A Porcine Brain-Wide RNA Editing Landscape
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Guide to Glutamate Receptors
A guide to glutamate receptors 1 Contents Glutamate receptors . 4 Ionotropic glutamate receptors . 4 - Structure ........................................................................................................... 4 - Function ............................................................................................................ 5 - AMPA receptors ................................................................................................. 6 - NMDA receptors ................................................................................................. 6 - Kainate receptors ............................................................................................... 6 Metabotropic glutamate receptors . 8 - Structure ........................................................................................................... 8 - Function ............................................................................................................ 9 - Group I: mGlu1 and mGlu5. .9 - Group II: mGlu2 and mGlu3 ................................................................................. 10 - Group III: mGlu4, mGlu6, mGlu7 and mGlu8 ............................................................ 10 Protocols and webinars . 11 - Protocols ......................................................................................................... 11 - Webinars ......................................................................................................... 12 References and further reading . 13 Excitatory synapse pathway -
Kainate Receptors in Health and Disease
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Neuron Review Kainate Receptors in Health and Disease Juan Lerma1,* and Joana M. Marques1 1Instituto de Neurociencias, CSIC-UMH, San Juan de Alicante, 03550 Spain *Correspondence: [email protected] http://dx.doi.org/10.1016/j.neuron.2013.09.045 Our understanding of the molecular properties of kainate receptors and their involvement in synaptic phys- iology has progressed significantly over the last 30 years. A plethora of studies indicate that kainate receptors are important mediators of the pre- and postsynaptic actions of glutamate, although the mechanisms under- lying such effects are still often a topic for discussion. Three clear fields related to their behavior have emerged: there are a number of interacting proteins that pace the properties of kainate receptors; their activity is unconventional since they can also signal through G proteins, behaving like metabotropic recep- tors; they seem to be linked to some devastating brain diseases. Despite the significant progress in their importance in brain function, kainate receptors remain somewhat puzzling. Here we examine discoveries linking these receptors to physiology and their probable implications in disease, in particular mood disorders, and propose some ideas to obtain a deeper understanding of these intriguing proteins. A Historical Overview The absence of specific antibodies against different KAR Most excitatory synapses in the brain use the amino acid gluta- subunits has been a significant limitation in terms of exploring re- mate as a neurotransmitter. Since the excitatory properties of ceptor distribution. Thus, most of the information regarding their glutamate were postulated nearly 40 years ago, an extraordinary tissue expression comes from in situ hybridization studies that, wealth of data has accumulated on the types of synaptic re- although informative, cannot reveal the subcellular distribution sponses triggered by this neurotransmitter. -
Sex Differences in Glutamate Receptor Gene Expression in Major Depression and Suicide
