EPIC Biophotonics Symposium and Exhibition 26-27 November 2015 | Berlin, Germany

Total Page:16

File Type:pdf, Size:1020Kb

EPIC Biophotonics Symposium and Exhibition 26-27 November 2015 | Berlin, Germany www.epic-assoc.com/epic-biophotonics-symposium-and-exhibition Talks by medical doctors: 15 minutes + 5 minutes Q&A Talks by companies, universities and research organizations: 10 minutes + 5 minutes Q&A Please note that timing is strictly respected at EPIC meetings. No company pitch, focus on technology. This is an EPIC technology workshop fostering exchange among actors of the value chain. Prior to the event, a list of participants including biography + picture of each attend and company description will be shared. The event is limited to 75 attendees to ensure efficient networking. 25 NOVEMBER 2015 EPIC members, EPIC committee, and medical doctors only (free of charge, registration required) 20:00 Dinner – Location to be announced. 26 NOVEMBER 2015 EPIC members, EPIC committee, and medical doctors only (free of charge, registration required) 08:30 Welcome Coffee 09:00 Introduction to Elisabeth Klinik - Zentrum Lasermedizin by Prof. Dr.med. H.-Peter Berlien 09:15 Medical doctor presentation + discussion 10:00 Coffee Break 10:30 Medical doctor presentation + discussion 11:15 Departure to Messe Berlin for EPIC Workshop (bus / car / public transport) 12:00 REGISTRATION / SNACKS / NETWORKING MARKETPLACE Session 1: Photonics-enabled in-vivo Imaging and Spectroscopy in Oncology Cellular microscopy techniques (confocal, spectroscopy, Raman, etc.) are already available to provide accurate characterization of tissues but the true challenge now is to bring these microscopic optical approaches into endoscopic instruments. This in vivo microscopy will contribute significantly to improve the diagnosis of several pathologies in the clinic. Topic 1 : Label-free Imaging Modalities for in-situ resection monitoring 13:00 EPIC Welcome, Carlos Lee, Director General 13:10 “Application of spectroscopic methods for the prevention of side effects on patients during chemotherapy” by Prof. Dr. Dr.-Ing Juergen Lademann, M. Darvin, H. Richter, A. Patzelt, M. Meinke, S. Jung. Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité – Universitätsmedizin Berlin, Berlin, Germany Although chemotherapeutics for cancer treatment are becoming increasingly efficient these days, they often cause severe dermal side effects. Systemically applied doxorubicin is known for inducing free radicals, which lead to the development of the hand-foot syndrome. This syndrome manifests itself through skin irritations via blistering to open wounds. As doxorubicin exhibits a fluorescence signal in the 520-600 nm region if excited at 488 nm, the doxorubicin’s leakage onto the skin surface could be analysed. It was found that part of the doxorubicin is ejected with the sweat onto the skin surface, where it spreads and penetrates into the skin like topically applied. This process is prominent especially in the palmar and plantar region where the density of sweat glands is highest. By topical application of antioxidants the doxorubicin could be prevented from inducing free radicals in the skin and consequently the hand-foot syndrome. 13:30 “Real-time multispectral imaging for biomedical applications” by Dr. Nikolaos Deliolanis, Group Leader, Fraunhofer IPA-PAMB Multispectral (MS) imaging of tissue can reveal anatomical, functional and pathological information by identifying concentrations of absorbers like oxy- and deoxy-hemoglobin and, additionally, multiple intrinsic fluorochromes or externally administered probes. State of the art MS imaging systems are limited: they can image only one fluorochrome, and not simultaneously with color images. We present an imaging platform based on a combined approach of temporal and spectral multiplexing that acquires MS fluorescence and reflectance images over the entire VIS/NIR spectrum without spectral gaps and unmixes the images to 6 fluorescence and 6 reflectance components. It can be directly adapted to existing systems like surgical microscopes or rigid endoscopes. We present results from preclinical experiments of fluorescence guided in-vivo tumor resection. 