The Value of Our Oceans – the Economic Benefits of Marine Biodiversity and Healthy Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

The Value of Our Oceans – the Economic Benefits of Marine Biodiversity and Healthy Ecosystems Agenda Item 3 EIHA 08/3/10-E English only OSPAR Convention for the Protection of the Marine Environment of the North-East Atlantic Meeting of the Working Group on the Environmental Impact of Human Activities (EIHA) Lowestoft (United Kingdom): 4–7 November 2008 The Value of our Oceans – The Economic Benefits of Marine Biodiversity and Healthy Ecosystems Presented by WWF This document provides a global perspective with regard to economic benefits of marine biodiversity. Background 1. Reference is made to EIHA 08/3/9-E addressing the socio-economic assessment of the marine environment. 2. On the occasion of the Conference of Parties to the Convention on Biological Diversity (CBD COP) held in Bonn, Germany in May 2008, WWF presented the global study at Annex 1 including case studies and personal witnesses of the socio-economic importance of our oceans. Action requested 3. EIHA is invited to take note of the report presented by WWF and make use of the approach and information included as appropriate. 1 of 1 OSPAR Commission EIHA 08/3/10-E The Value of our Oceans The Economic Benefi ts of Marine Biodiversity and Healthy Ecosystems WWF Deutschland 1 Introduction People love the oceans. Millions of such as bottom trawling and dyna- With this report we want to take an tourists flock to the world’s beach- mite fishing destroy the very cor- economic angle in shedding light es, and whale and turtle watching, al reefs that are home to the fish. on the values we receive from the snorkelling and diving leave peo- Coastal development claims beach- oceans and the life therein, but ple in amazement of the beauties of es where turtles were born and to which we usually take for granted. marine life. Zoos and public aquar- which they can no longer return to The marine environment, its habi- ia, TV documentaries and even big lay their eggs. Mangrove forests tats and species have shaped and screen cinema conveniently bring are cleared to make way for shrimp are still shaping our world, our cul- the experience of the marine world farms. ture and many people’s daily lives. to our homes. And there, we enjoy We want to show what the loss of the variety, fine taste and healthi- And climate change and ocean healthy oceans will mean to our ness of seafood. The oceans give acidification may prove to be the economies and individual people’s a lot – but we have not been very hardest challenges for our oceans’ incomes and livelihoods. We want thankful. species, habitats and long estab- to show what we loose if we don’t lished food webs. And although the change. The marine environment is in a dire problems are known, solutions have state. Fish stocks, particularly those been found and promoted exten- of greater economic value, are un- sively, the world is still a far cry der heavy pressure from overfish- from halting the loss of bio di- A school of sprat fish in a Red Mangrove shallow reef in Carrie Bow Cay, Belize © Michel GUNTHER / WWF-Canon ing. Destructive fishing practices versity. Content Some facts about healthy oceans 4 A fisherman and his son in Madasgascar © WWF / Ralf Maro Valuating marine biodiversity 5 Tourism, recreation and leisure 6 Living oceans feed the world 12 Healthy oceans - healthy people 18 Industrial resources from the sea 22 Save our coasts – marine life defends the shorelines 24 Climate regulation 27 Eternal circles of life 28 The ocean shows us how to solve problems 30 How should a parasite value its host? 34 Bibliography 36 Impressum: Published by: WWF Germany, Frankfurt am Main. June 2008 Authors: Manfred Walser, Christian Neumann (WWF) Editor: Heike Mühldorfer (WWF) Proof Reading: Sue Watson (WWF) Design: Caroline Franz, Mannheim Production: Natascha Schuck (WWF) - Print: ?? Printed on ?? (C) All rights reserved by WWF Germany 2008 2 WWF Deutschland WWF Deutschland 3 Some facts about healthy oceans Valuating marine biodiversity Healthy oceans provide a wide To improve scientific knowledge, As a result species are caught selec- Our study attempts to estimate the mates the value of a special loca- timate. Global gross national prod- range of goods and services es- the ‘Census of Marine Life’ started tively depending on the sampling economic value of marine biodiver- tion by valuing time and travel uct total is around US$ 18 trillion sential for human life. Provision of in 2000. A global network of re- method used – but never the whole sity, well knowing that an economic cost expenses that people incur to per year.” The study also shows that food and medicines or the detoxi- searchers in more than 80 nations is spectrum of species at a place. Fur- valuation cannot show the overall visit a particular site. 63 percent of the estimated value of fication of pollutants and the recy- engaged in a 10-year scientific