Molecular Psychiatry (2015) 20, 1057–1068 © 2015 Macmillan Publishers Limited All rights reserved 1359-4184/15 www.nature.com/mp IMMEDIATE COMMUNICATION Sex differences in glutamate receptor gene expression in major depression and suicide AL Gray1, TM Hyde2,3, A Deep-Soboslay2, JE Kleinman2 and MS Sodhi1,4 Accumulating data indicate that the glutamate system is disrupted in major depressive disorder (MDD), and recent clinical research suggests that ketamine, an antagonist of the N-methyl-D-aspartate (NMDA) glutamate receptor (GluR), has rapid antidepressant efficacy. Here we report findings from gene expression studies of a large cohort of postmortem subjects, including subjects with MDD and controls. Our data reveal higher expression levels of the majority of glutamatergic genes tested in the dorsolateral prefrontal cortex (DLPFC) in MDD (F21,59 = 2.32, P = 0.006). Posthoc data indicate that these gene expression differences occurred mostly in the female subjects. Higher expression levels of GRIN1, GRIN2A-D, GRIA2-4, GRIK1-2, GRM1, GRM4, GRM5 and GRM7 were detected in the female patients with MDD. In contrast, GRM5 expression was lower in male MDD patients relative to male controls. When MDD suicides were compared with MDD non-suicides, GRIN2B, GRIK3 and GRM2 were expressed at higher levels in the suicides. Higher expression levels were detected for several additional genes, but these were not statistically significant after correction for multiple comparisons. In summary, our analyses indicate a generalized disruption of the regulation of the GluRs in the DLPFC of females with MDD, with more specific GluR alterations in the suicides and in the male groups. -
Chapter Chapter 2
Chapter Chapter 2 Attenuated AMPA receptor expression allows glioblastoma cell survival in glutamate-rich environment Dannis G. van Vuurden, Maryam Yazdani, Ingeborg Bosma, Richard A.J.F. Broekhuizen, Tjeerd J. Postma, Jan J. Heimans, Paul van der Valk, Eleonora Aronica, Bakhos A. Tannous, Thomas Würdinger, Gertjan J. L. Kaspers, Jacqueline Cloos PLoS ONE 2009; 4(6): e5953 23 Proefschrift1.indd 23 24-04-14 13:54 ABSTRACT Background: Glioblastoma multiforme (GBM) cells secrete large amounts of glutamate that can trigger AMPA-type glutamate receptors (AMPARs). This commonly results in Na+ and Ca2+-permeability and thereby in excitotoxic cell death of the surrounding neurons. Here we investigated how the GBM cells themselves survive in a glutamate-rich environment. Methods and Findings: In silico analysis of published reports shows down-regulation of all ionotropic glutamate receptors in GBM as compared to normal brain. In vitro, in all GBM samples tested, mRNA expression of AMPAR subunit GluR1, 2 and 4 was relatively low compared to adult and fetal total brain mRNA and adult cerebellum mRNA. These findings were in line with primary GBM samples, in which protein expression patterns were down- regulated as compared to the normal tissue. Furthermore, mislocalized expression of these receptors was found. Sequence analysis of GluR2 RNA in primary and established GBM cell lines showed that the GluR2 subunit was found to be partly unedited. Conclusions: Together with the lack of functional effect of AMPAR inhibition by NBQX our results suggest that down-regulation and non-functionality of AMPARs, enable GBM cells to survive in a high glutamate environment without going into excitotoxic cell death themselves. -
Research Article Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed Hipscs To
Hindawi Publishing Corporation Stem Cells International Volume 2013, Article ID 784629, 25 pages http://dx.doi.org/10.1155/2013/784629 Research Article Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed hiPSCs to Differentiated Neuronal and Cardiac Progeny Leonhard Linta,1 Marianne Stockmann,1 Qiong Lin,2 André Lechel,3 Christian Proepper,1 Tobias M. Boeckers,1 Alexander Kleger,3 and Stefan Liebau1 1 InstituteforAnatomyCellBiology,UlmUniversity,Albert-EinsteinAllee11,89081Ulm,Germany 2 Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen, Pauwelstrasse 30, 52074 Aachen, Germany 3 Department of Internal Medicine I, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany Correspondence should be addressed to Alexander Kleger; [email protected] and Stefan Liebau; [email protected] Received 31 January 2013; Accepted 6 March 2013 Academic Editor: Michael Levin Copyright © 2013 Leonhard Linta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ion channels are involved in a large variety of cellular processes including stem cell differentiation. Numerous families of ion channels are present in the organism which can be distinguished by means of, for example, ion selectivity, gating mechanism, composition, or cell biological function. To characterize the distinct expression of this group of ion channels we have compared the mRNA expression levels of ion channel genes between human keratinocyte-derived induced pluripotent stem cells (hiPSCs) and their somatic cell source, keratinocytes from plucked human hair. This comparison revealed that 26% of the analyzed probes showed an upregulation of ion channels in hiPSCs while just 6% were downregulated. -