13:45 “OCT: an excellent match between what we have and what we want for the next generation medicine, applied to cancer” by Frans Dhaenens, Clinical Research Consultant, Agfa HealthCare The current trend of "precision medicine" points towards diagnostic and therapeutic genetic- determined biological processes with a personal basis. The medical model shifts towards sensitive and specific "point-of-care" detection technologies often multiplexed, generating huge datasets, which can be analysed in a meaningful way because they obey well established laws of physics giving sight on "quantum-biologics". Photonic imaging methods have the potential to span the classic divide between macro-imaging and histopathology. When offered at an attractive cost, photonics are accepted easily in a rather conservative daily workflow. The approach of photonic imaging to the growing cancer problem is demonstrative for its potential in medicine. 14:00 “Optical in vivo detection of cancer by Raman microspectroscopy” by Dr. Oliver Duehr, Senior Sales Engineer, Ocean Optics At present the success of a standard cancer treatment is investigated by biopsy and laboratory analysis. With the demonstrated in vivo Raman microspectroscopy it is possible to accelerate this process down to a few seconds to get information about the success of the cancer treatment and to distinguish between either vital or necrotic tissue by Raman spectra and assignment of the Raman spectral clusters. Although a classification model for the spectral data is used, the discrimination of necrotic and vital tissue yield an accuracy of 100%. The results makes Raman spectroscopy a powerful candidate for in vivo carcinogenic tissue analysis. 14:15 “The future of bio-optics in peri-operative surgical oncology” by Tim Clay, Associate Director, Global Medtech, Cambridge Consultants Significant advances have been achieved in real-time optical imaging strategies for intraoperative tumour detection and margin assessment. Optical imaging holds promise in achieving the highest percentage of negative surgical margins and in early detection of micrometastastic disease over the next decade. Currently the use of imaging modalities for guidance during surgical interventions has been limited to incidental use of intraoperative X-ray fluoroscopy and ultrasonography. However, there is a rapidly developing landscape for novel optical technologies, which will uncover the detailed micro-structure of tumour pathologies in situ and provide surgeons with new tools and techniques for successful patient treatment. We intend to provide a review of such techniques and weigh up the significance of such technologies. 14:30 COFFEE BREAK & NETWORKING IN MARKETPLACE Topic 2 : Progress in Fiber Optics for Minimally Invasive Surgery & Diagnostic 15:00 “In vivo study for the discrimination of cancerous and normal skin using fibre probe-based Raman spectroscopy” by Asst. Prof. Martina C. Meinke1, J. Schleusener 2, P. Gluszczynska 2, C.Reble1,2, I. Gersonde 2, J. Helfmann 2, JW Fluhr1, J. Lademann , H. Röwert 1, A. Patzelt1 1 Department of Dermatology, Venerology and Allergology, Charité – Universitätsmedizin Berlin, Germany 2 Laser- und Medizin-Technolgie GmbH Berlin, Berlin, Germany The application of fiber-coupled Raman probes for the discrimination of cancerous and normal skin has the advantage of a noninvasive in vivo application, easy clinical handling, and access to the majority of body sites, which would otherwise be limited by stationary Raman microscopes. In this in vivo clinical evaluation, the probe design is optimized for epithelial sensitivity, whereby a large part of the detected signal originates from within the epidermal layer’s depth down to the basal membrane where early stages of skin cancer develop. 15:30 Bioresorbable optical fibres: status and perspectives” by Daniel Milanese, Associate Professor, Politecnico di Torino Typically, the implementation of optical fibres to the biomedical field have foremost focused on the bio-compatibility of the fibre material. The development of bioresorbable optical fibres could pave the way to novel biomedical devices that combine several health diagnostic functionalities in compact format. The main types of currently available bioresorbable optical fibres will be reviewed together with their advantage and their range of applications. 