, Issue 03, 2019 | ISSN (online): 2321-0613 Significance of Ethanol Blended Biodiesel Powered Diesel Engine Aditya Deshmukh1 Shrikrushna Dhakne2 Tohid Pathan3 Rahul Dimbar4 C. Srinidhi5 1,2,3,4UG Students 5Assistant Professor 1,2,3,4,5Department of Mechanical Engineering 1,2,3,4,5Suman Ramesh Tulsiani Tehnical Campus Faculty of Engineering Khamshet Pune, Maharashtra, India Abstract— In recent years, energy consumption is increasing engines. This chemical treatment is known as due to increase in the demand for the energy due to transesterification. Transesterification involves breaking of industrialization and increase in number of automobiles. This large triglycerides into a smaller Monoalkyl ester. The High leads to depletion of fossil fuels and hence researchers Viscosity of triglycerides can be reduced by the concentrate on alternative fuels which reduce the engine transesterification process in which triglyceride decompose emission and are environmentally friendly. This leads to into glycerol and glycerin, which is the biodiesel. The biodiesel produced from non-edible as an immediate biodiesel can be produced from a variety of edible and substitute to the fossil diesel. In this work, we used Kenaf oil nonedible oils, animal fats etc. The chosen oil will be for the production of the biodiesel as it has considerable subjected to transesterification in the existence of catalyst to potential for the production of the biodiesel. In this work, produce biodiesel. biodiesel was produced from the Kenaf oil using Indian consumption of petroleum fuels for the transesterification and we found that the properties of the period of 2008-09 was 30.50 million tons. -
Palm Oil and Rice Bran Oil: Current Status and Future Prospects
International Journal of Plant Physiology and Biochemistry Vol. 3(8), pp. 125-132, August 2011 Available online at http://www.academicjournals.org/ijppb ISSN-2141-2162 ©2011 Academic Journals Review Palm oil and rice bran oil: Current status and future prospects Kusum R., Bommayya H., Fayaz Pasha P. and Ramachandran H. D.* Department of Biochemistry, Dr. Ambedkar Veedhi Bangalore University, Bangalore - 560001, India. Accepted 17 June, 2011 The continued demand for edible oils by the ever increasing population makes it pertinent to explore new sources. In this direction, two new edible oils namely palm oil and rice bran oil have been subjected to nutritional and toxicological evaluations of their chemicals constituents. An attempt has been made in this article to assess the acceptability of the two oils based on the various investigations that have been carried out so far. Key words: Palm oil, rice bran oil, anti-oxidants, cholesterol fatty acids, phospholipids, tocopherols, oryzanol, cardiovascular diseases. INTRODUCTION Vegetable oils are the main source of dietary fat for Among the oils under consideration, palm oil and rice almost all sections of the Indian population and there is a bran oil offer great scope in India, as they are widely continued growing demand from both caterers and con- preferred by the vanaspathi industries and also by the sumers. Although the Indian population has a penchant Indian consumer. The oil palm gives higher yields in for a variety of deep fried products, there is also a greater comparison with other oil yielding species. Rice bran oil awareness of the problems such as atherosclerosis also offers high potential, as India has high rice caused by saturated fats. -
Cooking Oil Facts
Cooking Oil Facts As you enter a department store, you behold an array of cooking oils sporting all types of jargon on the packaging -- saturated fats, unsaturated fats, refined, filtered, ricebran oil, vanaspati, etc. Confused already? With so much variety and so many brands flooding the market today, buying the right cooking oil can prove a tough task. Different oils fill different needs - for health, taste and cooking. For good health, our bodies need a variety of healthy fats that are found naturally in different oils. When cooking, it's essential to know which oils are best for baking, sautéing and frying and which are healthiest used raw. Why have Oil (fats)? Contrary to popular belief, fat is actually a valuable part of one's diet, allowing people to absorb nutrients that require fat in order to metabolize in the body. Natural fats contain varying ratios of three types of fats: saturated, monounsaturated and polyunsaturated. • Saturated fats are hard at room temperature. They're stable, resist