Lack of Correlation of Desiccation and Radiation Tolerance In

Total Page:16

File Type:pdf, Size:1020Kb

Lack of Correlation of Desiccation and Radiation Tolerance In FEMS Microbiology Letters, 365, 2018, fny044 doi: 10.1093/femsle/fny044 Advance Access Publication Date: 21 February 2018 Research Letter R E S E A RCH L E T T E R – Environmental Microbiology Lack of correlation of desiccation and radiation tolerance in microorganisms from diverse extreme environments tested under anoxic conditions Kristina Beblo-Vranesevic1,∗,†, Maria Bohmeier1, Alexandra K. Perras2,3, Petra Schwendner4, Elke Rabbow1, Christine Moissl-Eichinger2,5, Charles S. Cockell4, Pauline Vannier6, Viggo T. Marteinsson6,7, Euan P. Monaghan8, Pascale Ehrenfreund8,9, Laura Garcia-Descalzo10, Felipe Gomez´ 10, Moustafa Malki11, Ricardo Amils11,Fred´ eric´ Gaboyer12, Frances Westall12, Patricia Cabezas13, Nicolas Walter13 and Petra Rettberg1 1Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147 Cologne, Germany, 2Department of Internal Medicine, Medical University of Graz, Auerbruggerplatz 15, 8010 Graz, Austria, 3Department of Microbiology and Archaea, University of Regensburg, Universitatsstr.¨ 31, 93053 Regensburg, Germany, 4UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, EH9 3FD, Edinburgh, UK, 5BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria, 6MATISProkaria, Vinlandsleid 12, 113 Reykjav´ık, Iceland, 7Faculty of Food Science and Nutrition, University of Iceland, Vatnsmyrarvegur´ 16, 101 Reykjav´ık, Iceland, 8Leiden Observatory, Universiteit Leiden, Niels Bohrweg 2, 2333 Leiden, Netherland, 9Space Policy Institute, George Washington University, 1957 E Street, 20052 Washington DC, USA, 10Instituto Nacional de Tecnica´ Aeroespacial-Centro de Astrobiolog´ıa (INTA-CAB), Torrejon´ de Ardoz, 28850 Madrid, Spain, 11Centro de Biolog´ıa Molecular Severo Ochoa, Universidad Autonoma´ de Madrid (UAM), Calle Nicolas´ Cabrera 1, 28049 Madrid, Spain, 12Centre de Biophysique Moleculaire,´ Centre National de la Recherche Scientifique (CNRS), Rue Charles Sadron, 45071 Orleans,´ France and 13European Science Foundation (ESF), Quai Lezay-Marnesia,´ 67080 Strasbourg, France ∗Corresponding author: Radiation Biology Department, Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Linder Hohe,¨ 51147 Cologne, Germany. Tel: +49-2203-6012194; Fax: +49-2203-61970; E-mail: [email protected] One sentence summary: The survival after desiccation and after exposure to ionizing radiation of microorganisms from different extreme environments refutes the previously reported correlation between desiccation tolerance and radiation tolerance. Editor: Hermann Heipieper †Kristina Beblo-Vranesevic, http://orcid.org/0000-0002-4834-7121 ABSTRACT Four facultative anaerobic and two obligate anaerobic bacteria were isolated from extreme environments (deep subsurface halite mine, sulfidic anoxic spring, mineral-rich river) in the frame MASE (Mars Analogues for Space Exploration) project. The isolates were investigated under anoxic conditions for their survivability after desiccation up to 6 months and their Received: 14 December 2017; Accepted: 19 February 2018 C FEMS 2018. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] 1 2 FEMS Microbiology Letters, 2018, Vol. 365, No. 6 tolerance to ionizing radiation up to 3000 Gy. The results indicated that tolerances to both stresses are strain-specific features. Yersinia intermedia MASE-LG-1 showed a high desiccation tolerance but its radiation tolerance was very low. The most radiation-tolerant strains were Buttiauxella sp. MASE-IM-9 and Halanaerobium sp. MASE-BB-1. In both cases, cultivable cells were detectable after an exposure to 3 kGy of ionizing radiation, but cells only survived desiccation for 90 and 30 days, respectively. Although a correlation between desiccation and ionizing radiation resistance has been hypothesized for some aerobic microorganisms, our data showed that there was no correlation between tolerance to desiccation and ionizing radiation, suggesting that the physiological basis of both