ini- thermore, marine fisheries research value of biodiversity. Unfortunately ● The Production Function Ap- the entire biosphere is contributed cling of nutrients are functions of tiative to assess and explain the di- is largely concentrating on eco- ecosystems are poorly understood, proach estimates how the eco- by marine systems (US$ 20.9 tril- the ocean which create value for versity, distribution and abundance nomically important species.4 The scarcely monitored, and (in many logical input into economic lion per year), most of this originat- human users. Such essentials are of life in the oceans. Since the major diversity anyway resides in cases) undergoing rapid degrada- production will change if the en- ing from coastal systems (US$ 10.6 called ‘ecosystem goods and servic- project started more than 1,000 new the microbial life that can be found tion and depletion. Often the im- vironment changes. trillion per year). And these “are all es’. These goods and services are species have been found already, in- in marine waters, on the surfaces of portance of ecosystem services is ● The Net Factor Income Approach only static snapshots of a biosphere ‘for free’ but require intact marine cluding over 100 new fish species, plants and animals, and in the deep- widely appreciated only upon their goes the other way round and that is a complex, dynamic sys- ecosystems: Coral reefs, kelp for- and the scientists involved aim to sea sediments.5 loss8 and only in some cases – like states the economic surplus of tem.”11 Despite profound methodo- ests, mangroves, salt marshes, mud add many thousands more by 2010. bioprospecting access agreements ecosystem goods and services as logical critique for the simplified flats, estuaries, rocky shores, sandy The overall number of marine spe- In spite of the ocean’s vastness it is or direct payments for habitat con- the remaining value when other calculation the scientific communi- beaches, sea mounts, abyssal plains cies – if ever fully explored – may not one big habitat. Micro-endemic servation – capture demand for bio- inputs in production has been ty certified the authors a most valu- and open oceans – each of these be in the range of 10 million – com- life-forms can be restricted to small diversity directly. subtracted from the total revenue. able thought-provoking momentum habitats contributes to the oceans’ pared to 1.5 million described ter- geographical features like isolated ● The Total Revenue Approach es- initiating a huge amount of follow- ability to serve essential goods and restrial plants and animals.6 island platforms or coastal lagoons The overall value of marine biodi- timates the value given by the di- up research and public discussion.12 services.1 or the cadaver of a whale in the versity can be outlined as below:9 rect sale of ecosystem goods and „About the ocean we know less deep sea (which is also a unique services. Many studies have looked at the Figure: Categories of economic values The sea accommodates 32 of the 33 than about the moon” is a frequent- habitat called ‘whale trap’). A study valuation of biodiversity, mainly animal phyla known in biological ly quoted slogan when oceanogra- of the Food and Agriculture Organi- with a limited scope, focusing on Total economic value of marine biodiversity taxonomy; 15 phyla thereof can be phers talk about animals and plants zation of the United Nations (FAO) single habitats or aspects or taking a found exclusively in marine habi- in the oceans. Only the coastal zone on marine resources in the Western specific nation’s or regions point of tats. Today’s biodiversity – the di- and the upper light-flooded layers Central Atlantic lists 23 percent of Personal use values Non- use values view. Defra, the UK’s Department versity of habitats, species, genes of the ocean are somewhat investi- the 987 fish species treated in de- for Environment, Food and Rural and structural design - is the result gated but 80 percent of the ocean, tail as rare or endemic to the study affairs has, however, in 2006 com- of 3,500 millions of years of on- which means 62 percent of the en- area. The study summarizes: “Such Direct use Indirect use Option values Bequest Existence missioned an estimation of mon- going evolution and still largely tire earth’s surface, are deeper than a high level of endemism stands in values values output values value etary values of marine ecosystem unknown to us. Currently, over 1,000 meters. Here it is difficult to contrast to the widespread view that output can be functioal possibly can value of value from services of Great Britain’s waters. 200,000 marine animal species observe the life directly and scien- marine species characteristically consumed benefits be used leaving use know-ledge 13, 14 Eight of thirteen goods and alone have been described and re- tists depend on tools like nets, weirs have large geographic ranges and directly (flood control, directly and/ for future of continued services could be valued in mon- side in collections.