15:45 "Specialty Optical Fibers Make Surgery Less Invasive" by Chris Emslie, CEO, Fibercore The use of specialised coatings, appropriately selected and processed enable fibers to survive multiple cycles of autoclave sterilisation. Careful matching and tight control of optical parameters facilitate optical coherence tomography (OCT) used in non-contact surface profiling for opthalmology as well as the precise navigation of blood-vessels to enable the safe and even de-skilled insertion of guide-wires. The incorporation of minute, intrinsic sensors into probes make the measurement of blood-flow and even gas analysis possible. The next generation of catheters and guide-wires, combining multi-core and FBG technologies may even render X-ray obsolete in many procedures by providing real-time information of the exact shape of the probe. 16:00 "Fiber spectroscopy for biophotonics - methods & sensors for promising applications" by Dr. Viacheslav Artyushenko, President, art photonics Spectral fiber sensors development described to detect tumor margins – due to the need to reduce 30% of incomplete tumor removal in surgery. Comparison of
Recommended publications
  • Chemical Engineering Education Graduate Education in Chemical Engineering
    I • N • D • E • X GRADUATE EDUCATION ADVERTISEMENTS Akron, Uni versity of. .......... , .... ... .................. 321 Iowa State Uni versity .................. ... ....... ....... 360 Pensylvania State Uni versity ........................ 395 Alabama, University of ................................ 322 Johns Hopkins University .... .... .. .... .... .......... 361 Pittsburgh, University of .............................. 396 Alabama, Huntsville; Uni versity of.. .... .. ..... 323 Kansas, University of ............................... .... 362 Polytechnic University .. .... ... .... ........... .. ..... .. 397 Alberta, Uni versity of .. ........ .... .. .... ... ..... ..... .. 324 Kansas State University ............... ... ...... ........ 363 Princeton University ....................... .......... .. .. 398 Arizona, University of ....... .. .... .. .... ... .. ... ....... 325 Kentucky, Uni versity of ........................ .. ..... 364 Purdue University .. ........... ... ... ....... ... .... .... ... 399 Arizona State University ..... .. ... ...... ..... ......... 326 Lamar University .. ... ..... ..... ......... ........... .. ..... 430 Rensselaer Polytechnic Institute .... ...... .... ... .. 400 Auburn Uni versity .. ..... .. ... ..... .. .............. .... ... 327 Laval Universite ...................... ........... ...... .. .. 365 Rhode Island, University of.. .... ..... .. ... ..... .. ... 435 Bri gham Young Uni versity .............. ... .. ..... ... 427 Lehigh University .................................. .... ... 366 Rice University
    [Show full text]
  • Underwater Transformer
    ALL ABOARD THE THE LAST A FORGOTTEN MICROGRIDS HYDROGEN TRAIN TRANSISTOR? REVOLUTION GO MOBILE Fuel cells go the Nanosheet devices and Why switching power A new and cleaner extra mile the end of Moore’s Law supplies triumphed way to power a ferry P. 06 P. 30 P. 36 P. 42 THIS UNTETHERED HALF HUMANOID WILL WORK ON OFFSHORE OIL RIGS AND GO DEEPER THAN FOR THE FOR THE TECHNOLOGY INSIDERTECHNOLOGY | 08.19 HUMAN DIVERS INSIDER P. 22 08.19 THE UNDERWATER TRANSFORMER Subscriber Address Box Zurich Instruments ∏ Arbitrary Waveform Generators ∏ Impedance Analyzers ∏ Lock-in Amplifiers ∏ Quantum Computing Control Systems experience LabOne LabOne® provides users with a platform independent instrument control including proven measurement methodo- logies. It's designed to offer a great amount of flexibility for instrument usage and assures quick and efficient ope- ration. The browser based user interface provides an outstanding toolset for time and frequency domain analysis as well as sophisticated support to set up control loops, making noise measure- ments or to interpret measurement data. Let's discuss your application Intl. +41 44 515 0410 USA 855-500-0056 (Toll Free) [email protected] www.zhinst.com CONTENTS_08.19 THE UNDER- WATER 30 THE LAST 36 THE QUIET 42 HAPPINESS IS 06 NEWS SILICON REMAKING OF A HYBRID-ELECTRIC 14 RESOURCES TRANSFORMER TRANSISTOR COMPUTER POWER FERRY 04 OPINION The next step in SUPPLIES The retrofitted 52 PAST FORWARD A startup founded by ex-NASA the evolution of the Here’s how the ship offers a clean, engineers wants to upend subsea transistor is the compact and efficient quiet ride for 4,500 nanosheet device.