forms of tolerances is not necessarily linked. In addition, these results indicated that facultative and obligate anaerobic organisms living in extreme environments possess varied species-specific tolerances to extremes. Keywords: correlation; desiccation; radiation; survival; anaerobes; extreme environment INTRODUCTION breaks can occur (Bieger-Dose et al. 1992; Dose et al. 1992). Addi- tionally, the DNA can change from the B to the A-conformation Anaerobic microorganisms are widely distributed in Earth’s ex- resulting in DNA single- and double-strand breaks. Dehydra- treme environments, yet we still know little about their physi- tion for 6 weeks caused approximately 60 DNA double-strand ology and their capacity to adapt to extreme conditions. In par- breaks per genome in D. radiodurans (Fredrickson et al. 2008). ticular, there is a paucity of studies whereby different anaerobic Nevertheless, the survival of the microorganisms after 6 weeks microorganisms from extreme environments are investigated to of desiccation was not even reduced by one order of magni- understand their diverse physiological and metabolic capabili- tude (Mattimore and Battista 1996). Another form of damaging ties. In this study, the two stressors of interest were the toler- stress that occurs during desiccation is the formation of reactive ance to periods of water loss and the exposure to ionizing radia- oxygen species (ROS), which, in turn, leads to oxidative stress tion. These stressors also occur in other extreme environments (Franc¸a, Panek and Eleutherio 2007). The ROS are mainly su- but their combination is rare. Microorganisms frequently expe- r r peroxide anions ( O −) and hydroxyl radicals ( OH) affecting all rience periodic desiccation in subaerial environments or during 2 macromolecular cellular components (Cabiscol, Tamarit and Ros dispersal. Although most natural environments do not experi- 2000). However, the exact origin of the radicals during rehydra- ence ionizing radiation beyond the level of naturally occurring tion is unknown, but a possible source could be the metabolism background radiation (Thorne 2003), this stress can be explored itself (e.g. respiratory chain) when the cells were growing aer- as a proxy for an organisms’ ability to repair general cell dam- obically (Gonzalez-Flecha´ and Demple 1995;Franc¸a, Panek and age. Furthermore, there has often been a claimed correlation be- Eleutherio 2007).They are also formed by indirect effects through tween desiccation and ionizing radiation resistance, which is of the radiation-induced radiolysis of intracellular water and sur- interest to explore further. It is suggested that the physiological rounding water and account for approximately 80% of intro- basis and repair mechanisms to counteract the stress-induced duced DNA damages (Michaels and Hunt 1978;Joneset al. 1994; damage by radiation or desiccation might be linked or might Riley 1994). After exposure to ionizing radiation of 5 kGy, approx- even be the same (Mattimore and Battista 1996). imately 200 double-strand breaks were detected in D. radiodurans While there are several studies investigating the survivability (Cox and Battista 2005). However, the survivability of D. radio- of model microorganisms, such as Escherichia coli and Deinococcus durans was not reduced (Battista, Earl and Park 1999). In addi- radiodurans, after desiccation and after exposure to ionizing ra- tion, ionizing radiation also affects proteins through oxidation diation tested under oxic conditions (Clavero et al. 1994; Welsh processes, lipids through lipid peroxidation and disturbance of and Herbert 1999;Daly2009; Bauermeister et al. 2011), there are membrane permeability in eukaryotic and prokaryotic systems only a few examples where facultative and strict anaerobic mi- (Leyko and Bartosz 1985;Dalyet al. 2007; Krisko and Radman croorganisms were tested against these stressors under anoxic 2010). conditions. The survival capacity after exposure to one stres- MASE (Mars Analogues for Space Exploration), a project sor in form of