October 28, 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of Oklahoma
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D. -
The Toxic Dinoflagellate Alexandrium Minutum Impairs the Performance Of
The toxic dinoflagellate Alexandrium minutum impairs the performance of oyster embryos and larvae Justine Castrec, Helene Hegaret, Matthias Huber, Jacqueline Le Grand, Arnaud Huvet, Kevin Tallec, Myrina Boulais, Philippe Soudant, Caroline Fabioux To cite this version: Justine Castrec, Helene Hegaret, Matthias Huber, Jacqueline Le Grand, Arnaud Huvet, et al.. The toxic dinoflagellate Alexandrium minutum impairs the performance of oyster embryos and larvae. Harmful Algae, Elsevier, 2020, 92, pp.101744. 10.1016/j.hal.2020.101744. hal-02879884 HAL Id: hal-02879884 https://hal.archives-ouvertes.fr/hal-02879884 Submitted on 24 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 The toxic dinoflagellate Alexandrium minutum impairs the performance of oyster 2 embryos and larvae 3 Justine Castrec1, Hélène Hégaret1, Matthias Huber2, Jacqueline Le Grand2, Arnaud Huvet2, 4 Kevin Tallec2, Myrina Boulais1, Philippe Soudant1, and Caroline Fabioux1. 5 1 Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France 6 2 Ifremer, Univ Brest, CNRS, IRD, LEMAR, F-29280 Plouzane, France 7 * Corresponding author: [email protected] 8 Abstract 9 The dinoflagellate genus Alexandrium comprises species that produce highly potent 10 neurotoxins known as paralytic shellfish toxins (PST), and bioactive extracellular compounds 11 (BEC) of unknown structure and ecological significance. -
Harmful Algae 91 (2020) 101587
Harmful Algae 91 (2020) 101587 Contents lists available at ScienceDirect Harmful Algae journal homepage: www.elsevier.com/locate/hal Review Progress and promise of omics for predicting the impacts of climate change T on harmful algal blooms Gwenn M.M. Hennona,c,*, Sonya T. Dyhrmana,b,* a Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States b Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States c College of Fisheries and Ocean Sciences University of Alaska Fairbanks Fairbanks, AK, United States ARTICLE INFO ABSTRACT Keywords: Climate change is predicted to increase the severity and prevalence of harmful algal blooms (HABs). In the past Genomics twenty years, omics techniques such as genomics, transcriptomics, proteomics and metabolomics have trans- Transcriptomics formed that data landscape of many fields including the study of HABs. Advances in technology have facilitated Proteomics the creation of many publicly available omics datasets that are complementary and shed new light on the Metabolomics mechanisms of HAB formation and toxin production. Genomics have been used to reveal differences in toxicity Climate change and nutritional requirements, while transcriptomics and proteomics have been used to explore HAB species Phytoplankton Harmful algae responses to environmental stressors, and metabolomics can reveal mechanisms of allelopathy and toxicity. In Cyanobacteria this review, we explore how omics data may be leveraged to improve predictions of how climate change will impact HAB dynamics. We also highlight important gaps in our knowledge of HAB prediction, which include swimming behaviors, microbial interactions and evolution that can be addressed by future studies with omics tools. Lastly, we discuss approaches to incorporate current omics datasets into predictive numerical models that may enhance HAB prediction in a changing world. -
Recent Dinoflagellate Cysts from the Chesapeake Estuary (Maryland and Virginia, U.S.A.): Taxonomy and Ecological Preferences
Recent dinoflagellate cysts from the Chesapeake estuary (Maryland and Virginia, U.S.A.): taxonomy and ecological preferences. Tycho Van Hauwaert Academic year 2015–2016 Master’s dissertation submitted in partial fulfillment of the requirements for the degree of Master in Science in Geology Promotor: Prof. Dr. S. Louwye Co-promotor: Dr. K. Mertens Tutor: P. Gurdebeke Jury: Dr. T. Verleye, Dr. E. Verleyen Picture on the cover An exceptionally dense bloom of Alexandrium monilatum was observed in lower Chesapeake Bay along the north shore of the York River between Sarah's Creek and the Perrin River on 17 August 2015. Credit: W. Vogelbein/VIMS ii