    [Show full text]
  • Development of a First-Generation Miniature Multiple Reference Optical Coherence Tomography Imaging Device
    Development of a first-generation miniature multiple reference optical coherence tomography imaging device Paul M. McNamara Roshan Dsouza Colm O’Riordan Seán Collins Peter O’Brien Carol Wilson Josh Hogan Martin J. Leahy Paul M. McNamara, Roshan Dsouza, Colm O’Riordan, Seán Collins, Peter O’Brien, Carol Wilson, Josh Hogan, Martin J. Leahy, “Development of a first-generation miniature multiple reference optical coherence tomography imaging device,” J. Biomed. Opt. 21(12), 126020 (2016), doi: 10.1117/1.JBO.21.12.126020. Downloaded From: http://biomedicaloptics.spiedigitallibrary.org/ on 01/02/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx Journal of Biomedical Optics 21(12), 126020 (December 2016) Development of a first-generation miniature multiple reference optical coherence tomography imaging device Paul M. McNamara,a,b,* Roshan Dsouza,a,b Colm O’Riordan,c Seán Collins,c Peter O’Brien,c Carol Wilson,b Josh Hogan,b and Martin J. Leahya aNational University of Ireland, School of Physics, Tissue Optics and Microcirculation Imaging Group, National Biophotonics and Imaging Platform, Galway H91 CF50, Ireland bCompact Imaging Inc., 897 Independence Avenue, Suite 5B, Mountain View, California 94043, United States cIrish Photonic Integration Centre (IPIC), Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork T12 R5CP, Ireland Abstract. Multiple reference optical coherence tomography (MR-OCT) is a technology ideally suited to low-cost, compact OCT imaging. This modality is an extension of time-domain OCT with the addition of a partial mirror in front of the reference mirror. This enables extended, simultaneous depth scanning with the relatively short scan range of a miniature voice coil motor on which the scanning mirror is mounted.
    [Show full text]
  • Effect of Low-Level Laser Therapy On
    Ann Appl Sport Sci 9(2): e912, 2021. http://www.aassjournal.com; e-ISSN: 2322–4479. 10.29252/aassjournal.912 ORIGINAL ARTICLE Effect of Low-Level Laser Therapy on Muscle Strength and Endurance and Post-Exercise Recovery of Young Adult: A Double- Blind, Placebo-Controlled, Randomized Clinical Trial 1Amir Hosein Abedi Yekta, 2Faraj Tabeii, 1Shahin Salehi, 3Mohammad-Reza Sohrabi, 1Mehrshad Poursaeidesfahani, 4Mohammad Hassabi*, 1Nina Hazegh*, 1Behnaz Mahdaviani 1Department of Sports Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.2Department of Nuclear Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.3Department of Community Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.4Taleghani Hospital, Research Development committee, Department of Sports Medicine, Shahid Beheshti University of medical Sciences, Tehran, Iran. Submitted 29 July 2020; Accepted in final form 30 October 2020. ABSTRACT Background. Recovery or post-exercise rehabilitation is an essential part of exercise training. Low-level Laser Therapy (LLLT) is a modality increasing interest for recovery because of having a conservative and non-aggressive method. LLLT also decreases the production of fatigue-related biomechanical markers, such as lactate, C-reactive protein (CRP), and Creatine kinase (CK). Objectives. To investigate the effect of low-level laser therapy on muscle strength and endurance and post-exercise recovery of young adults between 20-35 years old. Methods. Fifty subjects were enrolled in this double-blind, placebo-controlled, randomized clinical trial study. Three days after the familiarization session, the subjects were divided into two groups via block randomization: the first group received pre-exercise laser at 810 nm, 60mW, and 60Hz frequency for 30 seconds on three point’s rectus femoris muscle.