Recommended publications
  • Select Terrestrial, Freshwater and Marine Conservation Targets/Biodiversity Elements/Features Across Multiple Biological and Spatial Scales
    Standard 7: Select terrestrial, freshwater and marine conservation targets/biodiversity elements/features across multiple biological and spatial scales. [plan] Rationale It is necessary to define a subset of targets that best represent the biodiversity of an ecoregion to focus the assessment. Conservation targets should cover the suite of biological scales (species to communities, ecological systems and other targets), taxa, and ecological characteristics to adequately inform comprehensive biodiversity conservation. Targets should include coarse and fine filter targets. This includes using rare and endangered, wide ranging, migratory and keystone species, rare communities, and all ecological systems and/or ecosystem types, as well as additional targets that are useful in capturing the variety of biodiversity characteristics, scales and ecological processes. Recommended Products ,,,List, and attributes of fine-filter targets such as distribution (local, widespread), conservation status (threatened and endangered), endemic, wide-ranging, rare communities and coarse-filter targets (ecological systems and ecosystems) as well as other types of targets as appropriate. See the Ecoregional Assessment Data Standards 1.0 for required fields. Maps of occurrences of targets throughout the ecoregion. Description of data gaps for specific target groups and geographic areas. GUIDANCE A systematic approach to conservation planning demands that we be explicit about what features of biodiversity we are trying to conserve (Groves 2003). With the goal of conserving the biodiversity of an ecoregion, we need to define a subset of features to work with that will adequately capture that representation and variety. We refer to these features as conservation targets (Redford et al. 2003). Conservation targets are the species, communities, ecological systems 1 and surrogates that we focus our assessments on in order to capture the broad range of biodiversity as best we can.
    [Show full text]
  • Benthic Macrofaunal Structure and Secondary Production in Tropical Estuaries on the Eastern Marine Ecoregion of Brazil
    Benthic macrofaunal structure and secondary production in tropical estuaries on the Eastern Marine Ecoregion of Brazil Lorena B. Bissoli and Angelo F. Bernardino Grupo de Ecologia Bêntica, Department of Oceanography, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil ABSTRACT Tropical estuaries are highly productive and support diverse benthic assemblages within mangroves and tidal flats habitats. Determining differences and similarities of benthic assemblages within estuarine habitats and between regional ecosystems may provide scientific support for management of those ecosystems. Here we studied three tropical estuaries in the Eastern Marine Ecoregion of Brazil to assess the spatial variability of benthic assemblages from vegetated (mangroves) and unvegetated (tidal flats) habitats. A nested sampling design was used to determine spatial scales of variability in benthic macrofaunal density, biomass and secondary production. Habitat differences in benthic assemblage composition were evident, with mangrove forests being dominated by annelids (Oligochaeta and Capitellidae) whereas peracarid crustaceans were also abundant on tidal flats. Macrofaunal biomass, density and secondary production also differed between habitats and among estuaries. Those differences were related both to the composition of benthic assemblages and to random spatial variability, underscoring the importance of hierarchical sampling in estuarine ecological studies. Given variable levels of human impacts and predicted climate change effects on tropical estuarine
    [Show full text]
  • Appendix: Some Important Early Collections of West Indian Type Specimens, with Historical Notes
    Appendix: Some important early collections of West Indian type specimens, with historical notes Duchassaing & Michelotti, 1864 between 1841 and 1864, we gain additional information concerning the sponge memoir, starting with the letter dated 8 May 1855. Jacob Gysbert Samuel van Breda A biography of Placide Duchassaing de Fonbressin was (1788-1867) was professor of botany in Franeker (Hol­ published by his friend Sagot (1873). Although an aristo­ land), of botany and zoology in Gent (Belgium), and crat by birth, as we learn from Michelotti's last extant then of zoology and geology in Leyden. Later he went to letter to van Breda, Duchassaing did not add de Fon­ Haarlem, where he was secretary of the Hollandsche bressin to his name until 1864. Duchassaing was born Maatschappij der Wetenschappen, curator of its cabinet around 1819 on Guadeloupe, in a French-Creole family of natural history, and director of Teyler's Museum of of planters. He was sent to school in Paris, first to the minerals, fossils and physical instruments. Van Breda Lycee Louis-le-Grand, then to University. He finished traveled extensively in Europe collecting fossils, especial­ his studies in 1844 with a doctorate in medicine and two ly in Italy. Michelotti exchanged collections of fossils additional theses in geology and zoology. He then settled with him over a long period of time, and was received as on Guadeloupe as physician. Because of social unrest foreign member of the Hollandsche Maatschappij der after the freeing of native labor, he left Guadeloupe W etenschappen in 1842. The two chief papers of Miche­ around 1848, and visited several islands of the Antilles lotti on fossils were published by the Hollandsche Maat­ (notably Nevis, Sint Eustatius, St.
