6.Aptosimum Literature Chapter 2

Total Page:16

File Type:pdf, Size:1020Kb

6.Aptosimum Literature Chapter 2 Chapter 2 Phytochemistry of Aptosimum procumbens 2.1 Introduction Aptosimum procumbens Burch (= A. depressum) of the tribe Aptosimae belongs to the Scropulariaceae sensu stricto family of the order Lamiales.1 Scrophulariaceae is one of the largest plant families and is comprised of about 190 genera and 4000 species. Plants from this family are mostly woody herbaceous shrubs and are found predominantly in the temperate regions of the world.2 They are distinguished from related families with relative ease, but many plants are assigned to this family because they lack distinguishing characteristics that would place them in the other specific families. Therefore, Scrophs share some of the characteristics of plants of related families and this may negate the possibility that Scrophulariaceae is a distinct clade. As a result of this, there are doubts as to whether the family is monophyletic or should rather be classified as polyphyletic or paraphyletic.1 Phytochemical investigations can provide a valuable input with regards to the chemotaxanomical studies of this family. A. procumbens (Fig. 1) is mainly referred to as “carpet flower” but shares a variety of vernacular names such as “brandbossie/blare”, “Karoo violet/flower” and “kankerbos” with other related species of Aptosimum. A common name is given to a plant based on certain characteristics of the plant. A. procumbens is a prostrate mat-forming species hence the name “carpet flower”. The plant has strong woody procumbent stems with short lateral, dense leafy and floriferous branches. Another characteristic feature is the violet trumpet-like flowers that bloom in the summer or after rainfall (hence the name “Karoo violet”). The dwarf shrub grows mostly in dry soil, on rocky terrain in full sun, in flood plains and is found in semi-arid regions of southern Africa (commonly in the Karoo region).3,4 6 http://www.museums.org.za/bio/plant/scrophulariaceae/aptosimum_procumbens.htm Figure 1: A. procumbens Aptosimum has been used as a traditional medicine in South Africa3,4 and in parts of Europe, such as Germany for the treatment of a variety of ailments such as water retention and micturition difficulties, diptheria, ringworm, impetigo lesions and krimpsiekte in sheep.5 It may be administered as a tea, gargle, decoction or paste depending on the disease it is being used to treat. When applied to the skin, the foliage may cause a blister suggestive of a burn and it is, therefore, also referred to as brandbossie. 6 A variety of Aptosimum species such as A. indivisum, A. decumbens, A. albomarginatum, A. angustifolium, A. spinescens, A. glandulosum, A. arenarium, A. sp, A. lineare and A. steingroeveri with similar physical and medicinal characteristics exist.4,6 In general, most of the species are used in wound healing or for the treatment of gastrointestinal disturbances. A. indivisum and A. sp are also referred to as the Karoo violet.3 A. sp is an unidentified species that has been used for snakebites and epilepsy. 7 A. albomarginatum is an abortifacient and is used to assist in the expulsion of the placenta and regulates the menstral cycle. A. spinescens also called “kankerbos”, has been used as treatment for cancer, hypertension and haemorrhoids and the leaves of A. decumbens may be chewed to improve memory.6 Schrophulariaceae is a rich source of iridoid glycosides, other compounds sometimes found in this family include orobanchins, triterpenoid saponins, cardiotonic glycosides and flavonoids.8 Plants containing iridoids generally have anti-inflammatory properties.9 Some of these plants, such as Devil’s claw (Harpagophytum procumbens), are used as traditional medicines10. 