Dinosaurs! Pdf, Epub, Ebook

Total Page:16

File Type:pdf, Size:1020Kb

Dinosaurs! Pdf, Epub, Ebook DINOSAURS! PDF, EPUB, EBOOK Gail Gibbons | 32 pages | 05 Mar 2009 | Holiday House | 9780823421978 | English | New York, NY, United States Dinosaurs! PDF Book Comment and Reply. There is general agreement that some behaviors that are common in birds, as well as in crocodiles birds' closest living relatives , were also common among extinct dinosaur groups. Anchiornis - A four-winged dino-bird that resembled Microraptor. Let us know if you have suggestions to improve this article requires login. Dinosaur legs extend directly beneath the body, whereas the legs of lizards and crocodilians sprawl out to either side. November—December It has been suggested that because small mammals, squamata and birds occupied the ecological niches suited for small body size, non-avian dinosaurs never evolved a diverse fauna of small-bodied species, which led to their downfall when large-bodied terrestrial tetrapods were hit by the mass extinction event. They were wrong. New York: W. This dinosaur was likely resting in a burrow before it was abruptly buried alive. The earliest part of this time saw the spread of ankylosaurians, iguanodontians , and brachiosaurids through Europe , North America, and northern Africa. Edward Drinker Cope. Sinoceratops - A rare ceratopsian from late Cretaceous China. The battle of the sourpusses! Denisovans are an extinct species of hominid and a close relative to modern humans. Dutton , ; London : Evans Brothers Ltd , ]. Anatosaurus - This dinosaur is now known as either Anatotitan or Edmontosaurus. One of the best examples of soft-tissue impressions in a fossil dinosaur was discovered in the Pietraroia Plattenkalk in southern Italy. Neanderthals are an extinct species of hominids that were the closest relatives to modern human beings. Translation by Gerhard Maier. The idea of dinosaurs as ectothermic remained a prevalent view until Robert T. December 27, History of Life 4th ed. Paronychodon - This "tooth taxon" didn't make it out of the 19th century. Dinosaurs! Writer Opisthocomiformes hoatzin. Gaviiformes loons or divers Sphenisciformes penguins Procellariiformes albatrosses and petrels Ciconiiformes storks Suliformes cormorants and relatives Pelecaniformes pelicans and relatives. These stones are swallowed by animals to aid digestion and break down food and hard fibers once they enter the stomach. April 30, Chinese Science Bulletin. Anzu - This Oviraptor relative was recently discovered in North America. However, a majority of contemporary paleontologists concerned with dinosaurs reject the traditional style of classification in favor of phylogenetic taxonomy; this approach requires that, for a group to be natural, all descendants of members of the group must be included in the group as well. A Middle Triassic dinosauriform from Tanzania". This included even more detailed tissue, down to preserved bone cells that seem even to have visible remnants of nuclei and what seem to be red blood cells. Other groups of animals were restricted in size and niches; mammals , for example, rarely exceeded the size of a domestic cat, and were generally rodent-sized carnivores of small prey. Berkeley: University of California Museum of Paleontology. Palaeognathae Struthioniformes ostriches Rheiformes rheas Tinamiformes tinamous Apterygiformes kiwis Casuariiformes emus and cassowaries. Venenosaurus - This "poison lizard" was really a gentle plant-eater. Subscribe for fascinating stories connecting the past to the present. Further research has found medullary bone in the carnosaur Allosaurus and the ornithopod Tenontosaurus. Anatomically, these two groups can be distinguished most noticeably by their pelvic structure. Hoboken, NJ: Wiley- Blackwell. Zalmoxes - A strange-looking ornithopod from Romania. There is evidence that many types of slow-growing dinosaurs, including various theropods, sauropods, ankylosaurians, ornithopods, and ceratopsians, formed aggregations of immature individuals. Scientists excavating dinosaur fossils from a quarry wall in Dinosaur National Monument, Colorado. Dinosaurs! Reviews Discovered in Argentina in , the Argentinosaurus is estimated to have been 37 to 40 metres to feet long and weighed up to metric tons. Subscribe today. In , the estimated number of dinosaur species that existed in the Mesozoic was estimated to be 1,—2, Was this review helpful to you? Major new dinosaur discoveries have been made by paleontologists working in previously unexploited regions, including India, South America, Madagascar, Antarctica, and most significantly China the well-preserved feathered dinosaurs [58] in China have further consolidated the link between dinosaurs and their living descendants, modern birds. Drawing out Leviathan: Dinosaurs and the Science Wars. Dinosaurs are a varied group of animals from taxonomic , morphological and ecological standpoints. The crests and frills of some dinosaurs, like the marginocephalians , theropods and lambeosaurines , may have been too fragile to be used for active defense, and so they were likely used for sexual or aggressive displays, though little is known about dinosaur mating and territorialism. The entry of the word "dinosaur" into the common vernacular reflects the animals' cultural importance: in English, "dinosaur" is commonly used to describe anything that is impractically large, obsolete, or bound for extinction. London: Royal Society. The Complete Dinosaur. Journal of the Geological Society. Despite their unrefined methods, the contributions of Cope and Marsh to paleontology were vast: Marsh unearthed 86 new species of dinosaur and Cope discovered 56, a total of new species. Testing the hypothesis on neontological and paleontological evidence". They became the dominant terrestrial vertebrates after the Triassic— Jurassic extinction event Martin's Press. April 17, Sign In. Although some later groups of dinosaurs featured further modified versions of these traits, they are considered typical for Dinosauria; the earliest dinosaurs had them and passed them on to their descendants. Byronosaurus - This theropod was a close relative of Troodon. Updated February 17, London: Portland Press. The following is a simplified classification of dinosaur groups based on their evolutionary relationships, and organized based on the list of Mesozoic dinosaur species provided by Holtz If the bone was not re-deposited into that stratum by weathering action, it would provide evidence that some dinosaur populations may have survived at least a half-million years into the Cenozoic. August 15, September Fulgurotherium - Very little is known about this "lightning beast. Zapalasaurus - This "diplodocoid" sauropod lived in early Cretaceous South America. Other fossil bones began turning up in Europe: fragments described and named as Thecodontosaurus and Palaeosaurus by two English students, Henry Riley and Samuel Stutchbury, and the first of many skeletons named Plateosaurus by the naturalist Hermann von Meyer in Princeton Field Guides. Richfield earl's boss, a triceratops who seems to be a carnivore. Dinosaurs! Read Online In the northern continents of North America and Asia, the major theropods were tyrannosaurids and various types of smaller maniraptoran theropods, with a predominantly ornithischian herbivore assemblage of hadrosaurids, ceratopsians, ankylosaurids, and pachycephalosaurians. Physical Review Letters. Alternate Versions. Yueosaurus - This basal ornithopod was discovered by construction workers. Metacritic Reviews. Bakker, Robert T. In , William Parker Foulke discovered the first known American dinosaur, in marl pits in the small town of Haddonfield, New Jersey. Nanuqsaurus - This "polar lizard" was recently discovered in Alaska. Their remains are found in sedimentary rock layers strata dating to the Late Triassic Epoch approximately million to Arganarhinus Ebrachosuchus Paleorhinus Parasuchus Wannia. Sauroniops - This dinosaur's name means "Eye of Sauron. Freeman and Company. Anchiceratops - This dinosaur had a distinctively shaped frill. Gaviiformes loons or divers Sphenisciformes penguins Procellariiformes albatrosses and petrels Ciconiiformes storks Suliformes cormorants and relatives Pelecaniformes pelicans and relatives. Articles from Britannica Encyclopedias for elementary and high school students. Clear your history. Using this information, Owen determined that the three formed a special group of reptiles, which he named Dinosauria. December 26, Don't let those big names distract you from peculiar dinosaurs like the Segnosaurus, Sciurumimus, and Sinocalliopteryx. Look for the Scipionyx, which is one of the best-preserved fossils discovered to date. Neanderthals Neanderthals are an extinct species of hominids that were the closest relatives to modern human beings. Originally applied to just a handful of incomplete specimens, the clade Dinosauria now encompasses more than generic names and at least 1, species, with new names being added to the roster every year as the result of scientific explorations around the world. In the years when the Deccan Traps hypothesis was linked to a slower extinction, Luis Alvarez who died in replied that paleontologists were being misled by sparse data. Some walked on four legs quadrupedal , and some were able to switch between these two walking styles. Charonosaurus - This duck-billed dinosaur was much bigger than an elephant. Chilesaurus - This plant-eating theropod was recently discovered in Chile. Dinosaur Paleobiology. A special volume of the American Journal of Science. What do the latest fossil findings reveal about the dinosaur
Recommended publications
  • First Record of Mesozoic Terrestrial Vertebrates from Lithuania
    Edinburgh Research Explorer First record of Mesozoic terrestrial vertebrates from Lithuania Citation for published version: Brusatte, SL, Butler, RJ, Niedwiedzki, G, Sulej, T, Bronowicz, R & Nas, JS 2013, 'First record of Mesozoic terrestrial vertebrates from Lithuania: Phytosaurs (Diapsida: Archosauriformes) of probable Late Triassic age, with a review of phytosaur biogeography', Geological Magazine, vol. 150, no. 1, pp. 110-122. https://doi.org/10.1017/S0016756812000428 Digital Object Identifier (DOI): 10.1017/S0016756812000428 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Geological Magazine Publisher Rights Statement: Final Published Version by Cambridge University Press (2013) can be made available on Institutional Repository 12 months after publication date. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 23. Sep. 2021 Geol. Mag. 150 (1), 2013, pp. 110–122. c Cambridge University Press 2012 110 doi:10.1017/S0016756812000428 First record of Mesozoic terrestrial vertebrates from Lithuania: phytosaurs (Diapsida: Archosauriformes) of probable Late Triassic age, with a review of phytosaur biogeography ∗ STEPHEN L.
