2021.01.13.426573V1.Full.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

2021.01.13.426573V1.Full.Pdf bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426573; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. EVOLUTIONARY PERSPECTIVE AND EXPRESSION ANALYSIS OF INTRONLESS GENES HIGHLIGHT THE CONSERVATION ON THEIR REGULATORY ROLE Katia Aviña-Padilla1,2, José Antonio Ramírez-Rafael3, Gabriel Emilio Herrera-Oropeza1,4, Vijaykumar Muley1, Dulce I. Valdivia2, Erik Díaz-Valenzuela2, Andrés García-García3, Alfredo Varela-Echavarría1* and Maribel Hernández-Rosales2*. 1Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México. 2Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Guanajuato, México. 3Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, México. 4Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom. * Correspondence: Maribel Hernández-Rosales [email protected] Alfredo Varela-Echavarría [email protected] Keywords: intronless genes1, exon-intron architecture2, embryonic telencephalon3, protocadherins4, histones5, transcription factors6, evolutionary histories7, microproteins8. bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426573; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International licenseIntronless. genes regulatory role Abstract Eukaryotic gene structure is a combination of exons generally interrupted by intragenic non-coding DNA regions termed introns removed by RNA splicing to generate the mature mRNA. Thus, eukaryotic genes can be either single exon genes (SEGs) or multiple exon genes (MEGs). Among SEGs, intronless genes (IGs) are a subgroup that additionally lacks introns at their UTRs, and code for proteins essentially involved in development, growth, and cell proliferation. Gene expression of IGs has been proposed to be highly specialized for neuro-specific functions and linked to cancer, neuropathies, and developmental disorders. The abundant presence of introns in eukaryotic genomes is pivotal for the precise control of gene expression. Notwithstanding, IGs exempting splicing events entail a higher transcriptional fidelity, making them even more valuable for regulatory roles. This work aimed to infer the functional role and evolutionary history of IGs using the mouse genome. Intronless protein-coding genes consist of a subgroup of ~6 % of a total of 21,527 genes with one exon. To understand the prevalence, biological relevance, and evolution, we identified and studied their 1,116 functional proteins. We validated differential expression in transcriptomics data of early embryo stages using mouse telencephalon tissue. Our results showed that expression levels of IGs are lower compared to MEGs. However, strongly upregulated IGs include transcription factors (TFs) such as the class 3 of POU (HMG Box), Neurog1, Olig1, and BHLHe22, BHLHe23, among other essential genes including the beta cluster of protocadherins. Most striking was the finding that IG-encoded BHLH TFs qualify the criteria to be referred to as microprotein candidates. Finally, predicted protein orthologs in other six genomes confirmed a high conservancy of IGs associated with regulating neurobiological processes and with chromatin organization and epigenetic regulation in Vertebrata. Moreover, this study highlights that IGs are essential modulators of regulatory processes, as Wnt signaling pathway and biological processes as pivotal as sensory organs developing at a transcriptional and post-translational level. Overall, our results suggest that IG proteins have specialized, prevalent, and unique biological roles and that functional divergence between IGs and MEGs is likely to be the result of specific evolutionary constraints. bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426573; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International licenseIntronless. genes regulatory role Introduction Genes with one exon are characteristic of prokaryotic genomes. Most eukaryotic genes, in contrast, contain introns, nucleotide DNA sequences that after transcription as part of the messenger RNA are removed by splicing during its maturation. The latter are thus termed multiple exon genes (MEGs), although eukaryotic genomes also contain an important proportion of single-exon genes (SEGs). Diverse studies of SEGs in eukaryotes have been performed over the past decades (Tine et al. 2011; Zou, Guo, and He 2011; K. R. Sakharkar et al. 2006; Yan et al. 2014). A precise definition, however, has only been recently formulated. The improved ontology defines an SEG as a nuclear gene whose protein-coding sequence comprises only one exon. Pseudogenes, functional RNAs, tRNA, rRNA, ribozyme long non-coding RNAs, and miRNAs are excluded from this definition. This classification scheme includes two main groups of SEGs; those having introns in their untranslated regions ‘uiSEGs’; and those lacking introns in the entire gene, termed ‘Intronless Genes’ (IGs) (Jorquera et al. 2018). Because of their