MAIASAURA DINOSAUR a Member of the Hadrosauridae Family, the Maiasaura Peeblesorum Is a Classic North American Herbivorous Dinosaur with a “Duck-Billed” Head

Total Page:16

File Type:pdf, Size:1020Kb

MAIASAURA DINOSAUR a Member of the Hadrosauridae Family, the Maiasaura Peeblesorum Is a Classic North American Herbivorous Dinosaur with a “Duck-Billed” Head MAIASAURA DINOSAUR A member of the Hadrosauridae family, the Maiasaura peeblesorum is a classic North American herbivorous dinosaur with a “duck-billed” head. Maiasaura is Greek for “good mother lizard” because evidence shows that they nurtured and raised their young for a significantly longer period of time than other dinosaurs. A large nesting site discovered in Montana has also made the Maiasaura popular amongst paleontologists. COMPLETE MOUNTED “DUCK-BILLED” DINOSAUR Maiasaura peeblesorum Late Cretaceous Two Medicine Formation, Northern Montana The present specimen being offered is an exquisitely mounted sub-adult Maiasaura peeblesorum measuring over 17 feet (5 meters) in length. It is one of the most complete mounted specimens of this species known and it possesses a particularly well preserved skull. An important feature of the discovery is the fact that this specimen was found with incredible natural articulation of the hind legs and tail. As it is still a sub-adult, the not yet fused astragalus and calcaneum displays amazing articulation with the tibia, fibula on both hind legs. The tail section features 36 well-preserved caudal vertebrae and was also found together in articulation. Though a composite, the skeleton consists of approximately 80% original bones which were professionally assembled to be scientifically accurate. Discovered in a large bone bed from the Two Medicine Formation of Northern Montana in 1992, it wasn’t until 15 years later that this impressive dinosaur was mounted using the most modern techniques available. By using a bracket-mount system, no bones have been drilled or compromised in any way during the mounting procedure. Every bone is removable from the supporting armature for scientific study. An innovative “gravity mount” system is used on the feet; individual toe bones fit into individual slots and gravity holds them in place. These bones can be removed very easily without disrupting the rest of the mount. The skull possesses a unique mounting system that allows it to move side-to-side, approximately up to 30°; also, the mandibles can be positioned with the mouth opened or closed. Maiasaura Maiasaura was a large, herbivorous, duck-billed dinosaur that lived during the late Cretaceous period. Adult maiasaurs grew upwards of 30 feet (9 meters) in length, stood 9 feet (2.7 meters) tall and weighed 3 to 4 tons. Possessing front legs that were much shorter than their rear legs; maiasaurs utilized both bipedal and quadripedal motion and were relatively fast dinosaurs; having to move quickly to evade predators such as the Albertosaurus and Troodon. There is evidence that maiasaurs travelled in large herds across late Cretaceous North America; some possibly ten-thousand strong. With so many mouths to feed, these herds needed to travel seasonally in search of food, returning annually to breed at their original nesting sites. Maiasaur nests usually contained more than 20 eggs, each of which were as big as those of the modern ostrich. Rather than sitting on the eggs, the parents placed vegetation in the nest to rot in order to generate heat for incubation. Maiasaura was named the “good mother lizard” because fossil evidence suggests Maiasaur mothers nurtured their hatchlings until they doubled in size — longer than many other dinosaurs stayed with their young. Infant maiasaurs did not have legs capable of walking, yet fossil evidence shows partially worn teeth, therefore the parents had to provide for their young. The largest nesting site in the Western Hemisphere is Egg Mountain in Montana; discovered in 1977, this site had over 200 individual Maiasaura fossils and countless nests. The discovery of a nest with remains of trampled eggshells and babies too large to be hatchlings led to the name Maiasaura being chosen by paleontologist Jack Horner and Robert Makela in 1979. This still stands as the only female name given to a dinosaur. Montana designated the duck-bill dinosaur, Maiasaura peeblesorum, as the official state fossil in 1985. The Two Medicine Formation The Two Medicine Formation, where the present specimen was discovered, is one of the most paleontologically significant