Identification of Key Genes and Pathways Involved in Response To
Deng et al. Biol Res (2018) 51:25 https://doi.org/10.1186/s40659-018-0174-7 Biological Research RESEARCH ARTICLE Open Access Identifcation of key genes and pathways involved in response to pain in goat and sheep by transcriptome sequencing Xiuling Deng1,2†, Dong Wang3†, Shenyuan Wang1, Haisheng Wang2 and Huanmin Zhou1* Abstract Purpose: This aim of this study was to investigate the key genes and pathways involved in the response to pain in goat and sheep by transcriptome sequencing. Methods: Chronic pain was induced with the injection of the complete Freund’s adjuvant (CFA) in sheep and goats. The animals were divided into four groups: CFA-treated sheep, control sheep, CFA-treated goat, and control goat groups (n 3 in each group). The dorsal root ganglions of these animals were isolated and used for the construction of a cDNA= library and transcriptome sequencing. Diferentially expressed genes (DEGs) were identifed in CFA-induced sheep and goats and gene ontology (GO) enrichment analysis was performed. Results: In total, 1748 and 2441 DEGs were identifed in CFA-treated goat and sheep, respectively. The DEGs identi- fed in CFA-treated goats, such as C-C motif chemokine ligand 27 (CCL27), glutamate receptor 2 (GRIA2), and sodium voltage-gated channel alpha subunit 3 (SCN3A), were mainly enriched in GO functions associated with N-methyl- D-aspartate (NMDA) receptor, infammatory response, and immune response. The DEGs identifed in CFA-treated sheep, such as gamma-aminobutyric acid (GABA)-related DEGs (gamma-aminobutyric acid type A receptor gamma 3 subunit [GABRG3], GABRB2, and GABRB1), SCN9A, and transient receptor potential cation channel subfamily V member 1 (TRPV1), were mainly enriched in GO functions related to neuroactive ligand-receptor interaction, NMDA receptor, and defense response. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
WWP2 Promotes Degradation of Transcription Factor OCT4 in Human Embryonic Stem Cells
Cell Research (2009) 19:561-573. © 2009 IBCB, SIBS, CAS All rights reserved 1001-0602/09 $ 30.00 npg ORIGINAL ARTICLE www.nature.com/cr WWP2 promotes degradation of transcription factor OCT4 in human embryonic stem cells Huiming Xu1, 2, Weicheng Wang1, 2, Chunliang Li2, Hongyao Yu2, Acong Yang1, 2, Beibei Wang2, Ying Jin1, 2, 3 1Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China; 2Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China; 3Key Laboratory of Cell Differ- entiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China POU transcription factor OCT4 not only plays an essential role in maintaining the pluripotent and self-renewing state of embryonic stem (ES) cells but also acts as a cell fate determinant through a gene dosage effect. However, the molecular mechanisms that control the intracellular OCT4 protein level remain elusive. Here, we report that human WWP2, an E3 ubiquitin (Ub)-protein ligase, interacts with OCT4 specifically through its WW domain and enhances Ub modification of OCT4 both in vitro and in vivo. We first demonstrated that endogenous OCT4 in hu- man ES cells can be post-translationally modified by Ub. Furthermore, we found that WWP2 promoted degradation of OCT4 through the 26S proteasome in a dosage-dependent manner, and the active site cysteine residue of WWP2 was required for both its enzymatic activity and proteolytic effect on OCT4. -
Ion Channels
UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. -
Signature Redacted Thesis Supervisor Certified By
Single-Cell Transcriptomics of the Mouse Thalamic Reticular Nucleus by Taibo Li S.B., Massachusetts Institute of Technology (2015) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2017 @ Massachusetts Institute of Technology 2017. All rights reserved. A uthor ... ..................... Department of Electrical Engineering and Computer Science May 25, 2017 Certified by. 3ignature redacted Guoping Feng Poitras Professor of Neuroscience, MIT Signature redacted Thesis Supervisor Certified by... Kasper Lage Assistant Professor, Harvard Medical School Thesis Supervisor Accepted by . Signature redacted Christopher Terman Chairman, Masters of Engineering Thesis Committee MASSACHUSETTS