    [Show full text]
  • M.A. TAYLOR 1 and R.D. CLARK 2 Methodology and Repositories
    Ichthyosaurs from the Lower Lias (Lower Jurassic) of Banwell, Somerset ICHTHYOSAURS FROM THE LOWER LIAS (LOWER JURASSIC) OF BANWELL, SOMERSET M.A. TAYLOR 1 AND R.D. CLARK 2 Taylor, M.A. and Clark, R.D. 2016. Ichthyosaurs from the Lower Lias (Lower Jurassic) of Banwell, Somerset. Geoscience in South-West England, 14, 59–71. Two Lower Jurassic ichthyosaurs, lost in a 1940s air raid, are identified from archival records and surviving 19th century plaster casts distributed by their owner, the Bristol Institution for the Advancement of Science, Literature and the Arts. One was the type specimen of Ichthyosaurus latimanus Owen, 1840. The other, initially labelled Ichthyosaurus intermedius Conybeare, 1822, was the first ichthyosaur in which remains of the soft tissue of the tail fin were identified, confirming Richard Owen’s earlier prediction. Unfortunately Owen’s published account conflated the two specimens, apparently by the erroneous transposition of a passage of text. Owen possibly regarded the second specimen as the type of I. intermedius. In 1889 Richard Lydekker referred it to Ichthyosaurus conybeari Lydekker, 1888. For unknown reasons, he caused further confusion by suppressing the fact that both ichthyosaur specimens came from Banwell. Banwell is shown to have been a minor but significant source of Lower Lias fossil vertebrates, and also the type locality of the fish Tetragonolepis monilifer Agassiz, 1837, apparently from quarries in the lowermost Jurassic beds at Knightcott. The Bristol Institution assisted Edward Wilson (1808–1888) to obtain at least some of the West Country marine reptiles which his brother Dr Thomas Bellerby Wilson (1807–1865) donated to the Academy of Natural Sciences of Philadelphia, U.S.A.
    [Show full text]
  • Studies on Continental Late Triassic Tetrapod Biochronology. I. the Type Locality of Saturnalia Tupiniquim and the Faunal Succession in South Brazil
    Journal of South American Earth Sciences 19 (2005) 205–218 www.elsevier.com/locate/jsames Studies on continental Late Triassic tetrapod biochronology. I. The type locality of Saturnalia tupiniquim and the faunal succession in south Brazil Max Cardoso Langer* Departamento de Biologia, FFCLRP, Universidade de Sa˜o Paulo (USP), Av. Bandeirantes 3900, 14040-901 Ribeira˜o Preto, SP, Brazil Received 1 November 2003; accepted 1 January 2005 Abstract Late Triassic deposits of the Parana´ Basin, Rio Grande do Sul, Brazil, encompass a single third-order, tetrapod-bearing sedimentary sequence that includes parts of the Alemoa Member (Santa Maria Formation) and the Caturrita Formation. A rich, diverse succession of terrestrial tetrapod communities is recorded in these sediments, which can be divided into at least three faunal associations. The stem- sauropodomorph Saturnalia tupiniquim was collected in the locality known as ‘Waldsanga’ near the city of Santa Maria. In that area, the deposits of the Alemoa Member yield the ‘Alemoa local fauna,’ which typifies the first association; includes the rhynchosaur Hyperodapedon, aetosaurs, and basal dinosaurs; and is coeval with the lower fauna of the Ischigualasto Formation, Bermejo Basin, NW Argentina. The second association is recorded in deposits of both the Alemoa Member and the Caturrita Formation, characterized by the rhynchosaur ‘Scaphonyx’ sulcognathus and the cynodont Exaeretodon, and correlated with the upper fauna of the Ischigualasto Formation. Various isolated outcrops of the Caturrita Formation yield tetrapod fossils that correspond to post-Ischigualastian faunas but might not belong to a single faunal association. The record of the dicynodont Jachaleria suggests correlations with the lower part of the Los Colorados Formation, NW Argentina, whereas remains of derived tritheledontid cynodonts indicate younger ages.