rock layers in the world. From its sediments the first dinosaur eggs in North America were discovered, along with the first nest of infant dinosaurs in the world. The formation was deposited 83.5 to 70.5 million years ago during the Late Cretaceous period. It is prevalent in Montana east of the Rocky Mountains and is mostly exposed as outcrops and badlands in the grassy plains. Many species of hadrosaurs, ankylosaurs, ceratopsians, avians, deinonychosaurs, oviraptorosaurs, ornithopods and tyrannosaurids have been found within the deposits of this formation and it is one of the most important dinosaur-bearing formations in the world. “Cory” This specimen is nicknamed “Cory”; the preparators of this specimen use a tropical storm naming system for their dinosaurs; going through the alphabet, female names first (Alice, Betty, Candace... to Zelda) and then progressing to male names. “Cory” is the 29th dinosaur that this team has found and is the name of the team’s production manager. NATURAL HISTORY For more information, contact: David Herskowitz Peter Wiggins Director of Natural History Assistant Director of Natural History [email protected] [email protected] 214-409-1610 214-409-1639 800-872-6467 ext. 1610 800-872-6467 ext. 1639 TRICERATOPS DINOSAUR Natural HistorY AUCTION Free catalog and The Collector’s Handbook ($65 Value) for new clients. Please submit auction invoices of $1000+ in this category, from any source. Include your contact information and mail to Heritage, fax 214-409-1425, email [email protected], or call 866-835-3243. For more details, go to HA.com/FCO. Annual Sales Exceed $600 Million | 500,000+ Online Bidder-Members 3500 Maple Avenue | Dallas, Texas 75219 | 800-872-6467 | HA.com DALLAS | NEW YORK | BEVERLY HILLS | PARIS | GENEVA 20633 12-21-10.
Recommended publications
  • Dinosaur Gallery Explorer’S Notebook
    Dinosaur Gallery Explorer’s Notebook Name: Class: Level 3 © Museum of Natural Sciences Education Service 2012 29, Rue Vautier, 1000 Brussels. Tel: +32 (0)2 627 42 52 [email protected] www.sciencesnaturelles.be 1 Dinosaur Gallery - Level 3 Plan of the Gallery Each time you see a number in the margin of this notebook you must move to a new place in the gallery. Find where you are on the plan. entrance via mezzanine (level 0) stairs down to level -2 stairs up to level -1 The numbers on the plan correspond to the different stages on the dinosaur gallery. The numbers start on page 6 of this notebook Make sure you have a sharp pencil and a rubber with you! Make a team of three to answer the questions. 2 Dinosaur Gallery - Level 3 Before your visit... The first pages of this notebook will help you prepare for your visit to the museum! * Words followed by an asterisk are explained in the glossary on the last page. What is a dinosaur? Below are some characteristics of dinosaurs feet underneath their bodies 4 feet terrestrial eggs with shells vertebrate* ATTENTION Dinosaurs were terrestrial animals. At the same time, sea reptiles and flying reptiles lived on the Earth, but these animals were NOT dinosaurs! Herbivore or carnivore? To know whether a dinosaur ate meat or plants, take a look at its teeth herbivore carnivore When a dinosaur was a When a dinosaur was a herbivore, its teeth had flat ends, carnivore, its teeth had pointed like the prongs of a rake or like ends, like knives.
    [Show full text]
  • Saurolophus Angustirostris from the Late Cretaceous of Mongolia with Comments on Saurolophus Osborni from Canada Author(S): Phil R
    Cranial Osteology and Ontogeny of Saurolophus angustirostris from the Late Cretaceous of Mongolia with Comments on Saurolophus osborni from Canada Author(s): Phil R. Bell Source: Acta Palaeontologica Polonica, 56(4):703-722. 2011. Published By: Institute of Paleobiology, Polish Academy of Sciences DOI: http://dx.doi.org/10.4202/app.2010.0061 URL: http://www.bioone.org/doi/full/10.4202/app.2010.0061 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Cranial osteology and ontogeny of Saurolophus angustirostris from the Late Cretaceous of Mongolia with comments on Saurolophus osborni from Canada PHIL R. BELL Bell, P.R. 2011. Cranial osteology and ontogeny of Saurolophus angustirostris from the Late Cretaceous of Mongolia with comments on Saurolophus osborni from Canada. Acta Palaeontologica Polonica 56 (4): 703–722. Reanalysis of the skull of the crested Asian hadrosaurine Saurolophus angustirostris confirms its status as a distinct spe− cies from its North American relative, Saurolophus osborni.