    [Show full text]
  • Overall Assessment of the State of the Coast in the Western Indian Ocean
    36 Overall Assessment of the State of the Coast in the Western Indian Ocean José Paula Opposite page: Will the marine resources these girls collect in the tidal flats near Ulo village, north Mozambique, be available in the future for food security or will they benefit from economic development and depend on modern amenities instead? © José Paula. INTRODUCTION Pacific biogeographic realm, but its southwest limit enters the Temperate Southern Africa biogeographic realm This chapter offers an overall view of the state of the coast (Spalding and others, 2007). The WIO region presents such in the western Indian Ocean (WIO), by integrating the four uniqueness of features that render it a structural and func- sectorial assessments and following the Drivers – Pressures tional unity within the world global ocean (Obura and oth- – State – Impact – Response (DPSIR) methodology. It ers, 2012). The main portion of WIO region is also referred analyses the current condition of ecosystems, resources, to as the Eastern African Marine Ecoregion (WWF 2001). services and human activities and their expected evolution Geomorphological and oceanographic features define (state and trends) in response to root causes that drive change the character of the WIO (see detailed description in Chap- (drivers), further highlighting the ways these factors act on ter 1). The bathymetric structure influences water flows the environment and human related dependencies (pres- (Parson and Evans 2005), modulating the ecosystems’ sures) and their expected outcome on the environment and large-scale mosaics and associated biodiversity (Obura and livelihoods (impacts). Human societies adapt by acting on others, 2012). The main oceanographic features are the the drivers and pressures (responses) to mitigate impacts, monsoonal regime in the northern WIO and the equatorial aiming to maintain state of the environment or reverse current that diverges close to the mainland and produces negative trends.
    [Show full text]
  • Ecosystem Modelling in the Eastern Mediterranean Sea: the Cumulative Impact of Alien Species, Fishing and Climate Change on the Israeli Marine Ecosystem
    Ecosystem modelling in the Eastern Mediterranean Sea: the cumulative impact of alien species, fishing and climate change on the Israeli marine ecosystem PhD Thesis 2019 Xavier Corrales Ribas Ecosystem modelling in the Eastern Mediterranean Sea: the cumulative impact of alien species, fishing and climate change on the Israeli marine ecosystem Modelización ecológica en el Mediterráneo oriental: el impacto acumulado de las especies invasoras, la pesca y el cambio climáti co en el ecosistema marino de Israel Memoria presentada por Xavier Corrales Ribas para optar al título de Doctor por la Universidad Politécnica de Cataluña (UPC) dentro del Programa de Doctorado de Ciencias del Mar Supervisores de tesis: Dr. Marta Coll Montón. Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, España Dr. Gideon Gal. Centro de Investigación Oceanográfica y Limnológica de Israel (IOLR), Migdal, Israel Tutor: Dr. Manuel Espino Infantes. Universidad Politécnica de Cataluña (UPC), Barcelona, España Enero 2019 This PhD thesis has been framed within the project DESSIM ( A Decision Support system for the management of Israel’s Mediterranean Exclusive Economic Zone ) through a grant from the Israel Oceanographic and Limnological Research Institute (IORL). The PhD has been carried out at the Kinneret Limnological Laboratory (IOLR) (Migdal, Israel) and the Institute of Marine Science (ICM-CSIC) (Barcelona, Spain). The project team included Gideon Gal (Kinneret Limnological Laboratory, IORL, Israel) who was the project coordinator and co-director of this thesis, Marta Coll (ICM- CSIC, Spain), who was co-director of this thesis, Sheila Heymans (Scottish Association for Marine Science, UK), Jeroen Steenbeek (Ecopath International Initiative research association, Spain), Eyal Ofir (Kinneret Limnological Laboratory, IORL, Israel) and Menachem Goren and Daphna DiSegni (Tel Aviv University, Israel).
