Mammal-Like Mastication for the Dinosaur Leptoceratops 8 July 2016, by Andrew Farke

Total Page:16

File Type:pdf, Size:1020Kb

Mammal-Like Mastication for the Dinosaur Leptoceratops 8 July 2016, by Andrew Farke Mammal-like mastication for the dinosaur Leptoceratops 8 July 2016, by Andrew Farke in just about every plane of movement imaginable. Different chewing styles characterize different diets as well as different groups of organisms; if you ever get the opportunity, take a look at the fairly simple motions of an iguana chopping up a leaf versus the complex dance of teeth, jaws, and tongue in a cow chewing on grass. More complex motions can allow more thorough processing of food before it enters the stomach, which has all sorts of advantages for digestive efficiency and nutrient extraction. Why do we care about chewing? From a biological perspective, feeding is an incredibly basic yet often poorly understood aspect of an organisms' life. Everything needs to eat, and it's the style of eating that can make it or break it for a species on geological timescales as well as within an individual organism's lifetime. Different styles of chewing can open up different food sources, and is one part of what helps species compete against each other ecologically. If we understand feeding in extinct organisms, we can better understand how they fit within their immediate environment and their world. Tiny scratches on a dinosaur tooth, viewed under a scanning electron microscope. Viewed at actual size, the image would only be a millimeter tall! Credit: Varriale 2016 We all chew, but hardly ever think about it. Even a moment's consideration, though, reveals how complex of a process it actually is. Jaws move, teeth gnash, and food gets broken from big bits into smaller bits. Even that is a vast Skeleton of Leptoceratops. Credit: Reconstruction by oversimplification, though. Jaime Headden, CC-BY Ask a scientist who studies chewing across the vertebrate kingdom, and they'll tell you about all of the different styles of chewing–teeth translating up Chewing is relatively easy to observe in today's and down, side to side, in big circles or little circles animals, but rather obviously is impossible to 1 / 4 observe directly for extinct organisms. If you want to know how a mammoth or Triceratops chewed (or if they chewed, even), it's time for a close-up look at their teeth. The tooth surface is under constant wear from the rigors of feeding. Grit adhering to plants, tooth-on- tooth contact, and even resistant pieces of the plants themselves leave tiny pits, scratches, and divots. By looking at these structures, called dental microwear, under a microscope, you can reconstruct the movements that the jaw went through. The orientation of scratches will tell you which direction the jaw moved, and their curvature will tell you something about how the jaw motion changed through the chewing cycle. Couple this with careful reconstruction of jaw muscle locations, and you can make a relatively confident reconstruction of chewing in a particular animal. Chomping surface of a Leptoceratops tooth — note the The horned dinosaurs, also known as ceratopsians, curved scratches (one is highlighted in blue). From are fascinating to paleontologists for their unusual Varriale 2016, CC-BY jaws and dentition. Large spaces on the skull for jaw muscles meant a powerful bite. A sharp beak helped to lop off plants (and also shows why even the small and cute species of ceratopsian would Most studies of ceratopsian chewing to date have have been bad housepets–I wouldn't doubt that a used basic principles of physics (treating the jaws fiesty Yinlong could sever a finger!). Once the as a lever system) along with examination of overall plants were in the mouth, they met the teeth–and tooth and jaw muscle placement to infer chewing here is where things get even more interesting. styles in ceratopsians. These have provided plenty Ceratopsian teeth showed a lot of variation across of solid information on horned dinosaur jaw the group's evolution. The earliest members had movements, but were largely limited by simple, oval teeth with a slightly angled cutting independent tests of jaw muscle movement. surface, probably for simple slicing of plants. Some later species developed a shelf-like surface across Paleontologist Frank Varriale of Kings College has the teeth, perhaps better suited for grinding plants been taking a close-up–microscopic, in fact–look at into bits. Finally, the largest species (such as ceratopsian teeth. Traveling the world, he has Triceratops) had closely-packed teeth that formed a amassed a library of microwear for representatives continuous vertical cutting surface along the whole of most major groups of ceratopsians as well as tooth row–similar to a pair of scissors. their close relatives. This has allowed Dr. Varriale to test more