    [Show full text]
  • Morphological Variation in the Hadrosauroid Dentary Morfologisk Variation I Det Hadrosauroida Dentärbenet
    Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 398 Morphological Variation in the Hadrosauroid Dentary Morfologisk variation i det hadrosauroida dentärbenet D. Fredrik K. Söderblom INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 398 Morphological Variation in the Hadrosauroid Dentary Morfologisk variation i det hadrosauroida dentärbenet D. Fredrik K. Söderblom ISSN 1650-6553 Copyright © D. Fredrik K. Söderblom Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2017 Abstract Morphological Variation in the Hadrosauroid Dentary D. Fredrik K. Söderblom The near global success reached by hadrosaurid dinosaurs during the Cretaceous has been attributed to their ability to masticate (chew). This behavior is more commonly recognized as a mammalian adaptation and, as a result, its occurrence in a non-mammalian lineage should be accompanied with several evolutionary modifications associated with food collection and processing. The current study investigates morphological variation in a specific cranial complex, the dentary, a major element of the hadrosauroid lower jaw. 89 dentaries were subjected to morphometric and statistical analyses to investigate the clade’s taxonomic-, ontogenetic-, and individual variation in dentary morphology. Results indicate that food collection and processing became more efficient in saurolophid hadrosaurids through a complex pattern of evolutionary and growth-related changes. The diastema (space separating the beak from the dental battery) grew longer relative to dentary length, specializing food collection anteriorly and food processing posteriorly. The diastema became ventrally directed, hinting at adaptations to low-level grazing, especially in younger individuals.
    [Show full text]
  • Montana State Dinosaur: Maiasaura Peeblesorum
    Maiasaura peeblesorum Maiasaura peeblesorum Fun Facts Did you know there are 7 states that have not adopted Class: Hadrosaur a state fossil!? Montana, rich in dinosaur bones, is of Adult Length: 25 feet course not one of those states. In fact, Montana was Adult Weight: 5 tons among the rst fteen states to adopt a state fossil, Alive During: Cretaceous Period making the Maiasaura our Ocial State Fossil on Food Source: Herbivore February 22, 1985. Looking for more Montana Dinosaur information? The Maiasaura marked an important discovery in Check out the MT Dinosaur Trail: mtdinotrail.org Paleontology—dinosaurs (or at least this one), like many of today’s animals cared for their young. The rst of the Maiasaura were discovered at a site that is now Did You Know? known as “Egg Mountain” in Central Montana. This Montana looked a lot dierent when dinosaurs discovery is accredited to Dr. Jack Horner, the former roamed the earth. Nearly 144 to 65 million years Curator of Paleontology at the Museum of the Rockies ago (during the Cretaceous Period a signicant and Jurrasic Park Consultant of Paleontology. The portion of Montana was covered by shallow water. Maiasaura walked the earth during the Cretaceous This water way was known as the Western Interior Period, and is believed to have lived in herds given Dr. Seaway. This seaway eectively split North America Horner’s discovery. At this single location—Egg in two and was home to diverse marine life. Mountain—near Choteau there were fully grown dinosaurs, as well as juveniles, and fossilized eggs. This nd was imperative to understanding dinosaur biology as paleontologists were able to study each stage of development for a single species.
    [Show full text]
  • THE BIBLIOGRAPHY of HADROSAURIAN DINOSAURS the First 150 Years: 1856 - 2006
    THE BIBLIOGRAPHY OF HADROSAURIAN DINOSAURS The First 150 Years: 1856 - 2006. complied by M.K. Brett-Surman © Smithsonian Institution 1985-2008 The Department of Paleobiology of the National Museum of Natural History, Smithsonian Institution, currently houses approximately 44 million fossil plant, invertebrate, and vertebrate fossils in more than 480 separate collections. In addition, Paleobiology also maintains a reference collection of over 120,000 stratigraphic and sediment samples. This listing represents a service provided to the public as part of our Outreach Program and as part of the Smithsonian Institution’s mission "for the increase and diffusion of knowledge...". Papers are listed by author and year. Author's names are capitalized. The viewer should be aware of any searches that are case sensitive. The papers listed here, in a majority of instances, do NOT contain abstracts, papers on ichnites, or popular articles or books, unless they present new information or cover an aspect of the history of dinosaur paleontology. At present, some of the legacy software that was used to maintain this list only allowed basic ASCII characters, therefore foreign accents (such as in French and Spanish) did not translate. This will be fixed at a later date. The Bibliography of Hadrosaurian Dinosaurs was written, compiled, and maintained by M.K. Brett-Surman, (Museum Specialist), P.O. Box 37012, Department of Paleobiology, National Museum of Natural History, MRC-121, Washington, DC 20013-7012. He can be reached electronically at: [email protected]., and by FAX at 202-786-2832. Please send all corrections and additions to the e-mail address. This file will be no longer be updated, except for entries prior to 2007.