    [Show full text]
  • Marine Protected Areas Center a Collaboration Between National Oceanic and Atmospheric Administration and Department of the Interior
    National Marine Protected Areas Center A collaboration between National Oceanic and Atmospheric Administration and Department of the Interior Representativeness of Marine Protected Areas of the United States January 2015 marineprotectedareas.noaa.gov ABOUT THIS DOCUMENT This report is a product of the National Marine Protected Areas Center, part of NOAA’s Office of National Marine Sanctuaries. It was written by Dr. Robert Brock, with contributions from: Jordan Gass; Hugo Selbie; Thomas Urban; and Dr. Charles Wahle of the MPA Center. Lauren Wenzel (MPA Center) edited the document and Matt McIntosh (NOAA/ONMS) designed the cover. SUGGESTED CITATION: Brock, R. 2015. Representativeness of Marine Protected Areas of the United States. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Protected Areas Center, Silver Spring, MD. REPORT AVAILABILITY Electronic copies of this report and detailed analyses for each ecoregion may be downloaded from the National Marine Protected Areas Center web site at http://marineprotectedareas.noaa.gov/dataanalysis/mpainventory/ CONTACT: Dr. Robert J. Brock Marine Biologist National Marine Protected Areas Center 1305 East-West Highway (N/NMS) Silver Spring, MD 20910-3278 (301) 713-7285 [email protected] PHOTO CREDITS: Photos (left to right, top row): Greg McFall, NOAA; Tom Puchner, Flickr; Greg McFall, NOAA (middle row): USGS; Greg McFall, NOAA (bottom row): NOAA; NOAA Table of Contents Executive Summary ...................................................................................................................................................................
    [Show full text]
  • Future Scenarios of Marine Resources and Ecosystem Conditions in The
    www.nature.com/scientificreports OPEN Future scenarios of marine resources and ecosystem conditions in the Eastern Received: 8 June 2018 Accepted: 7 September 2018 Mediterranean under the impacts Published: xx xx xxxx of fshing, alien species and sea warming X. Corrales1,2, M. Coll2,3, E. Ofr1, J. J. Heymans4,5, J. Steenbeek2,3, M. Goren6, D. Edelist7 & G. Gal1 Using a temporal-dynamic calibrated Ecosim food web model, we assess the efects of future changes on marine resources and ecosystem conditions of the Israeli Mediterranean continental shelf. This region has been intensely invaded by Indo-Pacifc species. The region is exposed to extreme environmental conditions, is subjected to high rates of climate change and has experienced intense fshing pressure. We test the impacts of a new set of fshing regulations currently being implemented, a continued increase in sea temperatures following IPCC projections, and a continued increase in alien species biomass. We frst investigate the impacts of the stressors separately, and then we combine them to evaluate their cumulative efects. Our results show overall potential future benefts of fshing efort reductions, and detrimental impacts of increasing sea temperature and increasing biomass of alien species. Cumulative scenarios suggest that the benefcial efects of fsheries reduction may be dampened by the impact of increasing sea temperature and alien species when acting together. These results illustrate the importance of including stressors other than fsheries, such as climate change and biological invasions, in an ecosystem-based management approach. These results support the need for reducing local and regional stressors, such as fshing and biological invasions, in order to promote resilience to sea warming.