concretely hypotheses about the evolution of teeth and jaw movements in the group. In the first paper to result from this work, Dr. Varriale focused on Leptoceratops, a small (2-3 meter long) ceratopsian that lived in what is now Montana and Alberta, around 67 million years ago. This small cousin to Triceratops didn't have any horns, and only a short, stubby frill projected back over the neck. Some specimens show a shelf-like 2 / 4 chewing surface, and several nicely preserved identified for a dinosaur, and now Varriale is on the fossils are known. This made it an interesting and look-out to see what other dinosaurs (especially unusual target for study. ceratopsians) may have had it. There's lots more to do! The most important lesson here concerns how we think about non-mammals. Often, dinosaurs (and even modern lizards) are thought of as "primitive" and inferior to mammals. Yet, as we look closer, dinosaurs were just as complex if not more so in many aspects of their biology. Complexity is in the eye of the beholder! This is surely not the last time we'll be surprised by horned dinosaurs. More information: Frank J. Varriale. Dental microwear reveals mammal-like chewing in the neoceratopsian dinosaur, PeerJ (2016). DOI: 10.7717/peerj.2132 Schematic showing two stages of jaw movement in Leptoceratops, with the direction of microwear produced This story is republished courtesy of PLOS Blogs: by each. Credit: Varriale 2016 blogs.plos.org. Provided by Public Library of Science When Dr. Varriale took a close-up look at Leptoceratops teeth, the scratches left behind by jaw movements were surprising–rather than the linear scratches typical of many other horned dinosaurs, Leptoceratops teeth were covered in curved scratches. This suggested that the jaws were changing direction mid-bite (technically speaking, during the "power stroke"). If you were to visualize the teeth in side view, they would be moving in little circles against each other, rather than simply up-and-down or back-and-forth. Leptoceratops wasn't the only animal with this type of chewing, but Varriale had to look far afield to find other examples. Similar types of tooth wear (and presumably similar types of jaw motions) are found in a handful of small living (some rodents) and extinct (multituberculate and haramiyid) mammals. This dinosaur had independently evolved a chewing style that matched that in those mammals. This unique chewing style (termed "circumpalinal chewing") almost certainly helped Leptoceratops to process the tough plants that composed its diet. Significantly, this is the first time that it has been 3 / 4 APA citation: Mammal-like mastication for the dinosaur Leptoceratops (2016, July 8) retrieved 26 September 2021 from https://phys.org/news/2016-07-mammal-like-mastication-dinosaur- leptoceratops.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only. 4 / 4 Powered by TCPDF (www.tcpdf.org).
Recommended publications
  • Ontogeny Reveals Function and Evolution of the Hadrosaurid Dinosaur Dental Battery Aaron R
    LeBlanc et al. BMC Evolutionary Biology (2016) 16:152 DOI 10.1186/s12862-016-0721-1 RESEARCH ARTICLE Open Access Ontogeny reveals function and evolution of the hadrosaurid dinosaur dental battery Aaron R. H. LeBlanc1*, Robert R. Reisz1,2, David C. Evans3 and Alida M. Bailleul4 Abstract Background: Hadrosaurid dinosaurs, dominant Late Cretaceous herbivores, possessed complex dental batteries with up to 300 teeth in each jaw ramus. Despite extensive interest in the adaptive significance of the dental battery, surprisingly little is known about how the battery evolved from the ancestral dinosaurian dentition, or how it functioned in the living organism. We undertook the first comprehensive, tissue-level study of dental ontogeny in hadrosaurids using several intact maxillary and dentary batteries and compared them to sections of other archosaurs and mammals. We used these comparisons to pinpoint shifts in the ancestral reptilian pattern of tooth ontogeny that allowed hadrosaurids to form complex dental batteries. Results: Comparisons of hadrosaurid dental ontogeny with that of other amniotes reveals that the ability to halt normal tooth replacement and functionalize the tooth root into the occlusal surface was key to the evolution of dental batteries. The retention of older generations of teeth was driven by acceleration in the timing and rate of dental tissue formation. The hadrosaurid dental battery is a highly modified form of the typical dinosaurian gomphosis with a unique tooth-to-tooth attachment that permitted constant and perfectly timed tooth eruption along the whole battery. Conclusions: We demonstrate that each battery was a highly dynamic, integrated matrix of living replacement and, remarkably, dead grinding teeth connected by a network of ligaments that permitted fine scale flexibility within the battery.
