Dinosaur Gallery Explorer’S Notebook
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ontogeny Reveals Function and Evolution of the Hadrosaurid Dinosaur Dental Battery Aaron R
LeBlanc et al. BMC Evolutionary Biology (2016) 16:152 DOI 10.1186/s12862-016-0721-1 RESEARCH ARTICLE Open Access Ontogeny reveals function and evolution of the hadrosaurid dinosaur dental battery Aaron R. H. LeBlanc1*, Robert R. Reisz1,2, David C. Evans3 and Alida M. Bailleul4 Abstract Background: Hadrosaurid dinosaurs, dominant Late Cretaceous herbivores, possessed complex dental batteries with up to 300 teeth in each jaw ramus. Despite extensive interest in the adaptive significance of the dental battery, surprisingly little is known about how the battery evolved from the ancestral dinosaurian dentition, or how it functioned in the living organism. We undertook the first comprehensive, tissue-level study of dental ontogeny in hadrosaurids using several intact maxillary and dentary batteries and compared them to sections of other archosaurs and mammals. We used these comparisons to pinpoint shifts in the ancestral reptilian pattern of tooth ontogeny that allowed hadrosaurids to form complex dental batteries. Results: Comparisons of hadrosaurid dental ontogeny with that of other amniotes reveals that the ability to halt normal tooth replacement and functionalize the tooth root into the occlusal surface was key to the evolution of dental batteries. The retention of older generations of teeth was driven by acceleration in the timing and rate of dental tissue formation. The hadrosaurid dental battery is a highly modified form of the typical dinosaurian gomphosis with a unique tooth-to-tooth attachment that permitted constant and perfectly timed tooth eruption along the whole battery. Conclusions: We demonstrate that each battery was a highly dynamic, integrated matrix of living replacement and, remarkably, dead grinding teeth connected by a network of ligaments that permitted fine scale flexibility within the battery. -
Theropod Teeth from the Upper Maastrichtian Hell Creek Formation “Sue” Quarry: New Morphotypes and Faunal Comparisons
Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons TERRY A. GATES, LINDSAY E. ZANNO, and PETER J. MAKOVICKY Gates, T.A., Zanno, L.E., and Makovicky, P.J. 2015. Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons. Acta Palaeontologica Polonica 60 (1): 131–139. Isolated teeth from vertebrate microfossil localities often provide unique information on the biodiversity of ancient ecosystems that might otherwise remain unrecognized. Microfossil sampling is a particularly valuable tool for doc- umenting taxa that are poorly represented in macrofossil surveys due to small body size, fragile skeletal structure, or relatively low ecosystem abundance. Because biodiversity patterns in the late Maastrichtian of North American are the primary data for a broad array of studies regarding non-avian dinosaur extinction in the terminal Cretaceous, intensive sampling on multiple scales is critical to understanding the nature of this event. We address theropod biodiversity in the Maastrichtian by examining teeth collected from the Hell Creek Formation locality that yielded FMNH PR 2081 (the Tyrannosaurus rex specimen “Sue”). Eight morphotypes (three previously undocumented) are identified in the sample, representing Tyrannosauridae, Dromaeosauridae, Troodontidae, and Avialae. Noticeably absent are teeth attributed to the morphotypes Richardoestesia and Paronychodon. Morphometric comparison to dromaeosaurid teeth from multiple Hell Creek and Lance formations microsites reveals two unique dromaeosaurid morphotypes bearing finer distal denticles than present on teeth of similar size, and also differences in crown shape in at least one of these. These findings suggest more dromaeosaurid taxa, and a higher Maastrichtian biodiversity, than previously appreciated. -
71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas. -
A Troodontid Dinosaur from the Latest Cretaceous of India