    [Show full text]
  • Assessing the Global Threat of Invasive Species to Marine Biodiversity Author(S): Jennifer L
    Assessing the Global Threat of Invasive Species to Marine Biodiversity Author(s): Jennifer L. Molnar, Rebecca L. Gamboa, Carmen Revenga and Mark D. Spalding Source: Frontiers in Ecology and the Environment, Vol. 6, No. 9 (Nov., 2008), pp. 485-492 Published by: Wiley on behalf of the Ecological Society of America Stable URL: http://www.jstor.org/stable/20440991 Accessed: 23-03-2017 21:10 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/20440991?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Wiley, Ecological Society of America are collaborating with JSTOR to digitize, preserve and extend access to Frontiers in Ecology and the Environment This content downloaded from 131.128.107.65 on Thu, 23 Mar 2017 21:10:32 UTC All use subject to http://about.jstor.org/terms REVIEWS REVIEWS REVIEWS Assessing the global threat of invasive species to marine biodiversity Jennifer Molnar1*, Rebecca L Gamboa', Carmen Revenga2, and Mark D Spalding3 Although invasive species are widely recognized as a major threat to marine biodiversity, there has been no quantitative global assessment of their impacts and routes of introduction.
    [Show full text]
  • Global Baselines and Benchmarks for Fish Biomass : Comparing Remote
    Vol. 612: 167–192, 2019 MARINE ECOLOGY PROGRESS SERIES Published March 7 https://doi.org/10.3354/meps12874 Mar Ecol Prog Ser OPEN ACCESS Global baselines and benchmarks for fish biomass: comparing remote reefs and fisheries closures Tim R. McClanahan1,*, Robert E. Schroeder2, Alan M. Friedlander3,4, Laurent Vigliola5, Laurent Wantiez6, Jennifer E. Caselle7, Nicholas A. J. Graham8, Shaun Wilson9,10, Graham J. Edgar11, Rick D. Stuart-Smith11, Remy M. Oddenyo12, J. E. Cinner13 1Wildlife Conservation Society, Marine Programs, Bronx, NY 10460, USA 2National Oceanic and Atmospheric Administration Fisheries, Honolulu, HI 96818, USA 3Pristine Seas, National Geographic Society, Washington, DC 20036, USA 4Fisheries Ecology Research Lab, University of Hawaii, Honolulu, HI 96822, USA 5Institut de Recherche pour le Développement (IRD), UMR ENTROPIE, Laboratoire Excellence LABEX Corail, 98851 Noumea, New Caledonia, France 6Institut De Sciences Exactes Et Appliquées (ISEA), EA7484, University of New Caledonia, 98851 Noumea, New Caledonia, France 7Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA 8Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK 9Department of Biodiversity Conservation and Attractions, Kensington, WA 6151, Australia 10Oceans Institute, University of Western Australia, Crawley, WA 6009, Australia 11Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia 12Wildlife Conservation Society, Coral Reef Conservation Program, Mombasa 80107, Kenya 13Australian Research Council, James Cook University, Townsville, QLD 4811, Australia ABSTRACT: Baselines and benchmarks (B&Bs) are needed to evaluate the ecological status and fisheries potential of coral reefs. B&Bs may depend on habitat features and energetic limitations that constrain biomass within the natural variability of the environment and fish behaviors.
    [Show full text]
  • Ecosystem-Based Implementation of Management in Marine Capture Fisheries
    Implementation of Case studies from WWF’s Marine Ecoregions Ecosystem-Based Management in Marine Capture Fisheries Chris Grieve and Katherine Short Contents 3 Foreword 4 Introduction 6 The Case Studies 8 Step 1 Yellow Sea Marine Ecoregion 13 Step 2 Eastern African Marine Ecoregion 19 Step 3 Baltic Sea Marine Ecoregion 25 Step 4 Fiji Islands Marine Ecoregion 30 Step 5 North West Atlantic Marine Ecoregion – Grand Banks, Canada 35 Step 6 Benguela Current Marine Ecoregion 41 Step 7 Heard & McDonald Islands/Prince Edward Islands/Kerguelen and Crozet Islands initiatives 47 Step 8 South West Atlantic/Patagonian Shelf Marine Ecoregion – San Matías Gulf, Argentina 51 Step 9 Gulf of California Marine Ecoregion – Mexico 54 Step 10 Bismarck Solomon Seas Marine Ecoregion – Bird’s Head Peninsula Seascape, Indonesia 59 Step 11 Southern Ocean – Antarctic Krill 66 Step 12 Western African Marine Ecoregion & New Zealand Marine Ecoregion 72 Conclusion © WWF-Canon / Roger HOOPER Foreword he myriad of life beneath the surface of coastal seas and open ocean stir wonder in all who experience it. Humanity derives aesthetic, economic, nutritional, cultural, social and emotional value from the marine environment and the life within. Unfortunately however, the litany of threat is well documented despite calls to action by the more responsible and legitimate industry, governments and community-based voices at the annual cycle of international meetings and conferences. Overall Tthough, the decline continues across the world; however as this compilation of case studies attests, in some places the attitude has turned, predominantly in coastal environments, but also on the high seas. In certain places near collapses have stirred communities and legislators to act.