prokaryotic-like architecture, IGs in eukaryotic genomes, provide interesting datasets for computational analysis in comparative genomics and evolutionary trajectories. Comparative analysis of their sequences between different genomes could help to identify their unique and conserved features, thus providing insights into the role of introns in gene evolution and lead to a better understanding of genome architecture and arrangement. The abundant presence of introns in most genes of multicellular organisms entails regulatory processes associated with the generation of multiple splice variants not present in intronless genes. In consequence, IGs not requiring splicing events represents a higher transcriptional fidelity, which makes them even more valuable for regulatory roles. To date, more than 2000 protein-coding genes in the human genome have been determined as SEGs (https://www.ensembl.org/index.html). Among them, a considerable amount of IGs is responsible for encoding proteins such as G-protein-coupled receptors (GPCRs), canonical histones, transcription factors, many genes involved in signal transduction, as well as some involved in the regulation of development, growth, and cell proliferation (Meena K Sakharkar et al. 2005; Grzybowska 2012). The expression of IGs has been proposed to be highly specialized for neuro-specific functions and linked to diseases such as cancer, neuropathies, and developmental disorders. Examples of IGs with bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426573; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International licenseIntronless. genes regulatory role clinical relevance are the RPRM gene related to gastric cancer which causes increased cell proliferation and possesses tumor suppression activity (Amigo et al. 2018) and the protein kinase CK2α gene which is up-regulated in all human cancers (Hung et al. 2010). Other IGs linked to cancer include CLDN8 in colorectal carcinoma and renal cell tumors, ARLTS1 in melanoma, and PURA and TAL2 in leukemia (Grzybowska 2012). IGs have also been associated with neuropathies, such as ECDR1, a cerebellar degeneration-related protein, and NPBWR2, a neuropeptide B/W receptor type (Louhichi, Fourati, and Rebaï 2011). Regarding their role in the diseases described above, IGs in humans are potential clinical biomarkers and drug targets that deserve careful consideration (Grzybowska 2012; Ohki et al. 2000; Liu et al. 2017). Their functional role and their evolutionary conservation in other genomes, however, remains poorly understood. Furthermore, there is a current debate between related theories that place the origin of introns, early or late during the evolutionary history of eukaryotes (Fedorova and Fedorov 2003). With this backdrop, our work aimed to characterize the functional role of mouse IGs and to infer their evolutionary pattern across six additional vertebrate genomes. We have analyzed their expression, particularly during brain development at early embryonic stages, and their potential as transcriptional as well as post-translational modulators. Overall, this study sheds light on the concerted role played by this peculiar group of genes and helps contrast the functional features of intron-containing and intronless genes across vertebrate species and their collective evolutionary roadmaps. bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426573; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International licenseIntronless.
Recommended publications
  • Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice
    Loyola University Chicago Loyola eCommons Biology: Faculty Publications and Other Works Faculty Publications 2013 Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice Mihaela Palicev Gunter P. Wagner James P. Noonan Benedikt Hallgrimsson James M. Cheverud Loyola University Chicago, [email protected] Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs Part of the Biology Commons Recommended Citation Palicev, M, GP Wagner, JP Noonan, B Hallgrimsson, and JM Cheverud. "Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice." Genome Biology and Evolution 5(10), 2013. This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Palicev et al., 2013. GBE Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice Mihaela Pavlicev1,2,*, Gu¨ nter P. Wagner3, James P. Noonan4, Benedikt Hallgrı´msson5,and James M. Cheverud6 1Konrad Lorenz Institute for Evolution and Cognition Research, Altenberg, Austria 2Department of Pediatrics, Cincinnati Children‘s Hospital Medical Center, Cincinnati, Ohio 3Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University 4Department of Genetics, Yale University School of Medicine 5Department of Cell Biology and Anatomy, The McCaig Institute for Bone and Joint Health and the Alberta Children’s Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Canada 6Department of Anatomy and Neurobiology, Washington University *Corresponding author: E-mail: [email protected].