ARTICLE Received 14 Dec 2012 | Accepted 7 Mar 2013 | Published 16 Apr 2013 DOI: 10.1038/ncomms2716 A troodontid dinosaur from the latest Cretaceous of India A. Goswami1,2, G.V.R. Prasad3, O. Verma4, J.J. Flynn5 & R.B.J. Benson6 Troodontid dinosaurs share a close ancestry with birds and were distributed widely across Laurasia during the Cretaceous. Hundreds of occurrences of troodontid bones, and their highly distinctive teeth, are known from North America, Europe and Asia. Thus far, however, they remain unknown from Gondwanan landmasses. Here we report the discovery of a troodontid tooth from the uppermost Cretaceous Kallamedu Formation in the Cauvery Basin of South India. This is the first Gondwanan record for troodontids, extending their geographic range by nearly 10,000 km, and representing the first confirmed non-avian tetanuran dinosaur from the Indian subcontinent. This small-bodied maniraptoran dinosaur is an unexpected and distinctly ‘Laurasian’ component of an otherwise typical ‘Gondwanan’ tetrapod assemblage, including notosuchian crocodiles, abelisauroid dinosaurs and gondwanathere mammals. This discovery raises the question of whether troodontids dispersed to India from Laurasia in the Late Cretaceous, or whether a broader Gondwanan distribution of troodontids remains to be discovered. 1 Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK. 2 Department of Earth Sciences, University College London, London WC1E 6BT, UK. 3 Department of Geology, Centre for Advanced Studies, University of Delhi, New Delhi 110 007, India. 4 Geology Discipline Group, School of Sciences, Indira Gandhi National Open University, New Delhi 110 068, India. 5 Division of Paleontology and Richard Gilder Graduate School, American Museum of Natural History, New York, New York 10024, USA. -
Evidence for a Tyrannosaurus Rex from Southeastern Colorado
Evidence for aTyrannosaurus rex from southeastern Colorado Keith Berry, Platte Valley School District Re-7, Science Department, Kersey, Colorado 80644, and Frontiers of Science Institute, Mathematics and Science Teaching Institute, University of Northern Colorado, Greeley, Colorado 80369, [email protected] Discovery Femur: A limb bone fragment (TSJC racy of ± 0.5 mm along a radial transect, T. 2008.1.2) is also tentatively identified as cf. rex annual growth markers are exception- Dinosaur tooth and bone fragments were T. rex. Theropod bones commonly exhibit ally good predictors for the growth lines recovered from private property at an onion-skin layering in cross section (K. observed in this bone (cχ2 = 1.44, df = 6, undisclosed locality in southeastern Colo- Carpenter, pers. comm. 2007), and this p-value > 0.95). As T. rex is the only animal rado. The site is in an unnamed, transitional bone seems to lack this feature, although known to exhibit this characteristic pattern member of the uppermost Pierre Shale and the bone has distinct, differentiable layers. of growth (Erickson et al. 2004; Chinsamy- is likely within the Baculites eliasi ammonite Whereas the bone itself may not be exclu- Turan 2005), this is believed to be a fairly zone (N. Larson, pers. comm. 2007), mak- sively attributed to a theropod based on its powerful diagnostic test. ing the site early Maastrichtian. This is the gross histological properties alone, there are Significance—Estimated to be about 71 first record of dinosaur fossils from these quantitative reasons supporting this diag- m.y. old based on the age of the Baculites strata. -
Katherine Keenan Bramble
A Histological Analysis of the Hadrosaurid Dental Battery by Katherine Keenan Bramble A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Systematics and Evolution Department of Biological Sciences University of Alberta © Katherine Keenan Bramble, 2017 Abstract The first histological study of an entire hadrosaurid dental battery provides a better understanding of this complex structure. The hadrosaurid dental battery is composed of interlocking, vertically stacked columns of teeth that form a complex grinding surface. The dental battery was previously considered to be a solid, cemented structure based on superficial examination of intact batteries and thin sections of isolated teeth. This first description of the dental battery using thin sections through the entire structure refutes the model of a single, fused mass of teeth. These thin sections confirm the presence of periodontal ligament connections between all teeth, underscoring its dynamic nature. The serial thin sections across an adult dental battery also revealed signs of gradual and possibly ontogenetic tooth migration. These signs include the extensive remodeling of the alveolar septa and the anteroposterior displacement of successive generations of teeth. The four most posterior tooth families migrated posteriorly whereas the remaining tooth families had a progressively more pronounced anterior trajectory. This migration is pronounced enough in some areas to cause extensive resorption of neighbouring teeth. Thin sections through a dental battery of a perinatal specimen reveal that all of the alveolar septa are angled anteriorly, which suggests that extensive and unidirectional tooth migration begins early in ontogeny and that any additional migration happens later in ontogeny. -
Second Discovery of a Spinosaurid Tooth from the Sebayashi Formation (Lower Cretaceous), Kanna Town, Gunma Prefecture, Japan