    [Show full text]
  • Isolation of Chitin from Aplysina Aerophoba Using a Microwave Approach
    ISOLATION OF CHITIN FROM APLYSINA AEROPHOBA USING A MICROWAVE APPROACH Christine Klinger1,2, Sonia Żółtowska-Aksamitowska2,3, Teofil Jesionowski3,* 1 - Institute of Physical Chemistry, TU Bergakademie-Freiberg, 2 - Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, 3 - Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland e-mail: [email protected] Abstract Chitin of poriferan origin represents a unique renewable source of three-dimensional (3D) microtubular centimetre-sized scaffolds, which have recently been recognized as having applications in biomedicine, tissue engineering, and extreme biomimetics. The standard method of chitin isolation from sponges requires concentrated solutions of acids and bases and remains a time-consuming process (lasting up to seven days). Here, for the first time, we propose a new microwave-based express method for the isolation of chitinous scaffolds from the marine demosponge Aplysina aerophoba cultivated under marine farming conditions. Our method requires only 41% of the time of the classical process and does not lead to the deacetylation of chitin to chitosan. Alterations in microstructure and chemical composition due to the microwave treatment were investigated using various analytical approaches, including Calcofluor White staining, chitinase digestion, scattering electron microscopy, and Raman and ATR-FTIR spectroscopy. It was demonstrated that microwave irradiation has no impact on the chemical composition of the isolated chitin. Keywords: chitin isolation, marine sponge, microwave treatment, Aplysina aerophoba Received: 03.01.2019 Accepted: 05.04.2019 Progress on Chemistry and Application of Chitin and its Derivatives, Volume XXIV, 2019 DOI: 10.15259/PCACD.24.005 61 Ch.
    [Show full text]
  • Mediterranean Marine Science
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by National Documentation Centre - EKT journals Mediterranean Marine Science Vol. 20, 2019 Individualistic patterns in the budding morphology of the Mediterranean demosponge Aplysina aerophoba DÍAZ JULIO Universidad de las Islas Baleares MOVILLA JUANCHO Instituto Español de Oceanografía FERRIOL PERE Universidad de las Islas Baleares https://doi.org/10.12681/mms.19322 Copyright © 2019 Mediterranean Marine Science To cite this article: DÍAZ, J., MOVILLA, J., & FERRIOL, P. (2019). Individualistic patterns in the budding morphology of the Mediterranean demosponge Aplysina aerophoba. Mediterranean Marine Science, 20(2), 282-286. doi:https://doi.org/10.12681/mms.19322 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 21/02/2020 05:21:36 | Short Communication Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.19332 Individualistic patterns in the budding morphology of the Mediterranean demosponge Aplysina aerophoba Julio A. DÍAZ1, 2, Juancho MOVILLA3 and Pere FERRIOL1 1 Interdisciplinary Ecology Group, Biology Department, Universidad de las Islas Baleares, Palma, Spain 2 Instituto Español de Oceanografía, Centre Oceanogràfic de Balears, Palma de Mallorca, Spain 3 Instituto Español de Oceanografía, Centre Oceanogràfic de Balears, Estació d’Investigació Jaume Ferrer, Menorca, Spain Corresponding author: [email protected] Handling Editor: Eleni VOULTSIADOU Received: 10 December 2018; Accepted: 18 April 2019; Published on line: 28 May 2019 Abstract The external morphology of sponges is characterized by high plasticity, generally considered to be shaped by environmental factors, and modulated through complex morphogenetic pathways.
    [Show full text]