    [Show full text]
  • Optical Computing: a 60-Year Adventure Pierre Ambs
    Optical Computing: A 60-Year Adventure Pierre Ambs To cite this version: Pierre Ambs. Optical Computing: A 60-Year Adventure. Advances in Optical Technologies, 2010, 2010, pp.1-15. 10.1155/2010/372652. hal-00828108 HAL Id: hal-00828108 https://hal.archives-ouvertes.fr/hal-00828108 Submitted on 30 May 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Hindawi Publishing Corporation Advances in Optical Technologies Volume 2010, Article ID 372652, 15 pages doi:10.1155/2010/372652 Research Article Optical Computing: A 60-Year Adventure Pierre Ambs Laboratoire Mod´elisation Intelligence Processus Syst`emes, Ecole Nationale Sup´erieure d’Ing´enieurs Sud Alsace, Universit´e de Haute Alsace, 12 rue des Fr`eres Lumi`ere, 68093 Mulhouse Cedex, France Correspondence should be addressed to Pierre Ambs, [email protected] Received 15 December 2009; Accepted 19 February 2010 Academic Editor: Peter V. Polyanskii Copyright © 2010 Pierre Ambs. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Optical computing is a very interesting 60-year old field of research.
    [Show full text]
  • Photonic Computing: Mimicking the Brain
    research highlights LASER SCANNERS is transformed according to this function, of the modes. These combinations support No moving parts and in turn undergoes a complex feedback subwavelength features of the electromagnetic Sci. Rep. 2, 445 (2012) mechanism involving randomly weighted field that can be accessed (that is, radiation delay lines. They evaluated the performance of coupled in and out) from the far-field. the device’s computation through a standard Calculations suggest that it should be possible spoken digit-recognition test consisting of ten to focus optical waves onto a 30-nm-wide different female speakers reading aloud digits focus at the centre of a 700 nm pulse by from 0 to 9. The computational efficiency employing a time-reversal approach while of the scheme was comparable to the best performing polychromatic interferometric results achieved so far in other systems. far-field subwavelength imaging. DP The processing time for the recognition of one spoken digit was around 20 ms, but BIOPHOTONICS the researchers say this could be reduced to Low-power nanosurgery 100 ns by modifying the system to include J. Biomed. Opt. 17, 101502 (2012) telecommunications-grade devices. SA LIGHT SOURCES 2012 NPG © Sun-powered lasers Opt. Lett. 37, 2670–2672 (2012) Laser scanners are highly useful devices for Thanh Hung Dinh and colleagues in Japan sensing and imaging a wide variety of objects, have constructed a solar-powered laser that but their mechanical and active electronic provides 120 W of continuous-wave output at components limit scanning rates to around a wavelength of 1,064 nm. In the future, lasers 100 kHz.
    [Show full text]
  • Optical Power Transfer and Communication Methods for Wireless Implantable Sensing Platforms
    Optical power transfer and communication methods for wireless implantable sensing platforms Muhammad Mujeeb-U-Rahman Dvin Adalian Chieh-Feng Chang Axel Scherer Downloaded From: http://biomedicaloptics.spiedigitallibrary.org/ on 12/17/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx Journal of Biomedical Optics 20(9), 095012 (September 2015) Optical power transfer and communication methods for wireless implantable sensing platforms Muhammad Mujeeb-U-Rahman,* Dvin Adalian, Chieh-Feng Chang, and Axel Scherer California Institute of Technology, Electrical Engineering, 1200 East California Boulevard, Pasadena, California 91125, United States Abstract. Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long- sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such sys- tems in real world applications. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.9.095012] Keywords: implant; sensors; wireless; optical; photovoltaics. Paper 150236PRR received Apr. 8, 2015; accepted for publication Aug. 25, 2015; published online Sep. 25, 2015. 1 Introduction Using integrated systems to achieve wireless power transfer The application of microelectronic technologies to medicine has and communication functions is a key step to decrease the foot- print for the wireless implants.