    [Show full text]
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Clinicopathological and Molecular Genetic Analysis of Low-Grade Glioma in Adults
    A CLINICOPATHOLOGICAL AND MOLECULAR GENETIC ANALYSIS OF LOW-GRADE GLIOMA IN ADULTS Presented by ANUSHREE SINGH MSc A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy Brain Tumour Research Centre Research Institute in Healthcare Sciences Faculty of Science and Engineering University of Wolverhampton November 2014 i DECLARATION This work or any part thereof has not previously been presented in any form to the University or to any other body whether for the purposes of assessment, publication or for any other purpose (unless otherwise indicated). Save for any express acknowledgments, references and/or bibliographies cited in the work, I confirm that the intellectual content of the work is the result of my own efforts and of no other person. The right of Anushree Singh to be identified as author of this work is asserted in accordance with ss.77 and 78 of the Copyright, Designs and Patents Act 1988. At this date copyright is owned by the author. Signature: Anushree Date: 30th November 2014 ii ABSTRACT The aim of the study was to identify molecular markers that can determine progression of low grade glioma. This was done using various approaches such as IDH1 and IDH2 mutation analysis, MGMT methylation analysis, copy number analysis using array comparative genomic hybridisation and identification of differentially expressed miRNAs using miRNA microarray analysis. IDH1 mutation was present at a frequency of 71% in low grade glioma and was identified as an independent marker for improved OS in a multivariate analysis, which confirms the previous findings in low grade glioma studies.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • LETTER Doi:10.1038/Nature09515
    LETTER doi:10.1038/nature09515 Distant metastasis occurs late during the genetic evolution of pancreatic cancer Shinichi Yachida1*, Siaˆn Jones2*, Ivana Bozic3, Tibor Antal3,4, Rebecca Leary2, Baojin Fu1, Mihoko Kamiyama1, Ralph H. Hruban1,5, James R. Eshleman1, Martin A. Nowak3, Victor E. Velculescu2, Kenneth W. Kinzler2, Bert Vogelstein2 & Christine A. Iacobuzio-Donahue1,5,6 Metastasis, the dissemination and growth of neoplastic cells in an were present in the primary pancreatic tumours from which the meta- organ distinct from that in which they originated1,2, is the most stases arose. A small number of these samples of interest were cell lines common cause of death in cancer patients. This is particularly true or xenografts, similar to the index lesions, whereas the majority were for pancreatic cancers, where most patients are diagnosed with fresh-frozen tissues that contained admixed neoplastic, stromal, metastatic disease and few show a sustained response to chemo- inflammatory, endothelial and normal epithelial cells (Fig. 1a). Each therapy or radiation therapy3. Whether the dismal prognosis of tissue sample was therefore microdissected to minimize contaminat- patients with pancreatic cancer compared to patients with other ing non-neoplastic elements before purifying DNA. types of cancer is a result of late diagnosis or early dissemination of Two categories of mutations were identified (Fig. 1b). The first and disease to distant organs is not known. Here we rely on data gen- largest category corresponded to those mutations present in all samples erated by sequencing the genomes of seven pancreatic cancer meta- from a given patient (‘founder’ mutations, mean of 64%, range 48–83% stases to evaluate the clonal relationships among primary and of all mutations per patient; Fig.