7 To date only two species of Aptosimum have been investigated namely, A. spinescens and A. indivisum. Eight lignans: sesamin (2.1), spinescin (2.2), piperitol (2.3), pinoresinol (2.4), pinoresinoldimethylether, pinoresinolmonomethylether, aptosimon (2.5) and aptosimol (2.6), have been isolated from A. spinescens.11 In a paper on the phytochemistry of A. indivisum the plant was wrongly identified as Craterocapsa tarsodes (Campanulaceae) (FR van Heerden, personal communication). Shanzhiside methyl ester (an iridoid) (2.7), verbascoside (2.8) and the flavanone pinocembrin 7-O-b- neohesperidoside (2.9) were isolated from A. indivisum.12 A. procumbens has been used as a traditional medicine in the Cape and the Karoo regions. In our laboratories the crude extract of A. procumbens showed moderate anticancer activity against three cell lines and we decided to perform a phytochemical investigation on the plant. O Ar1 1 2 2.1 Ar = Ar = 3,4-methylendioxyphenyl 2.2 Ar1 = 3,4 methylendioxyphenyl 2 Ar = 3,4-dimethoxyphenyl Ar 2 O 2.3 Ar1 = 3,4-methylendioxyphenyl Ar2 = 3-methoxy-4-hydroxyphenyl 2.4 Ar1 = Ar2 = 3-methoxy-4-hydroxyphenyl O R1 R2 2.5 Ar = 3,4 methylendioxyphenyl 1 2 R , R = O 2.6 Ar = 3,4-methylendioxyphenyl Ar O Ar 1 R = OH 2 R = H CO Me HO 2 H O H HO OH O HO O HO HO 2.7 8 O HO HO O O O OH O HO OH H3C O HO OH HO OH 2.8 HO HO O O O HO O H3C O HO OH O HO OH 2.9 2.2 Literature Review on Iridoids 2.2.1 Structural Classification Iridoids are monoterpenes and are found as natural constituents in a large number of plant families. These compounds have a characteristic cyclopenta[c]pyranoid skeleton also known as an iridane skeleton (cis-2-oxabicyclo [4, 3, 0 ]nonane) (2.10). They occur mainly in the form of glycosides. A methyl group (C-10) is found most commonly at the C-8 position and is rarely absent.13 The term iridoid was derived from the name s iridomyrecin, iridolacton and iridodial, compounds that are present in the defense secretions of certain ant species of the Iridomyrmex genus.14 11 6 4 5 3 7 O 8 9 1 10 2.10 9 There are four main categories of iridoids: agylcone iridoids, secoiridoids, bisiridoids and iridoid glycosides (the most abundant).13 Iridoids generally have nine carbons with a tenth carbon often bonded to C-4. This carbon may be a methyl group or it may form part of a carbonyl or secondary alcohol functional group. Structural variations and diversification of iridoid types are achieved by the introduction of additional carbons, functional groups and double bonds into the skeleton.13 Simple aglycone structures such as nepetalactone (2.11) are found in plants. This compound was isolated from Nepeta cataria (Lamiaceae), otherwise known as catnip, and is an (sometimes infamous) attractant of cats.15 However, most non-glycosidic iridoids form part of modified structures such as alkaloids, polycyclic compounds, polyesters and intramolecular ethers.13 A large portion of iridoid glycosides can be characterized as glucosides with a glycosidic linkage between the anomeric hydroxyl of D-glucose and the aglycone C-1 hydroxyl. A simple example of this is loganin (2.12), the biosynthetic precursor of many iridoids.16 In some rare cases, the glycosidic linkage may occur between the C-11 hydroxyl of the aglycone and anomeric carbon hydroxyl of D-glucose, as in ebuloside (2.13) isolated from the Caprifoliaceae family.13 The sugar type and complexity may also vary, for example catalpol (2.14) may have an additional rhamnosyl attached at C-6 to form 6-O- a-L-rhamnosylcatalpol (2.15). This is also an example of an iridoid that lacks an tenth carbon.17 CO2CH3 H H HO O O H H H 3C H3C O O-Glc 2.11 2.12 O-Glc RO H O O O O H H C 3 O OGlc OH 2.14 R = OH O 2.13 2.15 R = Rhamnosyl 10 Secoiridoids arise as a result of the