    [Show full text]
  • Bio Photonics - May/June 2020 - Light Brings a Delicate Touch to Treatment 8/7/20, 12:33 PM
    Bio Photonics - May/June 2020 - Light Brings a Delicate Touch to Treatment 8/7/20, 12:33 PM LIGHT THERAPY Light Brings a Delicate Touch to Treatment https://www.biophotonics-digital.com/biophotonics/may_june_2020…GRSvBPUslhBElahMntnuXHXbAkB9SNWPd--2A85HLFzz-g#articleId1587970 Page 1 of 12 Bio Photonics - May/June 2020 - Light Brings a Delicate Touch to Treatment 8/7/20, 12:33 PM From alleviating pain, in!ammation, and depression to encouraging a youthful complexion, LEDs and lasers o"er a drug-free, precisely targeted therapy with minimal reported side e"ects. BY MARIE FREEBODY, CONTRIBUTING EDITOR i lmost as soon as the first working laser was built in 1960 by Theodore Maiman, reports from users of lasers multiplied regarding the curious effects A that light can elicit on living tissue. In 1962, dermatologic surgeon Leon Goldman reported the successful laser removal of unwanted skin markings, specifically tattoos. Fast forward to today, and similar techniques are used to erase birthmarks and pigmentation as well. In 1967, professor Endre Mester at Semmelweis Medical University in Hungary https://www.biophotonics-digital.com/biophotonics/may_june_2020…GRSvBPUslhBElahMntnuXHXbAkB9SNWPd--2A85HLFzz-g#articleId1587970 Page 2 of 12 Bio Photonics - May/June 2020 - Light Brings a Delicate Touch to Treatment 8/7/20, 12:33 PM In 1967, professor Endre Mester at Semmelweis Medical University in Hungary wondered whether laser beams might cause skin cancer because early radiologists were developing the disease on their hands when exposed to x-rays. Mester performed an experiment on two groups of shaved mice, aiming a low- powered ruby laser at one group and not the other, to see whether the treatment group would develop cancer.
    [Show full text]
  • Annual Report 2015-2016 November 2016 Department Operations Contents Departmentaldepartmental General General University Budget Budget Department Operations
    Department of Mechanical Engineering Annual Report 2015-2016 November 2016 Department Operations Contents DepartmentalDepartmental General General University Budget Budget Department Operations .......................... 2 $12,000,000$12,000,000 Statistics ..................................................... 4 $10,000,000$10,000,000 Undergraduate Program Highlights ..... 6 $8,000,000$8,000,000 Senior Design Projects ........................... 6 Graduate Program Highlights ..............10 $6,000,000$6,000,000 Doctoral Dissertations ..........................10 $4,000,000$4,000,000 Department Organization .....................12 $2,000,000$2,000,000 Research Portfolio .................................29 $0$0 Journal Publications ..............................30 20082008 20092009 20102010 20112011 20122012 20132013 20142014 20152015 20162016 20172017 Fiscal YearFiscal Year Sections or Chapters in Books, Monographs, or Similar Volumes ..........................37 Patents Awarded ....................................38 Conference Proceedings .....................38 Personnel (Full-Time Equivalent) Tenure and Tenure-Track Faculty 41.50 Non-Tenure Eligible Lecturers 13.33 P&S and Merit Staff 26.80 Research Sponsors (partial list) American Chemical Society Petro- Department of Justice leum Research Fund Iowa Energy Center American Society of Heating Re- Molecular Express Inc. - DBA Apta- frigerating and Air Conditioning logic Inc. Engineering Inc. NASA Carbon Solutions Inc. National Science Foundation Columbia University Sabic Petrochemicals
    [Show full text]
  • Miniaturize Your Optical System Into a Photonic Integrated Circuit Learn How Can You Benefit from This Technology
    January, 2018 White paper v2.1 Miniaturize your optical system into a photonic integrated circuit Learn how can you benefit from this technology Summary Photonic technologies use the light to enable multiple applications nowadays, from optical telecommunications to biomedical diagnostic devices or precise fibre sensors for all kinds of structures. Still, optical components tend to be bulky and expensive, and require precise stabilization and assembly, especially when interfacing with electronics. Embedding some photonic functionalities into an integrated optical chip can simplify a system and dramatically decrease its costs. However, the cutting edge optical manufacturing technologies enabling such chip integration were traditionally affordable only by very few. Nowadays, ge- neric photonic integration emerges as a new paradigm that provides cost-ef- fective and high-performance miniaturization for a wide range of applications and markets. In this white paper we highlight the advantages of using photonic integrated circuits, and we give a brief overview of the new generic and fabless manu- facturing models and how you can benefit from them. www.vlcphotonics.com VLC Photonics whitepaper Miniaturize your optical system into a photonic integrated circuit Foreground This paper is mainly addressed to: • Technology Officers • R&D Managers Fast • Product Development Engineers You will be introduced to the concept of photonic integration, and Read understand how it can improve your optical systems through: • size and weight reduction, • improved stability and robustness, Lane • increased functionality and performance, and • reduced assembly, packaging, test and operation costs “This white paper pre- sents the benefits of merging several opti- cal devices into a sin- gle chip, and the main manufacturing tech- nologies and methods used for that” Fig.