ACKNOWLEDGEMENTS First of all I want to thank my promoters, Prof. Dr. S. Louwye and Dr. K. Mertens. They introduced me into the wonderful world of dinoflagellates and the dinocysts due to the course Advanced Micropaleontology. I did not have hesitated long to choose a subject within the research unit of paleontology. Thank you for the proofreading, help with identification and many discussions. A special mention for Pieter Gurdebeke. This appreciation you can imagine as a 22-minutes standing ovation for the small talks and jokes only! If you include the assistance in the thesis, I would not dare to calculate the time of applause. I remember when we were discussing the subject during the fieldtrip to the Alps in September. We have come a long way and I am pleased with the result. Thank you very much for helping me with the preparation of slides, identification of dinocysts, some computer programs, proofreading of the different chapters and many more! When I am back from my trip to Canada, I would like to discuss it with a (small) bottle of beer. -
New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments. -
Chesapeake Bay Harmful Algal Blooms Overview of Emerging Issues
Chesapeake Bay Harmful Algal Blooms Overview of Emerging Issues Peter Tango USGS@CBPO Chesapeake Bay Monitoring Coordinator Toxics WG meeting 2/13/2019 1990s/early 2000s: 12 Toxin-producing phytoplankton recognized for Chesapeake Bay (Marshall 1996) • Diatoms: • Amphora coffeaformis • Pseudo-nitszschia pseudodelicatissima • P. seriata, • P. multiseries (pre-1985) • Dinoflagellates: • Cochlodinium heteroblatum • Dinophysis acuminata, D. acuta, D. caudata, D. fortii, D. norvegica, • Gyrodinium aureolum • Pfiesteria piscicida • Prorocentrum minimum • Alexandrium catenella (pre-1985) • Gonyaulax polyedra ((pre-1985) • 708 total phytoplankton taxa recognized in our tidal waters (Marshall 1994) Phytoplankton diversity in Chesapeake Bay today • > 1400 species (Marshall et al. 2005) • < 2% potentially toxic • ~1% proven toxic activity N 0 10 20 30 km Chesapeake Bay and Watershed HABs: What’s new? • Diatoms: Didymo (aka Rock snot) Ecosystem disruptor (nontoxic) • Toxic dinoflagellates • Alexandrium monilatum (oyster/fish killing Rock snot CBP A. monilatum. VIMS toxins in Chesapeake Bay) • Karlodinium micrum (fish tissue dissolves) • Raphidophytes (2+ possibly toxic spp.) • Not previous described among the A. monilatum. York River, VIMS Potomac River blue-greens Sassafras River July 2003 potentially toxic plankton community September 2003, Smith Point area Photo by Connie Goulet > 1.5 million cells/ml • Cyanobacteria • Microcystis aeruginosa (Hepatotoxic) • Anabaena spp. (Neurotoxic) • Aphanizomenon (Hepato+Neurotoxic) • Cylindrospermopsis (Hepatotoxic) • 708 total phytoplankton taxa recognized in our tidal waters (Marshall 1994) • UPDATE: 1434 total phytoplankton taxa recognized (Marshall et al. 2005) Blooms: Species importances range across all seasons. We have potentially toxic plankton species. Are they actively toxic? Where, when, how often? Karlotoxin associated fish kill Bloom and crab jubilee Corsica River 2005 Toxic bloom and bird deaths: Early cyanotoxin history in the bay region • Tisdale (1931a,b) and Veldee (1931) Am. -
Alexandrium Monilatum in the Lower Chesapeake Bay: Sediment Cyst Distribution and Potential Health Impacts on Crassostrea Virginica
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2016 Alexandrium Monilatum in the Lower Chesapeake Bay: Sediment Cyst Distribution and Potential Health Impacts on Crassostrea Virginica Sarah Pease College of William and Mary - Virginia Institute of Marine Science, [email protected] Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Aquaculture and Fisheries Commons, Ecology and Evolutionary Biology Commons, and the Marine Biology Commons Recommended Citation Pease, Sarah, "Alexandrium Monilatum in the Lower Chesapeake Bay: Sediment Cyst Distribution and Potential Health Impacts on Crassostrea Virginica" (2016). Dissertations, Theses, and Masters Projects. Paper 1477068141. http://doi.org/10.21220/V5C30T This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Alexandrium monilatum in the Lower Chesapeake Bay: Sediment Cyst Distribution and Potential Health Impacts on Crassostrea virginica ______________ A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment of the Requirements for the Degree of Master of Science ______________ by Sarah K. D. Pease 2016 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science _________________________________ Sarah K. D. Pease Approved, by the Committee, August 2016 __________________________________ Kimberly S. Reece, Ph.D. Committee Co-Chairman/Co-Advisor __________________________________ Wolfgang K. Vogelbein, Ph.D. -