cleavage of the 7,8 -bond of the cyclopentane ring. Secologanin (2.16) is a secoiridoid with a vinyl group at C-9. Various other structural modifications give rise to different secoiridoids. Aglycone secoiridoids do exist but are a rarity.18 O CO 2CH3 O O-Glc 2.16 Bisiridoids form as a result of dimerization of both iridoids and secoiridoids. Picconioside I (2.17) is a bisiridoid that consists loganin (part a) esterified with deoxyloganin (part b).19 Other structural variations include modification of the iridane skeleton and it’s functional groups. The methyl group (C-10) may be oxidized, giving rise to a secondary alcohol as in catapol (2.14). Epoxidation of the cyclopentane ring as in catapol (2.14) is another example of ring modification. Acetoxy groups may also be introduced as in lamioside (2.18). In deutzioside (2.19) the methyl group (C-10) is absent.13 CO2CH3 O O C O HO HO OH H OGlc O O O part a O AcO H H CH OGlc 3 O-Glc O-Glc part b 2.17 2.18 2.19 The presence of unsaturation as in aucubin (2.20) or monotropein (2.21) also leads to differentiation. The introduction of a hydroxyl at, or oxidation of C -6, C-7 and C-8 as in verbenalin (2.22), loganin (2.12) or monotropein (2.21) results in further structural diversification. 11 A notable structural variation is that certain iridoids possess carboxyl groups (C-11) and others do not. Iridoids can, therefore, also be classified as carboxylated and non- carboxylated. Moreover, they are derived from different biosynthetic precursors.20 COOH CO 2CH3 HO O H H H O O O HO H H H OH HO O-Glc O-Glc O-Glc 2.20 2.21 2.22 2.2.2 Biosynthesis of Iridoids The basic building blocks of terpenoids are C-5 isoprene units, in the form of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP).
Recommended publications
  • 7Th International Conference on Countercurrent Chromatography, Hangzhou, August 6-8, 2012 Program
    010 7th international conference on countercurrent chromatography, Hangzhou, August 6-8, 2012 Program January, August 6, 2012 8:30 – 9:00 Registration 9:00 – 9:10 Opening CCC 2012 Chairman: Prof. Qizhen Du 9:10 – 9:20 Welcome speech from the director of Zhejiang Gongshang University Session 1 – CCC Keynotes Chirman: Prof. Guoan Luo pH-zone-refining countercurrent chromatography : USA 09:20-09:50 Ito, Y. Origin, mechanism, procedure and applications K-1 Sutherland, I.*; Hewitson. P.; Scalable technology for the extraction of UK 09:50-10:20 Janaway, L.; Wood, P; pharmaceuticals (STEP): Outcomes from a year Ignatova, S. collaborative researchprogramme K-2 10:20-11:00 Tea Break with Poster & Exhibition session 1 France 11:00-11:30 Berthod, A. Terminology for countercurrent chromatography K-3 API recovery from pharmaceutical waste streams by high performance countercurrent UK 11:30-12:00 Ignatova, S.*; Sutherland, I. chromatography and intermittent countercurrent K-4 extraction 12:00-13:30 Lunch break 7th international conference on countercurrent chromatography, Hangzhou, August 6-8, 2012 January, August 6, 2012 Session 2 – CCC Instrumentation I Chirman: Prof. Ian Sutherland Pro, S.; Burdick, T.; Pro, L.; Friedl, W.; Novak, N.; Qiu, A new generation of countercurrent separation USA 13:30-14:00 F.; McAlpine, J.B., J. Brent technology O-1 Friesen, J.B.; Pauli, G.F.* Berthod, A.*; Faure, K.; A small volume hydrostatic CCC column for France 14:00-14:20 Meucci, J.; Mekaoui, N. full and quick solvent selection O-2 Construction of a HSCCC apparatus with Du, Q.B.; Jiang, H.; Yin, J.; column capacity of 12 or 15 liters and its China Xu, Y.; Du, W.; Li, B.; Du, application as flash countercurrent 14:20-14:40 O-3 Q.* chromatography in quick preparation of (-)-epicatechin 14:40-15:30 Tea Break with Poster & Exhibition session 2 Session 3 – CCC Instrumentation II Chirman: Prof.