    [Show full text]
  • Edmontosaurus Annectens (Ornithischia, Hadrosauridae) Femur Documents a Previously Unreported Intermediate Growth Stage for This Taxon Andrew A
    Vertebrate Anatomy Morphology Palaeontology 7:59–67 59 ISSN 2292-1389 A juvenile cf. Edmontosaurus annectens (Ornithischia, Hadrosauridae) femur documents a previously unreported intermediate growth stage for this taxon Andrew A. Farke1,2,3,* and Eunice Yip2 1Raymond M. Alf Museum of Paleontology, 1175 West Baseline Road, Claremont, CA, 91711, USA 2The Webb Schools, 1175 West Baseline Road, Claremont, CA, 91711, USA 3Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Blvd. Los Angeles, CA, 90007, USA; [email protected] Abstract: A nearly complete, but isolated, femur of a small hadrosaurid from the Hell Creek Formation of Montana is tentatively referred to Edmontosaurus annectens. At 28 cm long, the element can be classified as likely that from an ‘early juvenile’ individual, approximately 24% of the maximum known femur length for this species. Specimens from this size range and age class have not been described previously for E. annectens. Notable trends with increasing body size include increasingly distinct separation of the femoral head and greater trochanter, relative increase in the size of the cranial trochanter, a slight reduction in the relative breadth of the fourth trochanter, and a relative increase in the prominence of the cranial intercondylar groove. The gross profile of the femoral shaft is fairly consistent between the smallest and largest individuals. Although an ontogenetic change from relatively symmetrical to an asymmetrical shape in the fourth trochanter has been suggested previously, the new juvenile specimen shows an asymmetric fourth tro- chanter. Thus, there may not be a consistent ontogenetic pattern in trochanteric morphology. An isometric relationship between femoral circumference and femoral length is confirmed for Edmontosaurus.
    [Show full text]
  • Dinosaur Systematics Approaches and Perspectives
    Dinosaur Systematics Approaches and Perspectives Edited by Kenneth Carpenter Denver Museum of Natural History and Philip J. Currie r.„«..u Tynell Museum of Palaeontology SEP 20 1991 The right of the University of Cambridge to print and sell alt manner of hooks was granted by Henry VIU in 1534. The University has printed and published continuously since 1584. Cambridge University Press Cambridge New York Port Chester Melbourne Sydney Morphometric observations on hadrosaurid ornithopods RALPH E. CHAPMAN AND MICHAEL K. BRETT-SURMAN Abstract because they are represented by large numbers of well- Results are presented of preliminary morphometric documented specimens with both cranial and postcranial analyses on hadrosaurs using the landmark shape analysis material. Contrast this with the pachycephalosaurs, for method Resistant-Fit Theta-Rho-Analysis (RFTRA). The analy- example, for which little postcranial material is avail- ses were performed on both cranial and postcranial material. able, and most taxa and specimens are represented by They show this approach to be useful for the analysis of hadro- only incomplete crania (Maryariska and Osmolska 1974; saur morphology and provide insight into how this morphology varies within the context of the phylogenetic structure of the Sues and Galton 1987; Goodwin this volume). In fact, family. Further, the patterns are related to two other groups of hadrosaur material can be so abundant that it is often Euornithopods, the iguanodontids and camptosaurids. The left uncollected when resources restrict the number of results highlight the distinct morphology of the lambeosaurine specimens that can be removed during a field season hadrosaurs, confirm that most of the significant morphological (P.