Scales of Temporal and Spatial Variability in the Distribution of Harmful Algae Species in the Indian River Lagoon, Florida, USA
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Harmful Algae 10 (2011) 277–290 Contents lists available at ScienceDirect Harmful Algae journal homepage: www.elsevier.com/locate/hal Scales of temporal and spatial variability in the distribution of harmful algae species in the Indian River Lagoon, Florida, USA Edward J. Phlips a,*, Susan Badylak a, Mary Christman b, Jennifer Wolny c, Julie Brame f, Jay Garland d, Lauren Hall e, Jane Hart a, Jan Landsberg f, Margaret Lasi g, Jean Lockwood a, Richard Paperno h, Doug Scheidt d, Ariane Staples h, Karen Steidinger c a Department of Fisheries and Aquatic Sciences, University of Florida, 7922 N.W. 71st Street, Gainesville, FL 32653, United States b Department of Statistics, PO Box 110339, University of Florida, Gainesville, FL 32611, United States c Florida Institute of Oceanography, 830 1st Street South, St. Petersburg, FL 33701, United States d Dynamac Corporation, Life Sciences Service Contract (NASA), Kennedy Space Center, FL 32899, United States e St. -
Biosecurity Monitoring of Harmful Algal Bloom (HAB) Species in Western Australian Waters: First Confirmed Record of Alexandrium Catenella (Dinophyceae)
BioInvasions Records (2015) Volume 4, Issue 4: 233–241 Open Access doi: http://dx.doi.org/10.3391/bir.2015.4.4.01 © 2015 The Author(s). Journal compilation © 2015 REABIC Rapid Communication Biosecurity monitoring of Harmful Algal Bloom (HAB) species in Western Australian waters: first confirmed record of Alexandrium catenella (Dinophyceae) 1,2 1 3,4 1 P. Joana Dias *, Julieta Muñoz , John M. Huisman and Justin I. McDonald 1Department of Fisheries, Government of Western Australia, PO Box 20 North Beach 6920 Western Australia 2School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009 Western Australia 3Western Australian Herbarium, Science Division, Department of Parks and Wildlife, Bentley Delivery Centre, Bentley 6983 Western Australia 4School of Veterinary and Life Sciences, Murdoch University, Murdoch 6150 Western Australia E-mail: [email protected] (PJD), [email protected] (JM), [email protected] (JMH), [email protected] (JIM) *Corresponding author Received: 6 March 2015 / Accepted: 8 June 2015 / Published online: 23 June 2015 Handling editor: Sarah Bailey Abstract The Australian National System for the Prevention and Management of Introduced Marine Pest Incursions has identified seven Harmful Algal Bloom (HAB) toxic dinoflagellate species as target species of concern. Alexandrium minutum Halim, 1960, and Alexandrium cf. tamarense (Lebour) Balech, 1995, are currently known to occur in south-western estuaries and coastal waters but with no documented impact on the seafood industry or human health. Monitoring of these species is challenging, time-consuming, expensive, and often relies on traditional morphotaxonomy. This reports the first confirmed detection of another HAB species, Alexandrium catenella (Whedon and Kofoid) Balech, 1995, in Western Australia (WA), using both microscopic and molecular methods. -
Sexual Reproduction and Bloom Dynamics of Toxic Dinoflagellates