    [Show full text]
  • Application of Cornelian Cherry Iridoid-Polyphenolic Fraction and Loganic Acid to Reduce Intraocular Pressure
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2015, Article ID 939402, 8 pages http://dx.doi.org/10.1155/2015/939402 Research Article Application of Cornelian Cherry Iridoid-Polyphenolic Fraction and Loganic Acid to Reduce Intraocular Pressure Dorota Szumny,1,2 Tomasz SozaNski,1 Alicja Z. Kucharska,3 Wojciech Dziewiszek,1 Narcyz Piórecki,4,5 Jan Magdalan,1 Ewa Chlebda-Sieragowska,1 Robert Kupczynski,6 Adam Szeldg,1 and Antoni Szumny7 1 Department of Pharmacology, Wrocław Medical University, 50-345 Wrocław, Poland 2Ophthalmology Clinic, Uniwersytecki Szpital Kliniczny, 50-556 Wrocław, Poland 3Department of Fruit and Vegetables Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland 4Arboretum and Institute of Physiography in Bolestraszyce, 37-722 Bolestraszyce, Poland 5Department of Turism & Recreation, University of Rzeszow, 35-959 Rzeszow,´ Poland 6Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland 7Department of Chemistry, Wrocław University of Environmental and Life Science, 50-375 Wrocław, Poland Correspondence should be addressed to Dorota Szumny; [email protected] Received 6 February 2015; Revised 21 April 2015; Accepted 12 May 2015 Academic Editor: MinKyun Na Copyright © 2015 Dorota Szumny et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. One of the most common diseases of old age in modern societies is glaucoma. It is strongly connected with increased intraocular pressure (IOP) and could permanently damage vision in the affected eye. As there are only a limited number of chemical compounds that can decrease IOP as well as blood flow in eye vessels, the up-to-date investigation of new molecules is important.
    [Show full text]
  • Review Article Progress on Research and Development of Paederia Scandens As a Natural Medicine
    Int J Clin Exp Med 2019;12(1):158-167 www.ijcem.com /ISSN:1940-5901/IJCEM0076353 Review Article Progress on research and development of Paederia scandens as a natural medicine Man Xiao1*, Li Ying2*, Shuang Li1, Xiaopeng Fu3, Guankui Du1 1Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, P. R. China; 2Haikou Cus- toms District P. R. China, Haikou, P. R. China; 3Clinical College of Hainan Medical University, Haikou, P. R. China. *Equal contributors. Received March 19, 2018; Accepted October 8, 2018; Epub January 15, 2019; Published January 30, 2019 Abstract: Paederia scandens (Lour.) (P. scandens) has been used in folk medicines as an important crude drug. It has mainly been used for treatment of toothaches, chest pain, piles, hemorrhoids, and emesis. It has also been used as a diuretic. Research has shown that P. scandens delivers anti-nociceptive, anti-inflammatory, and anti- tumor activity. Phytochemical screening has revealed the presence of iridoid glucosides, volatile oils, flavonoids, glucosides, and other metabolites. This review provides a comprehensive report on traditional medicinal uses, chemical constituents, and pharmacological profiles ofP. scandens as a natural medicine. Keywords: P. scandens, phytochemistry, pharmacology Introduction plants [5]. In China, for thousands of years, P. scandens has been widely used to treat tooth- Paederia scandens (Lour.) (P. scandens) is a aches, chest pain, piles, hemorrhoids, and perennial herb belonging to the Paederia L. emesis, in addition to being used as a diuretic. genus of Rubiaceae. It is popularly known as Research has shown that P. scandens has anti- “JiShiTeng” due to the strong and sulfurous bacterial effects [6].