群馬県立自然史博物館研究報告(21):1-6,2017 1 Bull.Gunma Mus.Natu.Hist(. 21):1-6,2017 Original Article Second discovery of a spinosaurid tooth from the Sebayashi Formation (Lower Cretaceous), Kanna Town, Gunma Prefecture, Japan 1 2 2 KUBOTA Katsuhiro, TAKAKUWA Yuji and HASEGAWA Yoshikazu 1Kanna Dinosaur Center: 51-2, Kagahara, Kanna, Tano, Gunma 370-1602, Japan ([email protected]) 2Gunma Museum of Natural History: 1674-1 Kamikuroiwa, Tomioka, Gunma 370-2345, Japan ([email protected]; [email protected]) Abstract: A fragment of an isolated tooth is described from the Lower Cretaceous Sebayashi Formation of the Sanchu Group. Its crown is almost round in cross section and shows distinctive flutes. Between the flutes, there are longitudinal finely granular structures. The distinctive carinae have poorly defined serrations. It is probably assigned as a spinosaurid theropod dinosaur and is the second report from Japan. This spinosaurid tooth is found from the higher stratigraphic horizon of the same formation than the first. The occurrences of spinosaurids from two horizons suggest that spinosaurids might have habituated this area during the deposit of the Sebayashi Formation. The dental comparison between Asian and other spinosaurids suggests that Asian spinosaurids may have unique dental characteristics and be different from any known spinosaurids, although the phylogenetic relationships between Asian and other spinosaurids (baryonychines and spinosaurines) are unclear. Key words: Dinosaur, Spinosauridae, Sebayashi Formation, Gunma Prefecture, Kanna Town Introduction Macro-sized and longitudinal ornamentation on the crown is characteristic in spinosaurids and had been called as crest, flute, A fragmentary dinosaur tooth was collected in a fossil- ridge, and striation (Fig. -
Mammal-Like Mastication for the Dinosaur Leptoceratops 8 July 2016, by Andrew Farke
Mammal-like mastication for the dinosaur Leptoceratops 8 July 2016, by Andrew Farke in just about every plane of movement imaginable. Different chewing styles characterize different diets as well as different groups of organisms; if you ever get the opportunity, take a look at the fairly simple motions of an iguana chopping up a leaf versus the complex dance of teeth, jaws, and tongue in a cow chewing on grass. More complex motions can allow more thorough processing of food before it enters the stomach, which has all sorts of advantages for digestive efficiency and nutrient extraction. Why do we care about chewing? From a biological perspective, feeding is an incredibly basic yet often poorly understood aspect of an organisms' life. Everything needs to eat, and it's the style of eating that can make it or break it for a species on geological timescales as well as within an individual organism's lifetime. Different styles of chewing can open up different food sources, and is one part of what helps species compete against each other ecologically. If we understand feeding in extinct organisms, we can better understand how they fit within their immediate environment and their world. Tiny scratches on a dinosaur tooth, viewed under a scanning electron microscope. Viewed at actual size, the image would only be a millimeter tall! Credit: Varriale 2016 We all chew, but hardly ever think about it. Even a moment's consideration, though, reveals how complex of a process it actually is. Jaws move, teeth gnash, and food gets broken from big bits into smaller bits. -
Saurolophus Angustirostris from the Late Cretaceous of Mongolia with Comments on Saurolophus Osborni from Canada Author(S): Phil R
Cranial Osteology and Ontogeny of Saurolophus angustirostris from the Late Cretaceous of Mongolia with Comments on Saurolophus osborni from Canada Author(s): Phil R. Bell Source: Acta Palaeontologica Polonica, 56(4):703-722. 2011. Published By: Institute of Paleobiology, Polish Academy of Sciences DOI: http://dx.doi.org/10.4202/app.2010.0061 URL: http://www.bioone.org/doi/full/10.4202/app.2010.0061 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Cranial osteology and ontogeny of Saurolophus angustirostris from the Late Cretaceous of Mongolia with comments on Saurolophus osborni from Canada PHIL R. BELL Bell, P.R. 2011. Cranial osteology and ontogeny of Saurolophus angustirostris from the Late Cretaceous of Mongolia with comments on Saurolophus osborni from Canada. Acta Palaeontologica Polonica 56 (4): 703–722. Reanalysis of the skull of the crested Asian hadrosaurine Saurolophus angustirostris confirms its status as a distinct spe− cies from its North American relative, Saurolophus osborni. -
Morphological Variation in the Hadrosauroid Dentary Morfologisk Variation I Det Hadrosauroida Dentärbenet
Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 398 Morphological Variation in the Hadrosauroid Dentary Morfologisk variation i det hadrosauroida dentärbenet D. Fredrik K. Söderblom INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 398 Morphological Variation in the Hadrosauroid Dentary Morfologisk variation i det hadrosauroida dentärbenet D. Fredrik K. Söderblom ISSN 1650-6553 Copyright © D. Fredrik K. Söderblom Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2017 Abstract Morphological Variation in the Hadrosauroid Dentary D. Fredrik K. Söderblom The near global success reached by hadrosaurid dinosaurs during the Cretaceous has been attributed to their ability to masticate (chew). This behavior is more commonly recognized as a mammalian adaptation and, as a result, its occurrence in a non-mammalian lineage should be accompanied with several evolutionary modifications associated with food collection and processing. The current study investigates morphological variation in a specific cranial complex, the dentary, a major element of the hadrosauroid lower jaw. 89 dentaries were subjected to morphometric and statistical analyses to investigate the clade’s taxonomic-, ontogenetic-, and individual variation in dentary morphology. Results indicate that food collection and processing became more efficient in saurolophid hadrosaurids through a complex pattern of evolutionary and growth-related changes. The diastema (space separating the beak from the dental battery) grew longer relative to dentary length, specializing food collection anteriorly and food processing posteriorly. The diastema became ventrally directed, hinting at adaptations to low-level grazing, especially in younger individuals. -
Montana State Dinosaur: Maiasaura Peeblesorum
Maiasaura peeblesorum Maiasaura peeblesorum Fun Facts Did you know there are 7 states that have not adopted Class: Hadrosaur a state fossil!? Montana, rich in dinosaur bones, is of Adult Length: 25 feet course not one of those states. In fact, Montana was Adult Weight: 5 tons among the rst fteen states to adopt a state fossil, Alive During: Cretaceous Period making the Maiasaura our Ocial State Fossil on Food Source: Herbivore February 22, 1985. Looking for more Montana Dinosaur information? The Maiasaura marked an important discovery in Check out the MT Dinosaur Trail: mtdinotrail.org Paleontology—dinosaurs (or at least this one), like many of today’s animals cared for their young. The rst of the Maiasaura were discovered at a site that is now Did You Know? known as “Egg Mountain” in Central Montana. This Montana looked a lot dierent when dinosaurs discovery is accredited to Dr. Jack Horner, the former roamed the earth. Nearly 144 to 65 million years Curator of Paleontology at the Museum of the Rockies ago (during the Cretaceous Period a signicant and Jurrasic Park Consultant of Paleontology. The portion of Montana was covered by shallow water. Maiasaura walked the earth during the Cretaceous This water way was known as the Western Interior Period, and is believed to have lived in herds given Dr. Seaway. This seaway eectively split North America Horner’s discovery. At this single location—Egg in two and was home to diverse marine life. Mountain—near Choteau there were fully grown dinosaurs, as well as juveniles, and fossilized eggs. This nd was imperative to understanding dinosaur biology as paleontologists were able to study each stage of development for a single species. -
Taphonomy and Sedimentology of Two Miocene Vertebrate Fossil Sites On
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2010 Taphonomy and sedimentology of two Miocene vertebrate fossil sites on Fort Polk, Louisiana Julie Lynn Hill Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Earth Sciences Commons Recommended Citation Hill, Julie Lynn, "Taphonomy and sedimentology of two Miocene vertebrate fossil sites on Fort Polk, Louisiana" (2010). LSU Master's Theses. 3336. https://digitalcommons.lsu.edu/gradschool_theses/3336 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. TAPHONOMY AND SEDIMENTOLOGY OF TWO MIOCENE VERTEBRATE FOSSIL SITES ON FORT POLK, LOUISIANA A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science In The Department of Geology and Geophysics by Julie Lynn Hill B.S., University of Wisconsin – Madison, 2002 August 2010 ACKNOWLEDGEMENTS Special thanks to my major advisor, Dr. Judith Schiebout, for providing conversation and guidance on life, the universe, and everything – from paleontology and academia to cats and good literature. Many thanks to committee members Drs. Laurie Anderson and Brooks Ellwood for stepping in when they were needed and offering new insight and encouragement that helped to shape this thesis. Thank you also to late committee member Dr.