    [Show full text]
  • Identification of Gene Modules Associated with Warfarin Dosage by a Genome-Wide DNA Methylation Study
    ORIGINAL ARTICLES Department of Clinical Pharmacology1, Xiangya Hospital, Institute of Clinical Pharmacology2, Central South University, Hunan Key Laboratory of Pharmacogenetics; Changsha; Department of Cardio-Thoracic Surgery3, the Second Xiangya Hospital of Central South University, Changsha; Key Laboratory of Bio-resources and Eco-environment4 (Ministry of Education), College of Life Science, Sichuan University, Chengdu, China Identification of gene modules associated with warfarin dosage by a genome-wide DNA methylation study ZHIYING LUO1, 2, RONG LIU1, 2, BAO SUN1, 2, XINMING ZHOU3, ZHAOQIAN LIU1, 2, HONGHAO ZHOU1, 2, HENG XU4, XI LI1,2,*,#, WEI ZHANG1,2,*,# Received December 12, 2017, accepted January 10, 2018 *Corresponding authors: Prof. Wei Zhang, Xi Li, Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiangya Rode, Kaifu district, Changsha, Hunan 410008, China [email protected]; [email protected] #Wei Zhang and Xi Li contributed equally to this study. Pharmazie 73: 288–293 (2018) doi: 10.1691/ph.2018.7319 Objective: To identify warfarin dose-associated DNA methylation changes, we conducted the first genomewide DNA methylation association study. Method: A total of 22 patients who required an extreme warfarin dosage from VKORC1 -1639AA & CYP2C9*1*1 genotype group were enrolled in this study. The Illumina Infinium Human- Methylation450 platform was used to perform genome-scale DNA methylation profiling, identifying differentially methylated CpG sites by a nonparametric test. WGCNA was used to analyze the association between gene modules and extreme warfarin dosage. Results: For a total of 378,313 CpG sites that passed the quality control processes, we identified eight differentially methylated CpG probes (p<0.05) showing altered DNA methylation level (>20%) between two extreme dose groups.
    [Show full text]
  • Sporadic Autism Exomes Reveal a Highly Interconnected Protein Network of De Novo Mutations
    LETTER doi:10.1038/nature10989 Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations Brian J. O’Roak1,LauraVives1, Santhosh Girirajan1,EmreKarakoc1, Niklas Krumm1,BradleyP.Coe1,RoieLevy1,ArthurKo1,CholiLee1, Joshua D. Smith1, Emily H. Turner1, Ian B. Stanaway1, Benjamin Vernot1, Maika Malig1, Carl Baker1, Beau Reilly2,JoshuaM.Akey1, Elhanan Borenstein1,3,4,MarkJ.Rieder1, Deborah A. Nickerson1, Raphael Bernier2, Jay Shendure1 &EvanE.Eichler1,5 It is well established that autism spectrum disorders (ASD) have a per generation, in close agreement with our previous observations4, strong genetic component; however, for at least 70% of cases, the yet in general, higher than previous studies, indicating increased underlying genetic cause is unknown1. Under the hypothesis that sensitivity (Supplementary Table 2 and Supplementary Table 4)7. de novo mutations underlie a substantial fraction of the risk for We also observed complex classes of de novo mutation including: five developing ASD in families with no previous history of ASD or cases of multiple mutations in close proximity; two events consistent related phenotypes—so-called sporadic or simplex families2,3—we with paternal germline mosaicism (that is, where both siblings con- sequenced all coding regions of the genome (the exome) for tained a de novo event observed in neither parent); and nine events parent–child trios exhibiting sporadic ASD, including 189 new showing a weak minor allele profile consistent with somatic mosaicism trios and 20 that were previously reported4. Additionally, we also (Supplementary Table 3 and Supplementary Figs 2 and 3). sequenced the exomes of 50 unaffected siblings corresponding to Of the severe de novo events, 28% (33 of 120) are predicted to these new (n 5 31) and previously reported trios (n 5 19)4, for a truncate the protein.
    [Show full text]
  • Pathogenetic Subgroups of Multiple Myeloma Patients
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLE High-resolution genomic profiles define distinct clinico- pathogenetic subgroups of multiple myeloma patients Daniel R. Carrasco,1,2,8 Giovanni Tonon,1,8 Yongsheng Huang,3,8 Yunyu Zhang,1 Raktim Sinha,1 Bin Feng,1 James P. Stewart,3 Fenghuang Zhan,3 Deepak Khatry,1 Marina Protopopova,5 Alexei Protopopov,5 Kumar Sukhdeo,1 Ichiro Hanamura,3 Owen Stephens,3 Bart Barlogie,3 Kenneth C. Anderson,1,4 Lynda Chin,1,7 John D. Shaughnessy, Jr.,3,9 Cameron Brennan,6,9 and Ronald A. DePinho1,5,9,* 1 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 2 Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 02115 3 The Donna and Donald Lambert Laboratory of Myeloma Genetics, Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 4 The Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 5 Center for Applied Cancer Science, Belfer Institute for Innovative Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 6 Neurosurgery Service, Memorial Sloan-Kettering Cancer Center, Department of Neurosurgery, Weill Cornell Medical College, New York, New York 10021 7 Department of Dermatology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, 02115 8 These authors contributed equally to this work. 9 Cocorresponding authors: [email protected] (C.B.); [email protected] (J.D.S.); [email protected] (R.A.D.) *Correspondence: [email protected] Summary To identify genetic events underlying the genesis and progression of multiple myeloma (MM), we conducted a high-resolu- tion analysis of recurrent copy number alterations (CNAs) and expression profiles in a collection of MM cell lines and out- come-annotated clinical specimens.
