FEMS Microbiology Reviews, fuy037, 43, 2019, 19–52 doi: 10.1093/femsre/fuy037 Advance Access Publication Date: 18 October 2018 Review Article REVIEW ARTICLE Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species Sangyong Lim1, Jong-Hyun Jung1, Laurence Blanchard2 † and Arjan de Groot2,∗, 1Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea and 2Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France ∗Corresponding author: DRF/BIAM/LBC, UMR 7265 CEA-CNRS-AMU CEA, Cadarache, 13108 Saint Paul Lez Durance, France. Tel: +33 04 42 25 39 35; Fax: +33 04 42 25 47 01; E-mail:
[email protected] One sentence summary: The authors reviewed the mechanisms and factors involved in the extreme radiation and oxidative stress resistance in Deinococcus radiodurans in comparison with 10 other resistant Deinococcus species, and highlighted not only conserved pathways but also a large diversity of the repair, protection and regulation toolbox among the different deinococci. Editor: Kenn Gerdes †Arjan de Groot, http://orcid.org/0000-0003-2202-5279 ABSTRACT Deinococcus bacteria are famous for their extreme resistance to ionising radiation and other DNA damage- and oxidative stress-generating agents. More than a hundred genes have been reported to contribute to resistance to radiation, desiccation and/or oxidative stress in Deinococcus radiodurans. These encode proteins involved in DNA repair, oxidative stress defence, regulation and proteins of yet unknown function or with an extracytoplasmic location. Here, we analysed the conservation of radiation resistance-associated proteins in other radiation-resistant Deinococcus species. Strikingly, homologues of dozens of these proteins are absent in one or more Deinococcus species.