    [Show full text]
  • A. Primary Metabolites B. Secondar Metabolites
    TAXONOMIC EVIDENCES FROM PHYTOCHEMISTRY Plant produces many types of natural products and quite often the biosymthetic pathways producing these compounds differ from one taxon to another. These data sometimes have supported the existing classification or in some instances contradicted the existing classification. The use of chemical compounds in systematic and taxonomic study has created a new branches of biological science – Chemosystematics or Chemotaxonomy or Biochemical systematic. The natural chemical compounds of taxonomic use can be divided as follows – A. Micromolecules – Molecules having molecular weight 1000 or less. Micromolecules are divided into two major groups – 1. Primary metabolites- involved in vital metabolic pathway, usually of universal occurrence , e.g., Citric acid, Aconitic acid , amino acids, sugars etc. 2. Secondary metabolites – These are by-product of metabolism. They usually perform non-vital functions and not universal in occurrence therefore less widely spread among plants. It includes – non-protein amino acids, terpenoids, flavonoid compounds and other phenolic compounds, alkaloids, cyanogenic compounds, glucosinolates, fatty acids, oils, waxes etc. B. Macromolecules- Molecules having molecular weight 1000 or more. Macromolecules are of two types – 1. Semantids – These are information carrying molecules and can be classified into 3 categories – Primary Semantids (DNA), secondary Semantids (RNA), and Tertiary Semantids ((Protein). The utilization of studies on DNA and RNA for understanding of Phylogeny has established a new field of study the molecular systematic. The results obtained from Protein taxonomy are largely divisable into four main headings – Serology, Electrophoresis, amino acid sequencing, and isoelectric focussing. 2. Non-Semantids macromolecules – compounds not involved in information transfer – Starch, Celluloses etc. Apart from these there are some compounds that are directly visible such as crystals – Raphides etc.
    [Show full text]
  • Thesis-1966D-R342b.Pdf
    I I THE BIOSYNTHESIS OF NEPETALACTONE By FREDERICK EUGENE REGNIER 01 Bachelor of Science Peru State College Peru, Nebraska 1960 Submitted to the Faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May, 1966 THE BIOSYNTHESIS OF NEPETALACTONE Thesis Approved: l/ ~;==chool ii ACKNOWLEDGEMENTS The author wishes to express his gratitude and appreciation to: Dr. G. R. Waller and Dr. E. J. Eisenbraun for their guidance, counsel and assistance during the course of this study. Dr. E. C. Horning for placing the combined mass spectrometer-gas chromatograph at my disposal. Mr. Sten Wikstrom for his technical assistance in operating the mass spectrometer. Dr. M. H. Brooks for her assistance in the histological studies. Dr. W. R. Kays for providing plant material. Dr. V. T. Waterfall for making botanical classification. Dr. H. Auda and Mr. G. V. Odell for their suggestions and technical assistance. Mrs. Linda M. Regnier for her assistance and encouragement during this study. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION 1 II. LITERATURE REVIEW 3 III. COMPOSITION OF THE ESSENTIAL OIL OF NEPETA cataria L.. 13 IV. THE DISTRIBUTION AND ANALYSIS OF NEPETALACTONE ISOMERS FROM DIFFERENT NEPETA SPECIES 54 V. THE BIOSYNTHESIS OF NEPETALACTONE 70 VI. SUMMARY 103 BIBLIOGRAPHY 105 iv LIST OF TABLES Table Page CHAPTER III I. Tabulation of the Intense Ions in the Spectra of the Compounds in Fraction A 21+ II. Tabulation of the Intense Ions in the Spectra of the Compounds in Fraction B 27 III. Tabulation of the Intense Ions in the Spectrum of Sample c4 .