    [Show full text]
  • Theropod Teeth from the Upper Maastrichtian Hell Creek Formation “Sue” Quarry: New Morphotypes and Faunal Comparisons
    Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons TERRY A. GATES, LINDSAY E. ZANNO, and PETER J. MAKOVICKY Gates, T.A., Zanno, L.E., and Makovicky, P.J. 2015. Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons. Acta Palaeontologica Polonica 60 (1): 131–139. Isolated teeth from vertebrate microfossil localities often provide unique information on the biodiversity of ancient ecosystems that might otherwise remain unrecognized. Microfossil sampling is a particularly valuable tool for doc- umenting taxa that are poorly represented in macrofossil surveys due to small body size, fragile skeletal structure, or relatively low ecosystem abundance. Because biodiversity patterns in the late Maastrichtian of North American are the primary data for a broad array of studies regarding non-avian dinosaur extinction in the terminal Cretaceous, intensive sampling on multiple scales is critical to understanding the nature of this event. We address theropod biodiversity in the Maastrichtian by examining teeth collected from the Hell Creek Formation locality that yielded FMNH PR 2081 (the Tyrannosaurus rex specimen “Sue”). Eight morphotypes (three previously undocumented) are identified in the sample, representing Tyrannosauridae, Dromaeosauridae, Troodontidae, and Avialae. Noticeably absent are teeth attributed to the morphotypes Richardoestesia and Paronychodon. Morphometric comparison to dromaeosaurid teeth from multiple Hell Creek and Lance formations microsites reveals two unique dromaeosaurid morphotypes bearing finer distal denticles than present on teeth of similar size, and also differences in crown shape in at least one of these. These findings suggest more dromaeosaurid taxa, and a higher Maastrichtian biodiversity, than previously appreciated.
    [Show full text]
  • Dieter Thomas Tietze Editor How They Arise, Modify and Vanish
    Fascinating Life Sciences Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthusiasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Editor Dieter Thomas Tietze Natural History Museum Basel Basel, Switzerland ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-319-91688-0 ISBN 978-3-319-91689-7 (eBook) https://doi.org/10.1007/978-3-319-91689-7 Library of Congress Control Number: 2018948152 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
    [Show full text]
  • Baker2009chap58.Pdf
    Ratites and tinamous (Paleognathae) Allan J. Baker a,b,* and Sérgio L. Pereiraa the ratites (5). Here, we review the phylogenetic relation- aDepartment of Natural Histor y, Royal Ontario Museum, 100 Queen’s ships and divergence times of the extant clades of ratites, Park Crescent, Toronto, ON, Canada; bDepartment of Ecology and the extinct moas and the tinamous. Evolutionary Biology, University of Toronto, Toronto, ON, Canada Longstanding debates about whether the paleognaths *To whom correspondence should be addressed (allanb@rom. are monophyletic or polyphyletic were not settled until on.ca) phylogenetic analyses were conducted on morphological characters (6–9), transferrins (10), chromosomes (11, 12), Abstract α-crystallin A sequences (13, 14), DNA–DNA hybrid- ization data (15, 16), and DNA sequences (e.g., 17–21). The Paleognathae is a monophyletic clade containing ~32 However, relationships among paleognaths are still not species and 12 genera of ratites and 46 species and nine resolved, with a recent morphological tree based on 2954 genera of tinamous. With the exception of nuclear genes, characters placing kiwis (Apterygidae) as the closest rela- there is strong molecular and morphological support for tives of the rest of the ratites (9), in agreement with other the close relationship of ratites and tinamous. Molecular morphological studies using smaller data sets ( 6–8, 22). time estimates with multiple fossil calibrations indicate that DNA sequence trees place kiwis in a derived clade with all six families originated in the Cretaceous (146–66 million the Emus and Cassowaries (Casuariiformes) (19–21, 23, years ago, Ma). The radiation of modern genera and species 24).