ionizing radiation was described for the hyper- funded by the European Union, was initiated to investigate thermophilic anaerobic microorganisms, Pyrococcus furiosus and anaerobic microorganisms in terrestrial extreme environments Thermococcus gammatolerans (DiRuggiero et al. 1997;Jolivetet al. and their physiological adaptations to these extreme environ- 2003). However, there are only very few studies about the tol- mental conditions (Cockell et al. 2017). In this article, we describe erance in terms of sensitivity of anaerobic microorganisms to the survivability after prolonged desiccation of up to 4 weeks desiccation (Fetzer, Bak and Conrad 1993;Bebloet al. 2009). and exposure to ionizing radiation (up to 3 kGy) of four facul- The application of both of these stressors gives insights into tative anaerobic and two strict anaerobic microorganisms iso- the abilities that microorganisms have evolved to survive dam- lated from different extreme environments in the frame of this age to macromolecules such as proteins, membranes and nu- project. cleic acids. During desiccation, initially the free intracellular water and subsequently the hydration
Recommended publications
  • Characterization of Stress Tolerance and Metabolic Capabilities of Acidophilic Iron-Sulfur-Transforming Bacteria and Their Relevance to Mars
    Characterization of stress tolerance and metabolic capabilities of acidophilic iron-sulfur-transforming bacteria and their relevance to Mars Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften – Dr. rer. nat. – vorgelegt von Anja Bauermeister aus Leipzig Im Fachbereich Chemie der Universität Duisburg-Essen 2012 Die vorliegende Arbeit wurde im Zeitraum von März 2009 bis Dezember 2012 im Arbeitskreis von Prof. Dr. Hans-Curt Flemming am Biofilm Centre (Fakultät für Chemie) der Universität Duisburg-Essen und in der Abteilung Strahlenbiologie (Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt, Köln) durchgeführt. Tag der Einreichung: 07.12.2012 Tag der Disputation: 23.04.2013 Gutachter: Prof. Dr. H.-C. Flemming Prof. Dr. W. Sand Vorsitzender: Prof. Dr. C. Mayer Erklärung / Statement Hiermit versichere ich, dass ich die vorliegende Arbeit mit dem Titel „Characterization of stress tolerance and metabolic capabilities of acidophilic iron- sulfur-transforming bacteria and their relevance to Mars” selbst verfasst und keine außer den angegebenen Hilfsmitteln und Quellen benutzt habe, und dass die Arbeit in dieser oder ähnlicher Form noch bei keiner anderen Universität eingereicht wurde. Herewith I declare that this thesis is the result of my independent work. All sources and auxiliary materials used by me in this thesis are cited completely. Essen, 07.12.2012 Table of contents Abbreviations .......................................................................................
    [Show full text]
  • Experimental and Statistical Analysis of Nutritional Requirements for the Growth of the Extremophile Deinococcus Geothermalis DSM 11300
    Experimental and statistical analysis of nutritional requirements for the growth of the extremophile Deinococcus geothermalis DSM 11300 Julie Bornot, Cesar Arturo Aceves-Lara, Carole Molina-Jouve, Jean-Louis Uribelarrea, Nathalie Gorret To cite this version: Julie Bornot, Cesar Arturo Aceves-Lara, Carole Molina-Jouve, Jean-Louis Uribelarrea, Nathalie Gor- ret. Experimental and statistical analysis of nutritional requirements for the growth of the ex- tremophile Deinococcus geothermalis DSM 11300. Extremophiles, Springer Verlag, 2014, 18 (6), pp.1009-1021. 10.1007/s00792-014-0671-8. hal-01268947 HAL Id: hal-01268947 https://hal.archives-ouvertes.fr/hal-01268947 Submitted on 11 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/22999 Official URL: https://doi.org/10.1007/s00792-014-0671-8 To cite this version: Bornot, Julie and Aceves-Lara, César-Arturo and Molina-Jouve, Carole and Uribelarrea, Jean-Louis and Gorret, Nathalie Experimental and statistical analysis of nutritional requirements for the growth of the extremophile Deinococcus geothermalis DSM 11300.