    [Show full text]
  • Batman Üniversitesi Fen Bilimleri Enstitüsü
    T.C. BATMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENDEMİK Ajuga vestita BOISS. BİTKİSİNİN FARKLI EKSPLANTLARINDAN İTİBAREN KALLUS OLUŞTURMA POTANSİYELİ VE OLUŞAN KALLUSUN BİYOLOJİK AKTİVİTESİNİN ARAŞTIRILMASI Şerife (AYDINARIĞ) BULUŞ YÜKSEK LİSANS TEZİ Biyoloji Anabilim Dalını Nisan-2019 BATMAN Her Hakkı Saklıdır ÖZET YÜKSEK LİSANS TEZİ ENDEMİK Ajuga vestita BOISS. BİTKİSİNİN FARKLI EKSPLANTLARINDAN İTİBAREN KALLUS OLUŞTURMA POTANSİYELİ VE OLUŞAN KALLUSUN BİYOLOJİK AKTİVİTESİNİN ARAŞTIRILMASI Şerife (AYDINARIĞ) BULUŞ Batman Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Danışman: Doç. Dr. Filiz AKBAŞ 2019, 63 Sayfa Jüri Doç. Dr. Çiğdem IŞIKALAN Doç. Dr. Filiz AKBAŞ Doç. Dr. Nesrin HAŞİMİ Ajuga vestita BOISS. bitkisi, tıbbi öneme sahip, endemik ve “EN-Tehlikede”kategorisinde olan Ajuga cinsine ait bir türdür. Bu çalışmada Ajuga vestita BOISS.’in in vitro sürgünlerinden elde edilen fidelerin farklı kısımlarından, literatür taramalarında daha önce hiç çalışılmamış olan kallus kültürlerinin başlatılması ve optimizasyonu ile kallustan sürgün elde etme potansiyelinin belirlenmesi amaçlandı. Bu amaçla öncelikle yüzey sterilizasyonu tamamlanan Ajuga vestita BOISS.’in olgun tohumları hormonsuz 1/4 MS besi ortamında çimlendirildi. Aksenik sürgün uçları, 0.125 mg/L-1 Kin içeren 1/1 MS besi yerinde çoğaltılarak kallus oluşturma çalışmalarında başlangıç materyali olarak kullanılacak in vitro sürgünler elde edildi. İn vitro ortamda yetiştirilen sürgünlerin yaprak, gövde, kök kısımları ve testası çatlatılmış olgun tohumlar, sitokinin (Kin, BAP) ve oksinin (2,4-D) farklı konsantrasyonlarının bulunduğu 1/1 MS besi ortamında ayrı ayrı kültüre alındı. Çalışma sonucunda, kültüre alınan tüm eksplant çeşitlerinde kallus oluşumu gözlendi. Ancak, tüm eksplant tiplerinde en iyi kallus oluşumunun 0.5 mg/L-1 Kin+2.0 mg/L-1 2,4-D içeren besi ortamında olduğu belirlendi.
    [Show full text]
  • Fungal Endophytes As Efficient Sources of Plant-Derived Bioactive
    microorganisms Review Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges Archana Singh 1,2, Dheeraj K. Singh 3,* , Ravindra N. Kharwar 2,* , James F. White 4,* and Surendra K. Gond 1,* 1 Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India; [email protected] 2 Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India 3 Department of Botany, Harish Chandra Post Graduate College, Varanasi 221001, India 4 Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA * Correspondence: [email protected] (D.K.S.); [email protected] (R.N.K.); [email protected] (J.F.W.); [email protected] (S.K.G.) Abstract: Fungal endophytes are well-established sources of biologically active natural compounds with many producing pharmacologically valuable specific plant-derived products. This review details typical plant-derived medicinal compounds of several classes, including alkaloids, coumarins, flavonoids, glycosides, lignans, phenylpropanoids, quinones, saponins, terpenoids, and xanthones that are produced by endophytic fungi. This review covers the studies carried out since the first report of taxol biosynthesis by endophytic Taxomyces andreanae in 1993 up to mid-2020. The article also highlights the prospects of endophyte-dependent biosynthesis of such plant-derived pharma- cologically active compounds and the bottlenecks in the commercialization of this novel approach Citation: Singh, A.; Singh, D.K.; Kharwar, R.N.; White, J.F.; Gond, S.K. in the area of drug discovery. After recent updates in the field of ‘omics’ and ‘one strain many Fungal Endophytes as Efficient compounds’ (OSMAC) approach, fungal endophytes have emerged as strong unconventional source Sources of Plant-Derived Bioactive of such prized products.