    [Show full text]
  • Jaw Movement Dysfunction Related to Parkinson's Disease and Partially Modified by Levodopa
    Journal ofNeurology, Neurosurgery, and Psychiatry 1996;60:41-50 41 Jaw movement dysfunction related to Parkinson's J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.60.1.41 on 1 January 1996. Downloaded from disease and partially modified by levodopa Lee T Robertson, John P Hammerstad Abstract also have difficulties in the production of clear Objectives-To test the hypotheses that speech5 and with the automatic clearing of the Parkinson's disease can differentially throat or swallowing.3 Although the same produce deficits in voluntary and rhyth- peripheral structures are involved in various mic jaw movements, which involve differ- oral motor acts, such as speaking, swallowing, ent neuronal circuits, and that levodopa or chewing, distinct basal ganglia circuits may treatment improves specific components be used to generate the various motor pat- of the motor deficit. terns.6 The neural circuits involved in volun- Methods-Patients with idiopathic tary movement of the mandible may be Parkinson's disease and control subjects different from those used for force production were tested on a series of jaw motor tasks whereas those circuits regulating chewing may that included simple voluntary move- include portions of circuits for voluntary ment, isometric clenching, and natural movement and force as well as additional cir- and paced rhythmic movements. Jaw cuits to process specific sensory input. A major movements were measured by changes in basal ganglia circuit is the projection from the electromagnetic fields and EMG activity. globus pallidus and substantia nigra reticulata, Patients with Parkinson's disease with via the thalamus, to the primary motor cortex, fluctuations in motor responses to lev- the supplementary motor cortex, and the pre- odopa were tested while off and on.
    [Show full text]
  • Ingestion in Mammals Introductory Article
    Ingestion in Mammals Introductory article Christine E Wall, Duke University, Durham, North Carolina, USA Article Contents Kathleen K Smith, Duke University, Durham, North Carolina, USA . Introduction . Capture Ingestion in mammals is distinguished from that of other vertebrates by mastication, . Oral Transport suckling, and complex food transport and swallowing. The teeth, cranial bones, and . Mastication musculature of the head reflect these distinguishing features. Swallowing . Suckling Introduction Ingestion is a series of biologically complex activities lized for live prey capture and killing (Figure 1b). In some (capture, incision, transport, mastication, swallowing and, mammals, particularly in herbivores, the canines are in infant mammals, suckling) performed by the oral absent, leaving a space, called a diastema, between the apparatus. The oral apparatus includes the dentition, the incisors at the front of the mouth and the premolars and masticatory muscles, numerous bones of the cranium, the molars at the back of the mouth (Figure 1c). squamosal–dentary joints connecting the lower jaw to the The premolars and molars are commonly referred to as skull, the tongue, and many other structures in the head. the postcanine dentition or the cheek teeth. These teeth are Mammals are distinguished from other vertebrates in sometimes used during food capture, but they are many aspects of ingestion. For example, in most other specialized to initiate the digestive process by breaking vertebrates, mastication does not occur. Also, food down the food so that it is the proper size and consistency transport and swallowing are less complex in other for swallowing and further digestion by the gut. Premolars vertebrates and generally involve the coordination of and molars have bumps (called cusps), ridges (called crests fewer muscles and other soft tissue structures.