    [Show full text]
  • The Effects of Natural Variation in Background Radioactivity on Humans, Animals and Other Organisms
    Biol. Rev. (2012), pp. 000–000. 1 doi: 10.1111/j.1469-185X.2012.00249.x The effects of natural variation in background radioactivity on humans, animals and other organisms Anders P. Møller1,∗ and Timothy A. Mousseau2 1Laboratoire d’Ecologie, Syst´ematique et Evolution, CNRS UMR 8079, Universit´e Paris-Sud, Bˆatiment 362, F-91405, Orsay Cedex, France 2Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA ABSTRACT Natural levels of radioactivity on the Earth vary by more than a thousand-fold; this spatial heterogeneity may suffice to create heterogeneous effects on physiology, mutation and selection. We review the literature on the relationship between variation in natural levels of radioactivity and evolution. First, we consider the effects of natural levels of radiation on mutations, DNA repair and genetics. A total of 46 studies with 373 effect size estimates revealed a small, but highly significant mean effect that was independent of adjustment for publication bias. Second, we found different mean effect sizes when studies were based on broad categories like physiology, immunology and disease frequency; mean weighted effect sizes were larger for studies of plants than animals, and larger in studies conducted in areas with higher levels of radiation. Third, these negative effects of radiation on mutations, immunology and life history are inconsistent with a general role of hormetic positive effects of radiation on living organisms. Fourth, we reviewed studies of radiation resistance among taxa. These studies suggest that current levels of natural radioactivity may affect mutational input and thereby the genetic constitution and composition of natural populations.
    [Show full text]
  • Geomicrobiological Processes in Extreme Environments: a Review
    202 Articles by Hailiang Dong1, 2 and Bingsong Yu1,3 Geomicrobiological processes in extreme environments: A review 1 Geomicrobiology Laboratory, China University of Geosciences, Beijing, 100083, China. 2 Department of Geology, Miami University, Oxford, OH, 45056, USA. Email: [email protected] 3 School of Earth Sciences, China University of Geosciences, Beijing, 100083, China. The last decade has seen an extraordinary growth of and Mancinelli, 2001). These unique conditions have selected Geomicrobiology. Microorganisms have been studied in unique microorganisms and novel metabolic functions. Readers are directed to recent review papers (Kieft and Phelps, 1997; Pedersen, numerous extreme environments on Earth, ranging from 1997; Krumholz, 2000; Pedersen, 2000; Rothschild and crystalline rocks from the deep subsurface, ancient Mancinelli, 2001; Amend and Teske, 2005; Fredrickson and Balk- sedimentary rocks and hypersaline lakes, to dry deserts will, 2006). A recent study suggests the importance of pressure in the origination of life and biomolecules (Sharma et al., 2002). In and deep-ocean hydrothermal vent systems. In light of this short review and in light of some most recent developments, this recent progress, we review several currently active we focus on two specific aspects: novel metabolic functions and research frontiers: deep continental subsurface micro- energy sources. biology, microbial ecology in saline lakes, microbial Some metabolic functions of continental subsurface formation of dolomite, geomicrobiology in dry deserts, microorganisms fossil DNA and its use in recovery of paleoenviron- Because of the unique geochemical, hydrological, and geological mental conditions, and geomicrobiology of oceans. conditions of the deep subsurface, microorganisms from these envi- Throughout this article we emphasize geomicrobiological ronments are different from surface organisms in their metabolic processes in these extreme environments.