    [Show full text]
  • Chemical and Pharmacological Research on the Plants from Genus Ajuga
    Heterocycl. Commun. 2017; 23(4): 245–268 Review Xia Qing, Hui-Min Yan, Zhi-Yu Ni, Christopher J. Vavrickaa, Man-Li Zhang, Qing-Wen Shi*, Yu-Cheng Gu and Hiromasa Kiyota* Chemical and pharmacological research on the plants from genus Ajuga DOI 10.1515/hc-2017-0064 Received March 24, 2017; accepted June 15, 2017; previously perennial herbaceous flowering plants mainly distrib- published online July 22, 2017 uted throughout the temperate regions of Asia, Europe, Australia, North America and Africa. These species have Abstract: The genus Ajuga, a member of the Lamiaceae been used as common house plants and are called bugle family, is comprised of more than 300 species of annual or bugleweed. They are mainly characterized by the color and perennial herbaceous flowering plants mainly distrib- and shape of the flower. For example, the flower of Ajuga uted throughout the temperate regions of Asia, Europe, reptans is somewhat tall and blue, while that of Ajuga Australia, North America and Africa. These plants are used decumbens is short and purple. Many of these plants are as folk medicines effective for rheumatic fevers, dysen- of medicinal importance and are traditionally used as tery, malaria, hypertension, diabetes and gastrointestinal remedies for rheumatic fevers, dysentery, malaria, hyper- disorders, as well as anthelmintic, astringent, febrifuge tension, diabetes and gastrointestinal disorders, as well diuretic, antifungal and anti-inflammatory agents. A vari- as anthelmintic, astringent, febrifuge diuretic, antifun- ety of constituents has been isolated from these plants. gal and anti-inflammatory agents [1]. The genus Ajuga This review summarizes the phytochemical progress of the has attracted attention since the report in 1976 that Ajuga genus Ajuga and lists the compounds isolated up to 2014.
    [Show full text]
  • Ethnopharmacology of the Plants of Genus Ajuga
    ETHNOPHARMACOLOGY OF THE PLANTS OF GENUS AJUGA ZAFAR H. ISRAILI AND BADIÂA LYOUSSI* Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA *UFR Physiology – Pharmacology, Laboratory of Physiology-Pharmacology – Environmental Health, Faculty of Sciences, Dhar El Mehraz, Fez, Morocco ABSTRACT The plants of genus Ajuga are evergreen, clump-forming rhizomatous perennial or annual herbaceous flowering species, with Ajuga being one of the 266 genera of the family Lamiaceae. There are at least 301 species of the genus Ajuga with many variations. These plants, growing in Europe, Asia, Africa, Australia and North America, are used in gardens as ground cover or border for their foliage and beautiful flowers. Many of these plants have been used in traditional medicine as a remedy for fever, toothache, dysentery, malaria, high blood pressure, diabetes, gastrointestinal disorders, as anthelmintic, diuretic and antifungal, anti-inflammatory, and antimycobacterial agents. They are also used as insect growth inhibitor s. A large number of compounds have been isolated from the Ajuga plants, including phytoecdysteroids, neo-clerodane-diterpenes and diterpenoids, triterpenes, sterols, anthocyanidin-glucosides and iridoid glycosides, withanolides, flavonoids, triglycerides and essential oils. These compounds possess a broad spectrum of biological, pharmacological and medicinal properties, such as anabolic, analgesic, antibacterial, antiestrogenic, antifungal, anti-inflammatory, antihypertensive, antileukemic, antimalarial, antimycobacterial,
    [Show full text]
  • Plant-Derived Colorants for Food, Cosmetic and Textile Industries: a Review
    materials Review Plant-Derived Colorants for Food, Cosmetic and Textile Industries: A Review Patrycja Brudzy ´nska 1,*, Alina Sionkowska 1 and Michel Grisel 2 1 Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland; [email protected] 2 Chemistry Department, UNILEHAVRE, FR 3038 CNRS, URCOM EA3221, Normandie University, 76600 Le Havre, France; [email protected] * Correspondence: [email protected] Abstract: This review provides a report on properties and recent research advances in the application of plant-derived colorants in food, cosmetics and textile materials. The following colorants are reviewed: Polyphenols (anthocyanins, flavonol-quercetin and curcumin), isoprenoids (iridoids, carotenoids and quinones), N-heterocyclic compounds (betalains and indigoids), melanins and tetrapyrroles with potential application in industry. Future aspects regarding applications of plant- derived colorants in the coloration of various materials are also discussed. Keywords: plant-derived colorants; anthocyanins; isoprenoids; betalains; cosmetic; textile; food col- oration 1. Introduction Citation: Brudzy´nska,P.; There is currently a revival in the application of natural ingredients that can be Sionkowska, A.; Grisel, M. observed in different areas of human lives. This revival concerns not only phytotherapy, Plant-Derived Colorants for Food, but also the need to create various products based on natural raw materials, including Cosmetic and Textile Industries: A plant-derived ingredients. All industries are becoming more ecological, less harmful to Review. Materials 2021, 14, 3484. the environment and healthier for consumers. One example of the extensive utilization of https://doi.org/10.3390/ma14133484 natural raw materials currently observed is the broad use of many herbs, vegetable oils or essential oils in different products.