    [Show full text]
  • Chewing Practice
    FEEDING AND EATING Chewing practice Speech Pathology Some children find chewing foods difficult. This might simply be because they haven’t had enough practice with foods other than purées. Some children might gag, refuse or spit out chewy solids or lumps. Chewing is a skill that children learn with practice such as mouthing objects and foods. Early chewing is usually established between 6 and 9 months of age. Exposure and practice with different textures of food between 6 and 10 months old may help a child accept a larger range of different foods as they get older. Teeth or no teeth • Use a gum-brush, training toothbrush, your finger, or your child’s finger to move food to the side of her There are many steps to learning to chew. Children can mouth to practise chewing. practise these skills before they have teeth. • Give long, thick strips of very chewy foods (e.g. crusty Some ideas to help develop bread, or dried strips of mango). Show her how to hold the food and move her jaw up and down. Help her hold chewing skills the food on her back gums. No teeth: early chewing skills • Practise chewing with foods that dissolve. These are • Give a gum-brush or training toothbrush foods that melt in the mouth with saliva so are easier to practise munching. to swallow (e.g. wafer or baby rice cracker). • Give ‘hard munchable’ foods such as a rusk Always supervise your child closely to make sure she does or a whole uncooked carrot for her to mouth.
    [Show full text]
  • St. Lawrence School Subject
    St. Lawrence School Subject - Science Class - 4 Chapter - 3 Human Body : Digestive and Excetory System ( Part - 1 ) Learn about * Digestive system * Excretory system * Healthy eating habits Digestive System The process by which food is broken down into a simpler form so that it can be easily taken in or absorbed by our body is called digestion. Many organs work together and help in the process of digestion. The mouth, food pipe, stomach, small and large intestine, liver, rectum, and anus are the main organs of the digestive system. Let us learn about them. Mouth Digestion starts in the mouth. The teeth help to break down and chew food. The chewed food then mixes with a liquid, called saliva, produced in our mouth. It makes the food softer and easier to swallow. The tongue helps in the proper mixing of saliva with the food. Food pipe The food pipe ( oesophagus ) passes the food from the mouth to the stomach. Stomach Inside the stomach, the food is broken down further into smaller pieces by churning and with the help of chemicals called digestive juices. Small intestine From the small intestine, the undigested food passes into the large intestine. The large intestine is a shorter but wider, tube - like structure, which collects the indigestible food from the small intestine. The large intestine absorbs water from this undigested food and forms waste products called faeces. Rectum Rectum is the final part of the large intestine. Faeces are stored in the rectum for a short time before being passed out through anus. Anus Faeces are removed from the body through the anus.
    [Show full text]
  • Advice to Help with Loss of Taste
    Warwickshire Dietetic Service Advice to help with loss of taste If you have had an illness that affects your sense of taste such as COVID 19, you may have decreased the amount you eat and drink. If you have, your body will need more protein and calories than usual. If you have lost weight or muscle, you will need to eat more to recover more quickly and to ensure you stay healthy. This leaflet contains tips on how you can improve the taste of food and drink. Advice to help with loss of taste Taste is the ability to detect the flavour of food and drinks. Our sense of how a food tastes is also linked to smell. A loss of taste can be caused by viruses such as COVID-19 resulting in a sudden dislike for certain foods, or eating and drinking becoming unpleasant. This may result in weight loss, reduced appetite and affect your feeling of well being. Losing all sense of taste is usually just temporary. Remember to keep your mouth and teeth clean and follow recommended mouth care routines. Try the following suggestions: Rinse your mouth with water before eating. Allow hot food and drink to cool a little. You may find that you can taste cold food better if you allow it to come to room temperature. Avoid any unpleasant tasting foods. Do however retry them a couple of weeks later, as your taste may have returned. If you experience a metallic taste while eating, try using plastic utensils. Try sucking lemon drops, mints or chewing gum if you have a bitter or metallic taste.