    [Show full text]
  • Biophotonics at 20 Meeting the Needs of a Growing and Vital Market
    PhotonPS.Ics MedIa Market.Ing newsletter March 2014 • Volume 2 • Issue 2 BioPhotonics at 20 Meeting the needs of a growing and vital market One of the main drivers of the current growth BioPhotonics International – from the pages promising biophotonic technologies more and interest in biophotonics is the world’s of Photonics Spectra in the fall of 1994, quickly into clinical use. Our readers count aging population, which brings with it a when the promise of biophotonic technology on BioPhotonics magazine for an unmatched growing number of patients suffering from applications in the life sciences began level of dedicated coverage, including the a broad range of critical illnesses. Biophoton- to grow and it became clear that those using latest research news right along with the top ics applications enable faster detection and the technology on a daily basis needed a industry news – and both strong technology optimum treatment of many such illnesses, publication that delivered 100 percent rele- and application articles in every issue. as is underscored in a recent report, “Global vant content in every issue. And, of course, BioPhotonics is available Biophotonics Market to 2016,” from Dublin- The publisher at the time, Wendy A. in print, digital and mobile versions, reflect- based Research and Markets. Laurin, wrote, “As you look through this first ing both expanding reader options as well as Light microscopy and other associated issue, we hope you will share our sense of the exciting and rapid uptake of biophotonic technologies are used to detect biological awe at the increasing number of ways that technologies across the life sciences.
    [Show full text]
  • Silicon Photonic Biosensors
    Silicon photonic biosensors Invited paper C. Ciminelli, D. Conteduca, F. Dell’Olio, M.N. Armenise Polytechnic University of Bari, Via Edoardo Orabona, 4, 70126 Bari - Italy Tel: +390805963404, e-mail: [email protected] ABSTRACT Silicon-based optical biosensors used for biomedical applications are described. In particular, integrated optical devices and their advantages, in terms of high performance and compactness, and also high reliability and long life term, have been reported. Since the last years, these features have been allowing to realize high-efficiency biosensing platforms with on-chip integration of several biosensors for a multi-analyte detection. Many lab-on- chip systems integrated in portable medical instruments have been proposed in literature and already commercialized in the worldwide market, so reaching extraordinary improvements in the early detection and monitoring of several diseases. Therefore, fast and accurate self-tests achievable with silicon photonic biosensors are remarkably opening new possibilities and applications in the healthcare industry. Keywords: Biosensors, Silicon Photonics, Biophotonics 1. INTRODUCTION In the last decades a strong effort has been observed in the healthcare industry to improve the quality of services for patients, in order to reduce the number of deaths and improve the outcomes in a shorter time. This corresponds to a better patients’ life quality and also remarkably reduced costs for Health System. In particular, many advantages have been achieved by adopting electronic patient records and by developing a better organization and management of first aid centres and hospitals to reduce the average hospitalization period for each patient with a continuous monitoring at home after the hospital discharge without requiring expert users.
    [Show full text]