    [Show full text]
  • A New Hadrosaurine (Dinosauria: Hadrosauridae) From
    www.nature.com/scientificreports Corrected: Author Correction OPEN A New Hadrosaurine (Dinosauria: Hadrosauridae) from the Marine Deposits of the Late Cretaceous Received: 1 March 2019 Accepted: 2 August 2019 Hakobuchi Formation, Yezo Group, Published online: 05 September 2019 Japan Yoshitsugu Kobayashi1, Tomohiro Nishimura2, Ryuji Takasaki 3, Kentaro Chiba4, Anthony R. Fiorillo5, Kohei Tanaka6, Tsogtbaatar Chinzorig 7, Tamaki Sato8 & Kazuhiko Sakurai2 A nearly complete skeleton of a new hadrosaurid, Kamuysaurus japonicus gen. et sp. nov., was discovered from the outer shelf deposits of the Upper Cretaceous Hakobuchi Formation of the Yezo Group in Hobetsu area of Mukawa town in Hokkaido, Japan. Kamuysaurus belongs to the sub-clade of Hadrosaurinae, Edmontosaurini, and forms a monophyly with Laiyangosaurus and Kerberosaurus from the northern Far East. Kamuysaurus has a long anterior platform for the nasofrontal sutural surface, which may indicate the presence of a small supracranial crest, similar to a sub-adult form of Brachylophosaurus based on the extension of the nasofrontal sutural surface. The Dispersal Extinction Cladogenesis analysis with the 50% Majority Rule consensus tree suggests that the clade of Kamuysaurus, Laiyangosaurus, and Kerberosaurus may have dispersed into Asia prior to the late Campanian and the potential endemism of this clade during the late Campanian and early Maastrichtian in the northern Far East. The results of both Dispersal Extinction Cladogenesis and Ancestral State Reconstruction analyses imply that the marine-infuenced environment in North America during the Campanian may have played an important role for the hadrosaurid diversifcation in its early evolutionary history. Hadrosaurid dinosaurs are one of the most successful herbivorous dinosaurs in the Late Cretaceous, and these fossil remains are common in the uppermost Cretaceous (Campanian and Maastrichtian) deposits in Laurasia (North America, Asia, and Europe) and some areas of Gondwana (South America and Antarctica)1,2.
    [Show full text]
  • The Lambeosaurine Dinosaur Amurosaurus Riabinini, from the Maastrichtian of Far Eastern Russia
    The lambeosaurine dinosaur Amurosaurus riabinini, from the Maastrichtian of Far Eastern Russia PASCAL GODEFROIT, YURI L. BOLOTSKY, and JIMMY VAN ITTERBEECK Godefroit, P., Bolotsky, Y.L., and Van Itterbeeck, J. 2004. The lambeosaurine dinosaur Amurosaurus riabinini, from the Maastrichtian of Far Eastern Russia. Acta Palaeontologica Polonica 49 (4): 585–618. Amurosaurus riabinini Bolotsky and Kurzanov, 1991 (Dinosauria, Hadrosauridae) is described on the basis of numerous disarticulated bones from the Maastrichtian Udurchukan Formation of Blagoveschensk, Far Eastern Russia. Compari− sons with North American palynozones and their well−calibrated ages suggest that this formation is late Maastrichtian in age. It is shown that A. riabinini is a valid species, characterised by cranial and postcranial autapomorphies. A phylogen− etic analysis, based on 40 cranial, dental, and postcranial characters, indicates that this taxon occupies a relatively basal position within the lambeosaurine subfamily as the sister−taxon of a monophyletic group formed by the parasauroloph and corythosaur clades. This cladogram also demonstrates that lambeosaurines have an Asian origin. In eastern Asia, lambeosaurine dinosaurs dominate late Maastrichtian dinosaur localities, whereas this group is apparently no longer rep− resented in synchronous localities from western North America. Key words: Dinosauria, Lambeosaurinae, Amurosaurus riabinini, phylogeny, palaeogeography, Late Cretaceous, Russia. Pascal Godefroit [[email protected]], Department of Palaeontology, Institut royal des Sciences naturelles de Belgique, rue Vautier 29, 1 000 Brussels, Belgium; Yuri L. Bolotsky [[email protected]], Amur Natural History Museum, Amur KNII FEB RAS, per. Relochny 1, 675 000 Blagoveschensk, Russia; Jimmy Van Itterbeeck [[email protected]], Aspirant FWO−Vlaanderen, Afdeling Historische Geologie, Katholieke Universiteit Leuven, Redingenstraat 16, 3000 Leuven, Belgium.