    [Show full text]
  • Theropod Teeth from the Upper Maastrichtian Hell Creek Formation “Sue” Quarry: New Morphotypes and Faunal Comparisons
    Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons TERRY A. GATES, LINDSAY E. ZANNO, and PETER J. MAKOVICKY Gates, T.A., Zanno, L.E., and Makovicky, P.J. 2015. Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons. Acta Palaeontologica Polonica 60 (1): 131–139. Isolated teeth from vertebrate microfossil localities often provide unique information on the biodiversity of ancient ecosystems that might otherwise remain unrecognized. Microfossil sampling is a particularly valuable tool for doc- umenting taxa that are poorly represented in macrofossil surveys due to small body size, fragile skeletal structure, or relatively low ecosystem abundance. Because biodiversity patterns in the late Maastrichtian of North American are the primary data for a broad array of studies regarding non-avian dinosaur extinction in the terminal Cretaceous, intensive sampling on multiple scales is critical to understanding the nature of this event. We address theropod biodiversity in the Maastrichtian by examining teeth collected from the Hell Creek Formation locality that yielded FMNH PR 2081 (the Tyrannosaurus rex specimen “Sue”). Eight morphotypes (three previously undocumented) are identified in the sample, representing Tyrannosauridae, Dromaeosauridae, Troodontidae, and Avialae. Noticeably absent are teeth attributed to the morphotypes Richardoestesia and Paronychodon. Morphometric comparison to dromaeosaurid teeth from multiple Hell Creek and Lance formations microsites reveals two unique dromaeosaurid morphotypes bearing finer distal denticles than present on teeth of similar size, and also differences in crown shape in at least one of these. These findings suggest more dromaeosaurid taxa, and a higher Maastrichtian biodiversity, than previously appreciated.
    [Show full text]
  • Dinosaur Gallery Explorer’S Notebook
    Dinosaur Gallery Explorer’s Notebook Name: Class: Level 3 © Museum of Natural Sciences Education Service 2012 29, Rue Vautier, 1000 Brussels. Tel: +32 (0)2 627 42 52 [email protected] www.sciencesnaturelles.be 1 Dinosaur Gallery - Level 3 Plan of the Gallery Each time you see a number in the margin of this notebook you must move to a new place in the gallery. Find where you are on the plan. entrance via mezzanine (level 0) stairs down to level -2 stairs up to level -1 The numbers on the plan correspond to the different stages on the dinosaur gallery. The numbers start on page 6 of this notebook Make sure you have a sharp pencil and a rubber with you! Make a team of three to answer the questions. 2 Dinosaur Gallery - Level 3 Before your visit... The first pages of this notebook will help you prepare for your visit to the museum! * Words followed by an asterisk are explained in the glossary on the last page. What is a dinosaur? Below are some characteristics of dinosaurs feet underneath their bodies 4 feet terrestrial eggs with shells vertebrate* ATTENTION Dinosaurs were terrestrial animals. At the same time, sea reptiles and flying reptiles lived on the Earth, but these animals were NOT dinosaurs! Herbivore or carnivore? To know whether a dinosaur ate meat or plants, take a look at its teeth herbivore carnivore When a dinosaur was a When a dinosaur was a herbivore, its teeth had flat ends, carnivore, its teeth had pointed like the prongs of a rake or like ends, like knives.
    [Show full text]
  • Digestion: Part 1 – Chew on This
    Digestion: Part 1 – Chew On This “It is better to educate than medicate” – Bernard Jenson Health is something that most of us are actively trying to maintain and achieve. We do this by exercising, keeping our minds active, lowering our stress levels and watching what you eat. What if I told you good nutrition isn’t just about what you eat but also about how you eat and digest it? You can have a fantastic diet but if you aren’t digesting your foods properly you won’t be getting all of the benefits of your healthy lifestyle. Digestion is a complicated process and in this series I will take you through different parts of the digestive processes and give you some tips on how to improve your digestion. In this post I will be discussing the start of digestion and one of the most important and forgot about parts, chewing! “Drink your food, chew your drink” Mahatma Gandhi Digestion starts the minute you put food into your mouth. The act of chewing helps to break apart the carbohydrates, proteins and fats in your food, allowing your body to process them more efficiently. Dr. Vasant Lad and Ayurvedic practitioner recommends chewing your food 32 times before you swallow.1 (Ayurveda is an ancient integrative medicine that has been around for thousands of years). That is a lot of chewing and can take a while to get through a meal, but the lesson is important – you should be chewing enough so that your food is in a paste before you swallow it.