    [Show full text]
  • BOSS on EXPOSE-R2-Comparative Investigations on Biofilm and Planktonic Cells of Deinococcus Geothermalis As Mission Preparation Tests
    EPSC Abstracts Vol. 8, EPSC2013-930, 2013 European Planetary Science Congress 2013 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2013 BOSS on EXPOSE-R2-Comparative Investigations on Biofilm and Planktonic cells of Deinococcus geothermalis as Mission Preparation Tests Corinna Panitz1,2, Petra Rettberg2, Jan Frösler3, Prof. H. - C. Flemming3, Elke Rabbow2, Günther Reitz2 1RWTH Aachen/Medical Faculty, Inst.of Aerospace Medicine - Aachen, Germany, 2DLR, Inst.of Aerospace Medicine, Radiation Biology Dep. - Köln, Germany,3Universität Duisburg-Essen, Fakultät für Chemie - Biofilm Centre - Essen, Germany1; ([email protected] / Fax: +49-2203-61970) Abstract not only bacteria and Archaea, have mechanisms by which they can adhere to surfaces and to each other. Biofilms are of interest for Astrobiological investi- Biofilms are characterized by structural heterogeneity, gations since they are one of the oldest clear signs of genetic diversity, and complex community inter- life on Earth. In the experiment BOSS the hypothesis actions using the EPS matrix for stable, long-term interactions and as an external digestion system. This will be tested if the biofilm form of life with micro- matrix is strong enough that under certain conditions organisms embedded and aggregated in their EPS biofilms can even become fossilized. Usually, abiotic matrix is suited to support long-term survival of particles are associated with the “sticky” biofilm microorganisms under the harsh environmental con- matrix. One benefit of this environment is increased ditions as they exist in space and on Mars and is resistance to different chemical and physical agents superior to the same bacteria in the form of plank- as the dense extracellular matrix and the outer layer tonic cultures.
    [Show full text]
  • Deinococcus Antarcticus Sp. Nov., Isolated from Soil
    International Journal of Systematic and Evolutionary Microbiology (2015), 65, 331–335 DOI 10.1099/ijs.0.066324-0 Deinococcus antarcticus sp. nov., isolated from soil Ning Dong,1,2 Hui-Rong Li,1 Meng Yuan,1,2 Xiao-Hua Zhang2 and Yong Yu1 Correspondence 1SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, Yong Yu PR China [email protected] 2College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China A pink-pigmented, non-motile, coccoid bacterial strain, designated G3-6-20T, was isolated from a soil sample collected in the Grove Mountains, East Antarctica. This strain was resistant to UV irradiation (810 J m”2) and slightly more sensitive to desiccation as compared with Deinococcus radiodurans. Phylogenetic analyses based on the 16S rRNA gene sequence of the isolate indicated that the organism belongs to the genus Deinococcus. Highest sequence similarities were with Deinococcus ficus CC-FR2-10T (93.5 %), Deinococcus xinjiangensis X-82T (92.8 %), Deinococcus indicus Wt/1aT (92.5 %), Deinococcus daejeonensis MJ27T (92.3 %), Deinococcus wulumuqiensis R-12T (92.3 %), Deinococcus aquaticus PB314T (92.2 %) and T Deinococcus radiodurans DSM 20539 (92.2 %). Major fatty acids were C18 : 1v7c, summed feature 3 (C16 : 1v7c and/or C16 : 1v6c), anteiso-C15 : 0 and C16 : 0. The G+C content of the genomic DNA of strain G3-6-20T was 63.1 mol%. Menaquinone 8 (MK-8) was the predominant respiratory quinone. Based on its phylogenetic position, and chemotaxonomic and phenotypic characteristics, strain G3-6-20T represents a novel species of the genus Deinococcus, for which the name Deinococcus antarcticus sp.