SEXUAL REPRODUCTION AND BLOOM DYNAMICS OF TOXIC DINOFLAGELLATES FROM AUSTRALIAN ESTUARINE WATERS by Naomi S. Parker BSc., Grad. Dip. ASOS (Hons), MSc. Submitted in fulfillment of the requirements for the degree of Doctor of Philosophy School of Aquaculture University of Tasmania Hobart June,2002 DECLARATION AND AUTHORITY OF ACCESS This thesis contains no material which has been accepted for the award of a degree or a diploma in any university, and to the best of the author's knowledge and belief, the thesis contains no material previously published or written by another person, except where due acknowledgement is made in the text. This thesis may be made available for loan. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Naomi S. Parker June 2002 ABSTRACT Of the dinoflagellates known to form toxic blooms in Australian estuaries three, Alexandrium minurum, Alexandrium catenella and Gymnodinium catenatum produce paralytic shellfish toxins that can lead to the potentially fatal paralytic shellfish poisoning in humans. These three species and a fourth dinoflagellate Protoceratium reticulatum all have the capacity to reproduce both by vegetative cell division and by sexual reproduction. The product of sexual reproduction in all cases is a resting cyst, which can sink to the sediments and remain dormant for a time. Resting cyst production results in a coupling between the benthic and pelagic components of estuarine systems and forms an important part of the ecological strategy of dinoflagellates. A variety of aspects of sexual reproduction of these four species were investigated. -
Blossom Et Al., 2012), in A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Publication Information Center Harmful Algae 64 (2017) 51–62 Contents lists available at ScienceDirect Harmful Algae journal homepage: www.elsevier.com/locate/hal A search for mixotrophy and mucus trap production in Alexandrium spp. and the dynamics of mucus trap formation in Alexandrium pseudogonyaulax a, a b a Hannah E. Blossom *, Tine Dencker Bædkel , Urban Tillmann , Per Juel Hansen a Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark b Alfred-Wegener Institute for Polar and Marine Research, Chemical Ecology, Am Handelshafen 12, Bremerhaven, 27570, Germany A R T I C L E I N F O A B S T R A C T Article history: fl Received 6 January 2017 Recently, a hitherto unknown feeding strategy, the toxic mucus trap, was discovered in the dino agellate Received in revised form 15 March 2017 Alexandrium pseudogonyaulax. In this study, over 40 strains of 8 different Alexandrium species (A. Accepted 17 March 2017 ostenfeldii, A. tamarense, A. catenella, A. taylorii, A. margalefii, A. hiranoi, A. insuetum and A. Available online xxx pseudogonyaulax) were screened for their ability to ingest prey and/or to form mucus traps. The mucus trap feeding strategy, where a mucus trap is towed by the longitudinal flagellum remains unique to A. Keywords: pseudogonyaulax. In additional experiments, details of the trap were examined and quantified, such as Alexandrium pseudogonyaulax speed and frequency of trap formation as well as what happens to the trap after the A. pseudogonyaulax Alexandrium spp. -
Harmful Algae News
1 The Intergovernmental Oceanographic Commission of UNESCO May 2008 HARMFUL ALGAE NEWS An IOC Newsletter on toxic algae and algal blooms http://ioc.unesco.org/hab/news.htm No. 36 • Turkey Mucilage event associated with diatoms and dinoflagellates in Sea of Marmara, Turkey The massive presence of consisting of white gelatinous material mid-autumn 2007 along the north- mucilaginous organic matter, resulting initially suspended at the surface and in eastern part of Marmara Sea with from planktonic and benthic algal the water column was noticed along the temperatures 18.4±1.0oC. It extended blooms, has become more frequent in Turkish coast of the Marmara Sea from Izmit Bay to the Dardanelles during many coastal waters around Europe, (especially Izmit Bay). Marmara Sea the calm weather period; it was denser especially in the Adriatic. The has a rather complex hydrological and of longer duration in Izmit Bay, appearance of mucilage in the Adriatic system, in a zone of transition between which is affected by intense industrial Sea has been reported periodically since dense (salinity 37- 38.5 ‰) and warmer activity, and which has a weaker 1800, with major mucus blooms during waters originating in the Mediterranean circulation compared to Marmara Sea. the 1990s [1]. The mucilage Sea, and cold, lower-salinity water (20- To identify phytoplankton species phenomenon of the Adriatic Sea had 22 ‰) coming from the Black Sea. The responsible for the mucilage, water usually been related to extracellular pycnocline lies at 10 to 30 m depth and samples were collected from surface organic matter of phytoplanktonic origin. varies seasonally [2].