oxidation, and are found primarily in meat, dairy, palm and coconut oil. • Polyunsaturated fats are liquid at room temperature and the least stable. They oxidize easily and are found in seafood corn, safflower, soybean, and sunflower oils. • Monounsaturated fats are more stable than polyunsaturated fats. They're found in canola, nut and olive oils. It is recommended to limit saturated fats in the diet due to their association with cardiovascular disease. Also, you should try to rely more on monounsaturated than polyunsaturated fats. What are the varieties of Oil available in the market? Choosing which oil should be used in cooking is a big issue and concern for many people because of the fat and cholesterol contents of cooking oil. -
Natural, Vegan & Gluten-Free
Natural, Vegan & Gluten-Free All FarmHouse Fresh® products are Paraben and Sulfate free, made with up to 99.6% natural ingredients and made in Texas. Many of our products are also Vegan and Gluten-Free! Ingredient Decks Honey Heel Glaze: Water/Eau, Glycerine, Polysorbate 20, Polyquaternium-37, Parfum, Honey, Natural Rice Bran Oil (Orza Sativa), Tocopheryl Acetate (Vitamin E),Tetrahexyldecyl Ascorbate, Panthenol, Carica Papaya (Papaya) Fruit Extract, Ananas Sativus (Pineapple) Fruit Extract, Aloe Barbadensis Leaf Juice, Lactic Acid, PEG-40 Hydrogenated Castor Oil, Potassium Sorbate, Diazolidinyl Urea, DMDM Hydantoin, Caramel, Annatto. Strawberry Smash: Aloe Barbadensis Leaf Juice, Water/Eau, Glycerin, Glycine Soja (Soybean) Oil, Polysorbate 80, Butyrospermum Parkii (Shea Butter), Cetearyl Alcohol, Ceteareth-20, Cetyl Alcohol, Stearyl Alcohol, Parfum, Fragaria Vesca (Strawberry) Fruit Extract, Oryza Sativa (Rice) Barn Oil, Ethylhexyl Palmitate, Dimethicone, Cyanocobalmin (Vitamin B12), Tocopheryl Acetate, Menthone Glycerin Acetal, Carbomer, Disodium EDTA, Tetrasodium EDTA, Sodium Hydroxymethylglycinate, Sodium Hydroxide, Phenoxyethanol, Caprylyl Glycol, Potassium Sorbate Sweet Cream Body Milk: Water/Eau, Glycine Soja (Soybean) Oil, Sorbitol, Glycerin, Glyceryl Stearate, PEG-100 Stearate, Cetyl Alcohol, Oryza Sativa (Rice) Bran Oil, Simmondsia Chinensis (Jojoba) Seed Oil, Prunus Amygdalus Dulcis (Sweet Almond) Oil, Persea Gratissima (Avocado) Oil, Sesamum Indicum (Sesame) Seed Oil, Stearyl Alcohol, Dimethicone, Polysorbate 20, Carbomer, -
Properties of Healthy Oil Formulated from Red Palm, Rice Bran and Sesame Oils
Songklanakarin J. Sci. Technol. 41 (2), 450-458, Mar. - Apr. 2019 Original Article Properties of healthy oil formulated from red palm, rice bran and sesame oils Mayuree Chompoo1, Nanthina Damrongwattanakool2, and Patcharin Raviyan1* 1 Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Mueang, Chiang Mai, 50100 Thailand 2 Division of Food Science and Technology, Faculty of Agricultural Technology, Lampang Rajabhat University, Mueang, Lampang, 52000 Thailand Received: 19 August 2016; Revised: 17 November 2017; Accepted: 9 December 2017 Abstract A healthy edible oil was developed by blending red palm, rice bran and sesame oils at various proportions to achieve an oil blend with balanced ratio of fatty acids as recommended by the American Heart Association. The optimal blend was red palm oil 33.0: rice bran oil 35.0: sesame oil 32.0 (% by weight), which contained saturated, monounsaturated, and polyunsaturated fatty acids in the ratio 1. 00: 1. 33: 1. 02. The optimal blend was rich in natural antioxidants, including gamma-oryzanol, tocopherols, sesamin, and carotenoids at 524, 454, 362 and 254 mg/kg, respectively. The panelists were satisfied with the sensory characteristics of the oil; the quality of the oil stored at 30 °C remained acceptable by the product standard for more than 120 days. This developed oil blend offers potential as a healthy edible oil that is balanced in fatty acids and high in powerful antioxidants. Keywords: blending, healthy oil, red palm oil, rice bran oil, sesame oil 1. Introduction Red palm oil can be prepared from palm oil that is abundant in Thailand. -
Rapid Method for Determination of Iodine Numbers of Vegetable Oils
Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 12-1996 Rapid Method for Determination of Iodine Numbers of Vegetable Oils Ondrej Hendl Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Chemistry Commons Recommended Citation Hendl, Ondrej, "Rapid Method for Determination of Iodine Numbers of Vegetable Oils" (1996). Master's Theses. 4354. https://scholarworks.wmich.edu/masters_theses/4354 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. RAPID MEfHODFOR DEfERMINATIONOF IODINE NUMBERS OF VEGEf ABLE OILS by Ondrej Hendl A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of t1 requirements for the Degree of Master of Arts Departmentof Chemistry Western Michigan University Kalamazoo,Michigan December 1996 Copyright by Ondrej Hendl 1996 ACKNOWLEDGMENTS The author wishes to express his gratitude to the Chemistry Department of Western Michigan University for pro\·iding the instrumentation, chemical supplies and financial assistance to accomplish this research. The assistance and moral support given by Dr. Michael E. McCarville is gratefully acknowledged. The author would also like to thank all the faculty, graduate students and other staff members of the Chemistry Department for their assistance and encouragement. Thanks are given to Dr. James A. Howell for his support, patience and time throughout the years of my research. I thank my mother and finally my wife, Simona, for her continuing supply of encouragement and love. -
Lipase – Catalyzed Modification of Rice Bran Oil Solid Fat Fraction Patchara Kosiyanant1, Garima Pande2, Wanna Tungjaroenchai1, and Casimir C
Journal of Oleo Science Copyright ©2018 by Japan Oil Chemists’ Society J-STAGE Advance Publication date : September 13, 2018 doi : 10.5650/jos.ess18078 J. Oleo Sci. Lipase – catalyzed Modification of Rice Bran Oil Solid Fat Fraction Patchara Kosiyanant1, Garima Pande2, Wanna Tungjaroenchai1, and Casimir C. Akoh2* 1 Faculty of Agro-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520, THAILAND 2 Department of Food Science and Technology, The University of Georgia, Athens, Georgia, 30602, USA Abstract: This study used a rice bran oil solid fat fraction (RBOSF) to produce cocoa butter alternatives via interesterification reaction catalyzed by immobilized lipase (Lipozyme® RM IM) in hexane. Effects of reaction time (6, 12, and 18 h), temperature (55, 60, and 65℃), mole ratios of 3 substrates [RBOSF:palm olein:C18:0 donors (1:1:2, 1:2:3, and 1:2:6)] were determined. The substrate system was dissolved in 3 mL of hexane and 10% of lipase was added. Two sources of C18:0 donors, stearic acid (SAd) and ethyl stearate (ESd) were used. Pancreatic lipase – catalyzed sn-2 positional analysis was also performed on both substrates and structured lipids (interesterification products). Structured lipids (SL) were analyzed by gas – liquid chromatography (G40.35LC) for fatty acid composition. Major fatty acids of RBOSF were C18:1, oleic acid (OA, 41.15±0.01%), C18:2, linoleic acid (LA, 30.05±0.01%) and C16:0, palmitic acid (PA, 22.64±0.01%), respectively. A commercial raw cocoa butter (CB) contained C18:0, stearic acid (SA, 33.13±0.04%), OA (32.52±0.03%), and PA (28.90±0.01%), respectively. -
Technical Data Sheet of Dehydrated Castor
DEHYDRATED CASTOR OIL DCO Specifications Value Density at 25 ºC g/cm 3 0,926 – 0,937 Viscosity at 25 ºC cp 150 – 250 Aci d value mg KOH/g ≤ 5 Technical Data Sheet Refractive index 25 ºC 1,4805 – 1,4825 Iodine value (Hanus) 125 – 140 November 2020 Vapour pressure Pa at 20 ºC 0,0000743 Gardner colour 4 – 6 Flash point ºC at 99,62 kPa ≤ 315 Fatty acids composition (%) Pour point ºC -34 Saponification value 180 – 195 Palmitic acid 1 – 3 Solubility in water mg/L 20 ºC <5,8 Stearic acid 1 – 3 Appearance at 20 ºC Clear liquid C18: 1 Oleic acid 2 – 8 Average molecular weight 875 C18: 2 Linoleic acid 52 – 56 CAS number 64147 - 40 -6 C18: 2 Conjugated Linoleic acid 30 – 33 EINECS number 264 -705-7 CN code 15.15.30.90 Description Legislation DCO is a UVCB substance with a complex DCO is a product that can be in contact with combination of glycerides (mono, di and tri) and food, in accordance with Regulation 10/2011 adducts of glycerides and fatty acids. with number MCA 712 and reference number 42960, it can use like additive. Function DCO is characterized by its high iodine index, It fulfils FDA Regulation nº 175.300 (coating), due to the existing conjugation, since a new 178.3570 (lubricant),181.26 (drying). double bond is formed, therefore is a very drying oil. Reach Register number 01-2119978245-28-0004 Properties DCO does not have Linolenic acid in their Application composition. For this reason, prevents the DCO can be used as drying oil for surface possibility of yellowing. -
ANTIMICROBIAL ACTIVITIES of VEGETABLE OIL-EXTRACTED ASTAXANTHIN from MICROALGAE Haematococcus Pluvialis