INSTITUTE 0) OF TECHNOLOGY w AUG 14 2017 LIBRARIES 2 Single-Cell Transcriptomics of the Mouse Thalamic Reticular Nucleus by Taibo Li Submitted to the Department of Electrical Engineering and Computer Science on May 25, 2017, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science Abstract The thalamic reticular nucleus (TRN) is strategically located at the interface between the cortex and the thalamus, and plays a key role in regulating thalamo-cortical in- teractions. Current understanding of TRN neurobiology has been limited due to the lack of a comprehensive survey of TRN heterogeneity. In this thesis, I developed an integrative computational framework to analyze the single-nucleus RNA sequencing data of mouse TRN in a data-driven manner. By combining transcriptomic, genetic, and functional proteomic data, I discovered novel insights into the molecular mecha- nisms through which TRN regulates sensory gating, and suggested targeted follow-up experiments to validate these findings. -
WWP2 Sirna Set I WWP2 Sirna Set I
Catalog # Aliquot Size W297-911-05 3 x 5 nmol W297-911-20 3 x 20 nmol W297-911-50 3 x 50 nmol WWP2 siRNA Set I siRNA duplexes targeted against three exon regions Catalog # W297-911 Lot # Z2109-60 Specificity Formulation WWP2 siRNAs are designed to specifically knock-down The siRNAs are supplied as a lyophilized powder and human WWP2 expression. shipped at room temperature. Product Description Reconstitution Protocol WWP2 siRNA is a pool of three individual synthetic siRNA Briefly centrifuge the tubes (maximum RCF 4,000g) to duplexes designed to knock-down human WWP2 mRNA collect lyophilized siRNA at the bottom of the tube. expression. Each siRNA is 19-25 bases in length. The gene Resuspend the siRNA in 50 µl of DEPC-treated water accession number is NM_007014. (supplied by researcher), which results in a 1x stock solution (10 µM). Gently pipet the solution 3-5 times to mix Gene Aliases and avoid the introduction of bubbles. Optional: aliquot AIP2; WWp2-like 1x stock solutions for storage. Storage and Stability Related Products The lyophilized powder is stable for at least 4 weeks at room temperature. It is recommended that the Product Name Catalog Number lyophilized and resuspended siRNAs are stored at or WWP1 Protein W296-30G below -20oC. After resuspension, siRNA stock solutions ≥2 WWP2 Protein W297-30G µM can undergo up to 50 freeze-thaw cycles without significant degradation. For long-term storage, it is recommended that the siRNA is stored at -70oC. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. -
High-Throughput Analysis of Promoter Occupancy Reveals New Targets for Arx, a Gene Mutated in Mental Retardation and Interneuronopathies
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central High-Throughput Analysis of Promoter Occupancy Reveals New Targets for Arx, a Gene Mutated in Mental Retardation and Interneuronopathies Marie-Lise Quille´ 1,2,3, Solenne Carat4., Sylvia Que´me´ner-Redon1,2,3., Edouard Hirchaud4, Daniel Baron4, Caroline Benech1,2,3,5, Jeanne Guihot1,2,3, Morgane Placet1,2,3, Olivier Mignen1,2,3, Claude Fe´rec1,2,3,5, Re´mi Houlgatte4, Gae¨lle Friocourt1,2,3* 1 Inserm U613, Brest, France, 2 Faculte´ de Me´decine et des Sciences de la Sante´, Brest University, Brest, France, 3 Laboratory of Molecular Genetics and Histocompatibility, Brest University Hospital, Brest, France, 4 Institut du Thorax, Inserm U915, Nantes University, Nantes, France, 5 Etablissement Franc¸ais du Sang (EFS) Bretagne, Brest, France Abstract Genetic investigations of X-linked intellectual disabilities have implicated the ARX (Aristaless-related homeobox) gene in a wide spectrum of disorders extending from phenotypes characterised by severe neuronal migration defects such as lissencephaly, to mild or moderate forms of mental retardation without apparent brain abnormalities but with associated features of dystonia and epilepsy. Analysis of Arx spatio-temporal localisation profile in mouse revealed expression in telencephalic structures, mainly restricted to populations of GABAergic neurons at all stages of development. Furthermore, studies of the effects of ARX loss of function in humans and animal models revealed varying defects, suggesting multiple roles of this gene during brain development. However, to date, little is known about how ARX functions as a transcription factor and the nature of its targets.