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • PCDHB3 Polyclonal Antibody (A01) Cell-Cell Connections
    PCDHB3 polyclonal antibody (A01) cell-cell connections. Unlike the alpha and gamma clusters, the transcripts from these genes are made up Catalog Number: H00056132-A01 of only one large exon, not sharing common 3' exons as expected. These neural cadherin-like cell adhesion Regulatory Status: For research use only (RUO) proteins are integral plasma membrane proteins. Their specific functions are unknown but they most likely play Product Description: Mouse polyclonal antibody raised a critical role in the establishment and function of against a partial recombinant PCDHB3. specific cell-cell neural connections. [provided by RefSeq] Immunogen: PCDHB3 (NP_061760, 284 a.a. ~ 381 a.a) partial recombinant protein with GST tag. Sequence: ASEEIRKTFQLNPITGDMQLVKYLNFEAINSYEVDIEAK DGGGLSGKSTVIVQVVDVNDNPPELTLSSVNSPIPENS GETVLAVFSVSDLDSGDNGRV Host: Mouse Reactivity: Human Applications: ELISA, WB-Re (See our web site product page for detailed applications information) Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Storage Buffer: 50 % glycerol Storage Instruction: Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. Entrez GeneID: 56132 Gene Symbol: PCDHB3 Gene Alias: PCDH-BETA3 Gene Summary: This gene is a member of the protocadherin beta gene cluster, one of three related gene clusters tandemly linked on chromosome five. The gene clusters demonstrate an unusual genomic organization similar to that of B-cell and T-cell receptor gene clusters. The beta cluster contains 16 genes and 3 pseudogenes, each encoding 6 extracellular cadherin domains and a cytoplasmic tail that deviates from others in the cadherin superfamily. The extracellular domains interact in a homophilic manner to specify differential Page 1/1 Powered by TCPDF (www.tcpdf.org).
    [Show full text]
  • The Consensus Coding Sequences of Human Breast and Colorectal Cancers Tobias Sjöblom,1* Siân Jones,1* Laura D
    The Consensus Coding Sequences of Human Breast and Colorectal Cancers Tobias Sjöblom,1* Siân Jones,1* Laura D. Wood,1* D. Williams Parsons,1* Jimmy Lin,1 Thomas Barber,1 Diana Mandelker,1 Rebecca J. Leary,1 Janine Ptak,1 Natalie Silliman,1 Steve Szabo,1 Phillip Buckhaults,2 Christopher Farrell,2 Paul Meeh,2 Sanford D. Markowitz,3 Joseph Willis,4 Dawn Dawson,4 James K. V. Willson,5 Adi F. Gazdar,6 James Hartigan,7 Leo Wu,8 Changsheng Liu,8 Giovanni Parmigiani,9 Ben Ho Park,10 Kurtis E. Bachman,11 Nickolas Papadopoulos,1 Bert Vogelstein,1† Kenneth W. Kinzler,1† Victor E. Velculescu1† 1Ludwig Center and Howard Hughes Medical Institute, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA. 2Department of Pathology and Microbiology, Center for Colon Cancer Research, and South Carolina Cancer Center, Division of Basic Research, University of South Carolina School of Medicine, Columbia, SC 29229, USA. 3Department of Medicine, Ireland Cancer Center, and Howard Hughes Medical Institute, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA. 4Department of Pathology and Ireland Cancer Center, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA. 5Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 6Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 7Agencourt Bioscience Corporation, Beverly, MA 01915, USA. 8SoftGenetics LLC, State College, PA 16803, USA. 9Departments of Oncology, Biostatistics, and Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
    [Show full text]