ANTIMICROBIAL ACTIVITIES OF VEGETABLE OIL-EXTRACTED ASTAXANTHIN FROM MICROALGAE Haematococcus pluvialis Panicha Phromthong1, Supatra Nakbat1, Itthayakorn Promputtha1,* 1School of Cosmetic Science, Mae Fah Luang University, 333 Moo 1, Tasud, Muang, Chiang Rai 57100, Thailand *e-mail: [email protected] Abstract This study aimed to extract astaxanthin from algae using bio-solvent vegetables oils and investigate for antimicrobial potential of the crude extract. Microalgae Haematococcus pluvialis was cultivated in appropriated conditions and extracted for astaxanthin. The crude extracts were tested for antimicrobial activities with the panel of test microorganisms; four strain of bacteria and one strain of yeast. The highest astaxanthin content was expressed in crude extract of coconut oil after 48 hrs of extraction. The coconut oil extract susceptible to all 5 tested microorganisms, while tea seed oil, olive oil, rice bran oil extracts susceptible to 2 test microorganisms, sesame and grapes seed oil extracts susceptible to 1 test microorganism, where as astaxanthin extracted with palm and sweet almond oils did not show any antimicrobial activity. Bacterial tested microorganisms showed more susceptibility to oil extracted than yeast since Escherichia coli susceptible to 4 extracts (coconut, tea seed, sesame, and olive oils), Salmonella typhimurium susceptible to 3 extracts (coconut, rice bran, and grapes seed oils), Pseudomonas aeruginosa susceptible to 2 extracts (coconut and olive oils), Staphylococcus aureus susceptible to 3 extracts (coconut, tea seed, and rice bran oils), while yeast Candida albicans susceptible to only coconut oil extract. A 100% of microorganism was susceptible to coconut oil extracted astaxanthin, while 100% of microorganism resistant to palm and sweet almond oil extracts. -
Rice Bran Oils Rice Bran Oils
Comparative Study RiceRice BranBran OilsOils ThisThis isis thethe bestbest lessless oilyoily cookingcooking oiloil Today’s consumers are spoilt for choices. Be it electronics, FMCG or fashion, diverse product as- sortments with different USPs attached are luring us constantly. The majority of shopping we do is influenced by scores of factors including advertisements, SM promotions, product packaging, and discounts. Making an informed decision comes at the cost of these factors. For instance, in your daily need shopping too, while choosing the rice bran oil-do we check how much oryzanol (a natural antioxidant) is there or we just pick up the brand for its smart packaging/offers? Do we care to know oryzanol also helps in reducing hypertension? In this month’s comparative test study, Consumer Voice team singled out 9 popular brands of rice bran oils and tested the brands at an NABL accred- ited lab to rank the oils as per their performances. A Consumer Voice Report ice bran oil is preferred primarily for its rich our food also makes it more economical. In our oryzanol, vitamin E, ideal fatty acid balance, comparative test of 9 regular selling brands, each Rantioxidant capacity, and cholesterol- brand was evaluated based on parameters including lowering abilities. Moreover, the oil is very light and oryzanol, saponification value, unsaponifiable matter, the flavor is delicate. Foods cooked with rice bran oil MUFA, PUFA, saturated fatty acid, moisture, absorb up to 15-20 percent less oil! Less oil in food refractive index, specific gravity, iodine value, items means reduced calories, better and lighter tasting peroxide value, flash point, argemone oil, etc. -
(1988): Methods of Sampling and Test for Oils and Fats, Part II
इंटरनेट मानक Disclosure to Promote the Right To Information Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public. “जान का अधकार, जी का अधकार” “परा को छोड न 5 तरफ” Mazdoor Kisan Shakti Sangathan Jawaharlal Nehru “The Right to Information, The Right to Live” “Step Out From the Old to the New” IS 548-2-9 (1988): Methods of sampling and test for oils and fats, Part II: Purity tests, Section 9: Test for presence of Karanja (Pungam) oils in other oils [FAD 13: Oils and Oilseeds] “ान $ एक न भारत का नमण” Satyanarayan Gangaram Pitroda “Invent a New India Using Knowledge” “ान एक ऐसा खजाना > जो कभी चराया नह जा सकताह ै”ै Bhartṛhari—Nītiśatakam “Knowledge is such a treasure which cannot be stolen” (Reaffirmed 2010) IS : 548 ( Part 2lSec 9 ) - 1988 ( Reaffirmed 1994 ) Indian Standard METHODSOFSAMPLINGANDTEST FOROILSANDFATS PART 2 PURITY TESTS Section 9 Test for Presence of Karanja ( /+ngam ) Oil in Other Oils ( Fourth Revision ) Second Reprint APRIL 1998 UDC 665.21.3~543t665.325.37