    [Show full text]
  • Access to Electronic Thesis
    Access to Electronic Thesis Author: Khalid Salim Al-Abri Thesis title: USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS Qualification: PhD This electronic thesis is protected by the Copyright, Designs and Patents Act 1988. No reproduction is permitted without consent of the author. It is also protected by the Creative Commons Licence allowing Attributions-Non-commercial-No derivatives. If this electronic thesis has been edited by the author it will be indicated as such on the title page and in the text. USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS By Khalid Salim Al-Abri Msc., University of Sultan Qaboos, Muscat, Oman Mphil, University of Sheffield, England Thesis submitted in partial fulfillment for the requirements of the Degree of Doctor of Philosophy in the Department of Molecular Biology and Biotechnology, University of Sheffield, England 2011 Introductory Pages I DEDICATION To the memory of my father, loving mother, wife “Muneera” and son “Anas”, brothers and sisters. Introductory Pages II ACKNOWLEDGEMENTS Above all, I thank Allah for helping me in completing this project. I wish to express my thanks to my supervisor Professor Milton Wainwright, for his guidance, supervision, support, understanding and help in this project. In addition, he also stood beside me in all difficulties that faced me during study. My thanks are due to Dr. D. J. Gilmour for his co-supervision, technical assistance, his time and understanding that made some of my laboratory work easier. In the Ministry of Regional Municipalities and Water Resources, I am particularly grateful to Engineer Said Al Alawi, Director General of Health Control, for allowing me to carry out my PhD study at the University of Sheffield.
    [Show full text]
  • Bhattacharya.1999.Thermophiles.Pdf
    THE PHYLOGENY OF THERMOPHILES AND HYPERTHERMOPHILES AND THE THREE DOMAINS OF LIFE The Phylogeny of Thermophiles DEBASHISH BHATTACHARYA University of Iowa Department of Biological Sciences Biology Building, Iowa City, Iowa 52242-1324 United States THOMAS FRIEDL Department of Biology, General Botany University of Kaiserslautern P.O. Box 3049, D-67653 Kaiserslautern, Germany HEIKO SCHMIDT Deutsches Krebsforschungszentrum Theoretische Bioinformatik Im Neuenheimer Feld 280 , D-69120 Heidelberg, Germany 1. Introduction The nature of the first cells and the environment in which they lived are two of the most interesting problems in evolutionary biology. All living things are descendents of these primordial cells and are divided into three fundamental lineages or domains, Archaea (formerly known as Archaebacteria), Bacteria (formerly known as Eubacteria), and the Eucarya (formerly known as Eukaryotes, Woese et al. 1990). The Archaea and Bacteria are prokaryotic domains whereas the Eucarya includes all other living things that have a nucleus (i.e., the genetic material is separated from the cytoplasm by a nuclear envelope). The observation of the three primary domains, first made on the basis of small subunit (i.e., 16S, 18S) ribosomal DNA (rDNA) sequence comparisons (Woese 1987), has created a framework with which the nature of the last common ancestor (LCA) can be addressed. In this review we present phylogenies of the prokaryotic domains to understand the origin and distribution of the thermophiles (organisms able to grow in temperatures > 45°C) and the hyperthermophiles (organisms able to grow in temperatures > 80°C). Hyperthermophiles are limited to the Archaea and Bacteria. In addition, we inspect the distribution of extremophiles within the cyanobacteria.
    [Show full text]
  • Microbiology in Shale: Alternatives for Enhanced Gas Recovery
    Graduate Theses, Dissertations, and Problem Reports 2015 Microbiology in Shale: Alternatives for Enhanced Gas Recovery Yael Tarlovsky Tucker Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Tucker, Yael Tarlovsky, "Microbiology in Shale: Alternatives for Enhanced Gas Recovery" (2015). Graduate Theses, Dissertations, and Problem Reports. 6834. https://researchrepository.wvu.edu/etd/6834 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Microbiology in Shale: Alternatives for Enhanced Gas Recovery Yael Tarlovsky Tucker Dissertation submitted to the Davis College of Agriculture, Natural Resources and Design at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Genetics and Developmental Biology Jianbo Yao, Ph.D., Chair James Kotcon, Ph.D.