    [Show full text]
  • Onetouch 4.0 Scanned Documents
    / Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.
    [Show full text]
  • Implications for Predatory Dinosaur Macroecology and Ontogeny in Later Late Cretaceous Asiamerica
    Canadian Journal of Earth Sciences Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous Asiamerica Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0174.R1 Manuscript Type: Article Date Submitted by the 04-Jan-2021 Author: Complete List of Authors: Holtz, Thomas; University of Maryland at College Park, Department of Geology; NationalDraft Museum of Natural History, Department of Geology Keyword: Dinosaur, Ontogeny, Theropod, Paleocology, Mesozoic, Tyrannosauridae Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 91 Canadian Journal of Earth Sciences 1 Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: 2 Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous 3 Asiamerica 4 5 6 Thomas R. Holtz, Jr. 7 8 Department of Geology, University of Maryland, College Park, MD 20742 USA 9 Department of Paleobiology, National Museum of Natural History, Washington, DC 20013 USA 10 Email address: [email protected] 11 ORCID: 0000-0002-2906-4900 Draft 12 13 Thomas R. Holtz, Jr. 14 Department of Geology 15 8000 Regents Drive 16 University of Maryland 17 College Park, MD 20742 18 USA 19 Phone: 1-301-405-4084 20 Fax: 1-301-314-9661 21 Email address: [email protected] 22 23 1 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 91 24 ABSTRACT 25 Well-sampled dinosaur communities from the Jurassic through the early Late Cretaceous show 26 greater taxonomic diversity among larger (>50kg) theropod taxa than communities of the 27 Campano-Maastrichtian, particularly to those of eastern/central Asia and Laramidia.
    [Show full text]
  • The Bristol Dinosaur Project
    Proceedings of the Geologists’ Association 123 (2012) 210–225 Contents lists available at ScienceDirect Proceedings of the Geologists’ Association jo urnal homepage: www.elsevier.com/locate/pgeola Teaching Perspective The Bristol Dinosaur Project Michael J. Benton *, Remmert Schouten, Edward J.A. Drewitt, Pedro Viegas School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK A R T I C L E I N F O A B S T R A C T Article history: Dinosaurs have been fascinating to the widest public since the 1840s, and that interest has grown step- Received 18 April 2011 wise ever since. Public interest has been harnessed over the years especially by museums in blockbuster Received in revised form 8 July 2011 exhibitions, and in the form of best-selling books and films. Here we describe a major educational Accepted 8 July 2011 initiative, the Bristol Dinosaur Project, which has run for ten years and has reached tens of thousands of Available online 5 August 2011 children and adults, supported by substantial funding. The Bristol Dinosaur Project focuses on the fourth dinosaur ever named in the world, Thecodontosaurus, discovered in Bristol in 1834, and named in 1836. Keywords: The dinosaur is not in itself spectacular, being only 1–2 m long, but its evolutionary role as one of the first Dinosaurs plant-eating dinosaurs in the world justifies our current research, and provides a strong theme for the Education Engagement public presentation. Further, the fact that the dinosaur is found as disarticulated bones in ancient tropical Outreach cave systems, allows us to develop numerous key themes with all age groups: the geological time scale, Geosciences education continental drift, reconstruction of ancient environments, modern landscape analogues, the rock cycle, evolution, biomechanics, and critical assessment of geological and palaeontological evidence.