    [Show full text]
  • Research Article Simultaneous Determination of Catalpol, Aucubin
    Hindawi Publishing Corporation Journal of Analytical Methods in Chemistry Volume 2016, Article ID 4956589, 6 pages http://dx.doi.org/10.1155/2016/4956589 Research Article Simultaneous Determination of Catalpol, Aucubin, and Geniposidic Acid in Different Developmental Stages of Rehmannia glutinosa Leaves by High Performance Liquid Chromatography Yanjie Wang,1,2 Dengqun Liao,1 Minjian Qin,2 and Xian’en Li1 1 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China 2Department of Resources Science of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China Correspondence should be addressed to Xian’en Li; [email protected] Received 29 March 2016; Revised 15 May 2016; Accepted 8 June 2016 Academic Editor: Giuseppe Ruberto Copyright © 2016 Yanjie Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Although R. glutinosa roots are currently the only organ source in clinics, its leaves are a potential supplement for the roots especially in extraction of some important bioactive compounds. Our early work found that the contents of catalpol and total iridoid glycosides varied among different developmental stages of R. glutinosa leaves. Aucubin and geniposidic acid, the abundant major bioactive compounds in Eucommia ulmoides and Gardenia jasminoides, respectively, were found present in R. glutinosa roots, however, and have not been analyzed in its leaves. In this paper, we aimed to determine contents of these three iridoid glycosides in different developmental stages of R. glutinosa leaves using the optimized HPLC-UV conditions.
    [Show full text]
  • Crosstalk of Multi-Omics Platforms with Plants Oftherapeutic Importance
    cells Review Crosstalk of Multi-Omics Platforms with Plants of Therapeutic Importance Deepu Pandita 1 , Anu Pandita 2, Shabir Hussain Wani 3 , Shaimaa A. M. Abdelmohsen 4,*, Haifa A. Alyousef 4, Ashraf M. M. Abdelbacki 5, Mohamed A. Al-Yafrasi 6, Fahed A. Al-Mana 6 and Hosam O. Elansary 6 1 Government Department of School Education, Jammu 180001, Jammu and Kashmir, India; [email protected] 2 Vatsalya Clinic, Krishna Nagar, New Delhi 110051, Delhi, India; [email protected] 3 Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani Anantnag 192101, Jammu and Kashmir, India; [email protected] 4 Physics Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia; [email protected] 5 Applied Studies and Community Service College, King Saud University, Riyadh 11451, Saudi Arabia; [email protected] 6 Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; [email protected] (M.A.A.-Y.); [email protected] (F.A.A.-M.); [email protected] (H.O.E.) * Correspondence: [email protected] Abstract: From time immemorial, humans have exploited plants as a source of food and medicines. Citation: Pandita, D.; Pandita, A.; The World Health Organization (WHO) has recorded 21,000 plants with medicinal value out of Wani, S.H.; Abdelmohsen, S.A.M.; 300,000 species available worldwide. The promising modern “multi-omics” platforms and tools Alyousef, H.A.; Abdelbacki, A.M.M.; have been proven as functional platforms able to endow us with comprehensive knowledge of the Al-Yafrasi, M.A.; Al-Mana, F.A.; proteome, genome, transcriptome, and metabolome of medicinal plant systems so as to reveal the Elansary, H.O.
    [Show full text]