    [Show full text]
  • WEE SING and LEARN DINOSAURS (Song Lyrics)
    WEE SING AND LEARN DINOSAURS (Song lyrics) DINOSAURS CHORUS Dinosaurs, dinosaurs, Dinosaurs, dinosaurs, Dinosaurs, dinosaurs, Oh, millions and millions of years ago, dinosaurs roamed the earth. VERSE Some dinosaurs were small and fast and some were big and slow, Some dinosaurs walked all alone, and some in herds, we know, Some dinosaurs ate only meat and some ate plants, it’s true. Some dinosaurs were very fierce and some were peaceful, too. REPEAT CHORUS TAG Millions and millions and millions and millions and millions and millions of years ago, Dinosaurs roamed the earth. MAIASAURA Maiasaura made a nest of mud, Maiasaura made a nest of mud, Maiasaura made a nest of mud, Then she laid her eggs. Maiasaura watched the babies hatch, Maiasaura watched the babies hatch, Maiasaura watched the babies hatch, Then she fed them all. Maiasaura took care of her young, Maiasaura took care of her young, Maiasaura took care of her young, Then they left the nest. TAG Then they left the nest, Then they left the nest. ANKYLOSAURUS Ankylosaurus had tough skin, Ankylosaurus had rough skin, Ankylosaurus had thick skin And spikes on its head and back. Ankylosaurus had a long tail, Ankylosaurus had a strong tail, Ankylosaurus had a spiked tail With a big, bony club on the end. TYRANNOSAURUS VERSE 1 Tyrannosaurus was the fiercest Dinosaur of all, It had sharp claws and big sharp teeth And stood so very tall. CHORUS Tyrannosaurus, Tyrannosaurus Rex, Tyrannosaurus, Tyrannosaurus Rex. VERSE 2 Tyrannosaurus hunted for its Food both night and day, The other dinosaurs would run To get out of the way.
    [Show full text]
  • A New Species of Saurolophine Hadrosaurid Dinosaur from the Late Cretaceous of the Pacific Coast of North America
    A new species of saurolophine hadrosaurid dinosaur from the Late Cretaceous of the Pacific coast of North America ALBERT PRIETO−MÁRQUEZ and JONATHAN R. WAGNER Prieto−Márquez, A. and Wagner, J.R. 2013. A new species of saurolophine hadrosaurid dinosaur from the Late Creta− ceous of the Pacific coast of North America. Acta Palaeontologica Polonica 58 (2): 255–268. We describe and re−evaluate the systematics of specimens from the Maastrichtian Moreno Formation of California (west− ern USA) as a new species of Saurolophus, the only known genus of hadrosaurid dinosaur widespread in Asia and North America. Recognition of this new species adds substantially to the record of the taxonomic diversity of these animals west of the Rocky Mountains. The new species, Saurolophus morrisi, is diagnosed by the possession of a postorbital having or− namentation in form of wide oblique groove on jugal process. Placement of this new species in Saurolophus considerably expands the distribution of this genus, although this referral is arbitrary since phylogenetic analysis places the new species outside of the clade formed by Saurolophus osborni and Saurolophus angustirostris. However, recognition of a new, en− demic Californian hadrosaurid, especially one so closely related to both Asian and North American species, may have im− plications for future studies of both the internal biogeography of Western North America, and the history of exchange with Asia. Key words: Dinosauria, Hadrosauridae, Saurolophinae, evolution, phylogenetics, Cretaceous, North America. Albert Prieto−Márquez [[email protected]], Bayerische Staatssammlung für Paläontologie und Geologie, Rich− ard−Wagner−Straße 10, D−80333 Munich, Germany; Jonathan R. Wagner [[email protected]], Jackson School of Geosciences, The University of Texas at Aus− tin, 1 University Station C1100, Austin, Texas 78712−1101, USA.
    [Show full text]
  • Secondary Cartilage Revealed in a Non-Avian Dinosaur Embryo
    Secondary Cartilage Revealed in a Non-Avian Dinosaur Embryo Alida M. Bailleul1,2*, Brian K. Hall3, John R. Horner1,2 1 Museum of the Rockies, Montana State University, Bozeman, Montana, United States of America, 2 Department of Earth Sciences, Montana State University, Bozeman, Montana, United States of America, 3 Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada Abstract The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae). This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors. Citation: Bailleul AM, Hall BK, Horner JR (2013) Secondary Cartilage Revealed in a Non-Avian Dinosaur Embryo.
    [Show full text]