    [Show full text]
  • A Beaked Herbivorous Archosaur with Dinosaur Affinities from the Early Late Triassic of Poland
    Journal of Vertebrate Paleontology 23(3):556±574, September 2003 q 2003 by the Society of Vertebrate Paleontology A BEAKED HERBIVOROUS ARCHOSAUR WITH DINOSAUR AFFINITIES FROM THE EARLY LATE TRIASSIC OF POLAND JERZY DZIK Instytut Paleobiologii PAN, Twarda 51/55, 00-818 Warszawa, Poland, [email protected] ABSTRACTÐAn accumulation of skeletons of the pre-dinosaur Silesaurus opolensis, gen. et sp. nov. is described from the Keuper (Late Triassic) claystone of KrasiejoÂw in southern Poland. The strata are correlated with the late Carnian Lehrberg Beds and contain a diverse assemblage of tetrapods, including the phytosaur Paleorhinus, which in other regions of the world co-occurs with the oldest dinosaurs. A narrow pelvis with long pubes and the extensive development of laminae in the cervical vertebrae place S. opolensis close to the origin of the clade Dinosauria above Pseudolagosuchus, which agrees with its geological age. Among the advanced characters is the beak on the dentaries, and the relatively low tooth count. The teeth have low crowns and wear facets, which are suggestive of herbivory. The elongate, but weak, front limbs are probably a derived feature. INTRODUCTION oped nutrient foramina in its maxilla. It is closely related to Azendohsaurus from the Argana Formation of Morocco (Gauf- As is usual in paleontology, with an increase in knowledge fre, 1993). The Argana Formation also has Paleorhinus, along of the fossil record of early archosaurian reptiles, more and with other phytosaurs more advanced than those from Krasie- more lineages emerge or extend their ranges back in time. It is joÂw (see Dutuit, 1977), and it is likely to be somewhat younger.
    [Show full text]
  • An Update of Wallacels Zoogeographic Regions of the World
    REPORTS To examine the temporal profile of ChC produc- specification of a distinct, and probably the last, 3. G. A. Ascoli et al., Nat. Rev. Neurosci. 9, 557 (2008). tion and their correlation to laminar deployment, cohort in this lineage—the ChCs. 4. J. Szentágothai, M. A. Arbib, Neurosci. Res. Program Bull. 12, 305 (1974). we injected a single pulse of BrdU into pregnant A recent study demonstrated that progeni- CreER 5. P. Somogyi, Brain Res. 136, 345 (1977). Nkx2.1 ;Ai9 females at successive days be- tors below the ventral wall of the lateral ventricle 6. L. Sussel, O. Marin, S. Kimura, J. L. Rubenstein, tween E15 and P1 to label mitotic progenitors, (i.e., VGZ) of human infants give rise to a medial Development 126, 3359 (1999). each paired with a pulse of tamoxifen at E17 to migratory stream destined to the ventral mPFC 7. S. J. Butt et al., Neuron 59, 722 (2008). + 18 8. H. Taniguchi et al., Neuron 71, 995 (2011). label NKX2.1 cells (Fig. 3A). We first quanti- ( ). Despite species differences in the develop- 9. L. Madisen et al., Nat. Neurosci. 13, 133 (2010). fied the fraction of L2 ChCs (identified by mor- mental timing of corticogenesis, this study and 10. J. Szabadics et al., Science 311, 233 (2006). + phology) in mPFC that were also BrdU+. Although our findings raise the possibility that the NKX2.1 11. A. Woodruff, Q. Xu, S. A. Anderson, R. Yuste, Front. there was ChC production by E15, consistent progenitors in VGZ and their extended neurogenesis Neural Circuits 3, 15 (2009).
    [Show full text]
  • Some Unpublished Correspondence of the Rev. W.B. Clarke D.F
    Journal & Proceedings of the Royal Society of New South Wales, Vol. 141, p. 1–31, 2008 ISSN 0035-9173/08/02001–31 $4.00/1 Some Unpublished Correspondence of the Rev. W.B. Clarke d.f. branagan and t.g. vallance Abstract: Four previously unpublished letters, with memoranda of Rev. W.B. Clarke to W.S. Macleay, written between 1842 and 1845 clarify the ideas of both about the mode of formation of coal and the age of the stratigraphical succession in the Sydney Basin. Clarke makes the first mention of his discovery of the Lake Macquarie fossil forest, the first identification of the zeolite stilbite in New South Wales and gives details of his study of the volcanic rocks of the Upper Hunter Valley. Keywords: Clarke, Macleay, coal formation, Sydney Basin, stilbite INTRODUCTION essentially self-contained, although, of course, almost no letter can stand alone, but depends When Dr Thomas G. Vallance died in 1993 a on the correspondents. Each letter has some considerable amount of his historical jottings importance in dealing with aspects of Clarke’s and memorabilia on the history of Australian geological work, as will be noted. science, and particularly geology, was passed The first and longest letter, which is ac- on to me (David Branagan) through his wife, companied by a long series of memoranda and Hilary Vallance. For various reasons, only now a labelled sketch fits between two letters from have I been able to delve, even tentatively, into MacLeay (28 June & 4 July 1842) to Clarke. this treasure house. The present note con- Both these MacLeay letters have been repro- cerns four letters of the Reverend W.B.
    [Show full text]