    [Show full text]
  • New Insects Feeding on Dinosaur Feathers in Mid-Cretaceous Amber
    ARTICLE https://doi.org/10.1038/s41467-019-13516-4 OPEN New insects feeding on dinosaur feathers in mid-Cretaceous amber Taiping Gao 1*, Xiangchu Yin2, Chungkun Shih1,3, Alexandr P. Rasnitsyn4,5, Xing Xu6,7, Sha Chen1, Chen Wang8 & Dong Ren 1* Due to a lack of Mesozoic fossil records, the origins and early evolution of feather-feeding behaviors by insects are obscure. Here, we report ten nymph specimens of a new lineage of 1234567890():,; insect, Mesophthirus engeli gen et. sp. nov. within Mesophthiridae fam. nov. from the mid- Cretaceous (ca. 100 Mya) Myanmar (Burmese) amber. This new insect clade shows a series of ectoparasitic morphological characters such as tiny wingless body, head with strong chewing mouthparts, robust and short antennae having long setae, legs with only one single tarsal claw associated with two additional long setae, etc. Most significantly, these insects are preserved with partially damaged dinosaur feathers, the damage of which was probably made by these insects’ integument-feeding behaviors. This finding demonstrates that feather- feeding behaviors of insects originated at least in mid-Cretaceous, accompanying the radiation of feathered dinosaurs including early birds. 1 College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, 105 Xisanhuanbeilu Haidian District, 100048 Beijing, China. 2 Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Road, 810008 Xining, China. 3 Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA. 4 A. A. Borissiak Palaeontological Institute, Russian Academy of Sciences, Moscow, Russia 117647. 5 Natural History Museum, Cromwell Road, London SW7 5BD, UK.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • A Troodontid Dinosaur from the Latest Cretaceous of India
    ARTICLE Received 14 Dec 2012 | Accepted 7 Mar 2013 | Published 16 Apr 2013 DOI: 10.1038/ncomms2716 A troodontid dinosaur from the latest Cretaceous of India A. Goswami1,2, G.V.R. Prasad3, O. Verma4, J.J. Flynn5 & R.B.J. Benson6 Troodontid dinosaurs share a close ancestry with birds and were distributed widely across Laurasia during the Cretaceous. Hundreds of occurrences of troodontid bones, and their highly distinctive teeth, are known from North America, Europe and Asia. Thus far, however, they remain unknown from Gondwanan landmasses. Here we report the discovery of a troodontid tooth from the uppermost Cretaceous Kallamedu Formation in the Cauvery Basin of South India. This is the first Gondwanan record for troodontids, extending their geographic range by nearly 10,000 km, and representing the first confirmed non-avian tetanuran dinosaur from the Indian subcontinent. This small-bodied maniraptoran dinosaur is an unexpected and distinctly ‘Laurasian’ component of an otherwise typical ‘Gondwanan’ tetrapod assemblage, including notosuchian crocodiles, abelisauroid dinosaurs and gondwanathere mammals. This discovery raises the question of whether troodontids dispersed to India from Laurasia in the Late Cretaceous, or whether a broader Gondwanan distribution of troodontids remains to be discovered. 1 Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK. 2 Department of Earth Sciences, University College London, London WC1E 6BT, UK. 3 Department of Geology, Centre for Advanced Studies, University of Delhi, New Delhi 110 007, India. 4 Geology Discipline Group, School of Sciences, Indira Gandhi National Open University, New Delhi 110 068, India. 5 Division of Paleontology and Richard Gilder Graduate School, American Museum of Natural History, New York, New York 10024, USA.
    [Show full text]