    [Show full text]
  • Microbiota Dynamics During Host-Plant Adaptation of Whiteflies
    The ISME Journal (2020) 14:847–856 https://doi.org/10.1038/s41396-019-0576-8 ARTICLE Inside out: microbiota dynamics during host-plant adaptation of whiteflies 1 1 2 1 Diego Santos-Garcia ● Natividad Mestre-Rincon ● Einat Zchori-Fein ● Shai Morin Received: 1 June 2019 / Accepted: 17 December 2019 / Published online: 2 January 2020 © The Author(s) 2020. This article is published with open access Abstract While most insect herbivores are selective feeders, a small proportion of them feed on a wide range of plants. This polyphagous habit requires overcoming a remarkable array of defenses, which often necessitates an adaptation period. Efforts for understanding the mechanisms involved mostly focus on the insect’s phenotypic plasticity. Here, we hypothesized that the adaptation process might partially rely on transient associations with bacteria. To test this, we followed in a field-like experiment, the adaptation process of Bemisia tabaci, a generalist sap feeder, to pepper (a less-suitable host), after switching from watermelon (a suitable host). Amplicon sequencing of 16S rRNA transcripts from hundreds of dissected guts revealed the presence of active “core” and “transient” bacterial communities, dominated by the phyla Proteobacteria, 1234567890();,: 1234567890();,: Actinobacteria, and Firmicutes, and increasing differences between populations grown on watermelon and pepper. Insects grown on pepper for over two generations presented a significant increase in specific genera, mainly Mycobacterium, with a predicted enrichment in degradative pathways of xenobiotics and secondary metabolites. This result correlated with a significant increase in the insect’s survival on pepper. Taken together, our findings suggest that gut-associated bacteria can provide an additional flexible metabolic “tool-box” to generalist sap feeders for facilitating a quick host switching process.
    [Show full text]
  • Protection of Chemolithoautotrophic Bacteria Exposed to Simulated
    Protection Of Chemolithoautotrophic Bacteria Exposed To Simulated Mars Environmental Conditions Felipe Gómez, Eva Mateo-Martí, Olga Prieto-Ballesteros, Jose Martín-Gago, Ricardo Amils To cite this version: Felipe Gómez, Eva Mateo-Martí, Olga Prieto-Ballesteros, Jose Martín-Gago, Ricardo Amils. Pro- tection Of Chemolithoautotrophic Bacteria Exposed To Simulated Mars Environmental Conditions. Icarus, Elsevier, 2010, 209 (2), pp.482. 10.1016/j.icarus.2010.05.027. hal-00676214 HAL Id: hal-00676214 https://hal.archives-ouvertes.fr/hal-00676214 Submitted on 4 Mar 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Protection Of Chemolithoautotrophic Bacteria Exposed To Simulated Mars En‐ vironmental Conditions Felipe Gómez, Eva Mateo-Martí, Olga Prieto-Ballesteros, Jose Martín-Gago, Ricardo Amils PII: S0019-1035(10)00220-4 DOI: 10.1016/j.icarus.2010.05.027 Reference: YICAR 9450 To appear in: Icarus Received Date: 11 August 2009 Revised Date: 14 May 2010 Accepted Date: 28 May 2010 Please cite this article as: Gómez, F., Mateo-Martí, E., Prieto-Ballesteros, O., Martín-Gago, J., Amils, R., Protection Of Chemolithoautotrophic Bacteria Exposed To Simulated Mars Environmental Conditions, Icarus (2010), doi: 10.1016/j.icarus.2010.05.027 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Appendices Physico-Chemical
    http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. An Investigation of Microbial Communities Across Two Extreme Geothermal Gradients on Mt. Erebus, Victoria Land, Antarctica A thesis submitted in partial fulfilment of the requirements for the degree of Master’s Degree of Science at The University of Waikato by Emily Smith Year of submission 2021 Abstract The geothermal fumaroles present on Mt. Erebus, Antarctica, are home to numerous unique and possibly endemic bacteria. The isolated nature of Mt. Erebus provides an opportunity to closely examine how geothermal physico-chemistry drives microbial community composition and structure. This study aimed at determining the effect of physico-chemical drivers on microbial community composition and structure along extreme thermal and geochemical gradients at two sites on Mt. Erebus: Tramway Ridge and Western Crater. Microbial community structure and physico-chemical soil characteristics were assessed via metabarcoding (16S rRNA) and geochemistry (temperature, pH, total carbon (TC), total nitrogen (TN) and ICP-MS elemental analysis along a thermal gradient 10 °C–64 °C), which also defined a geochemical gradient.
    [Show full text]