SOME STUDIES on CAPILLARIA PHILIPINENSIS and ITS MYSTERIOUS TRIP from PHILIPPINES to EGYPT (REVIEW ARTICLE) by REFAAT M.A

Total Page:16

File Type:pdf, Size:1020Kb

SOME STUDIES on CAPILLARIA PHILIPINENSIS and ITS MYSTERIOUS TRIP from PHILIPPINES to EGYPT (REVIEW ARTICLE) by REFAAT M.A Journal of the Egyptian Society of Parasitology, Vol.44, No.1, April 2014 J. Egypt. Soc. Parasitol. (JESP), 44(1), 2014: 161 - 171 SOME STUDIES ON CAPILLARIA PHILIPINENSIS AND ITS MYSTERIOUS TRIP FROM PHILIPPINES TO EGYPT (REVIEW ARTICLE) By REFAAT M.A. KHALIFA AND RAGAA A. OTHMAN Department of Medical Parasitology, Faculty of Medicine, Assiut University (e-mail correspondence: [email protected]) Abstract Capillaria philippinensis is a mysterious parasite and intestinal capillariasis is a mysterious disease. It is now more than half a century since the discovery of the first case in Philippines without answering many questions concerning the parasite's taxonomy, morphology, life cycle, diagnosis, pathology, clinical symptoms, mode of transmission as well as how it was transported to Egypt and how it started to spread and progressed in most Egyptian Governorates; particularly those of Middle Egypt. This article is a trial to overview all these aspects of the parasite. Key words: Egypt, Capillaria philipinensism, Egypt, comments, recommendations. Introduction with sporadic cases were reported from The intestinal capillariasis caused by Japan (Mukai et al,1983), Korea(Lee et Capillaria philippinensisis a life-threa- al,1993; Hong et al,1994), Taiwan(Chen et tening disease in humans that causes severe al, 1989, Bair et al,2004, Lu et al,2006), enteropathy (Cross, 1998).The outcome of India Kang et al,1994;Vasantha et al, 2012), the disease may be fatal if untreated in due Iran (Hoghooghi-Rad et al,1987; Rokni, time (Abd-ElSalam et al, 2012). Small 2008), Egypt (Youssef et al,1989; Mansour freshwater and brackish-water fish are the et al,1990, Khalifa et al,2000), Indonesian in source of infection and probably fish-eating Italy(Chichino et al,1992), Egyptians in the birds the reservoir host (Cross, 1998). United Arab Emirates (El-Hassan and Although more than 250 Capillaria species Mikhail, 1992; Austin et al, 1999) and Spain have been found in fish, amphibians, (Dronda et al,1993). reptiles, birds and mammals, only 3 species The first outbreak was in a small village in have been found in humans: C. philippi- Thailand in 1981 involving 20 patients and 9 nensis, C. hepatica and C. aerophila (Eucol- deaths. Most of the cases were adults who eusaerophilus). Reports of human infections were over 20 years of age and 80% of them with C. hepatica, C. aerophila are rare, but habited in the same household with a wrong reports of C. philippinensis infections are belief of man to man transmission (Kunara- increasing and appear to be spreading tanapruk et al, 1981). Kunaratanapruk et al. geographically (Cross, 1992). (1983) reported that 100 cases of C. The first human case of intestinal philippinensis infection had occurred from capillariasis was reported in the Philippines 1979 to 1981. Out of them 15 cases died. in 1963 (Chitwood et al, 1964) while the Later on other case records were re-ported first record of the disease in Thailand was in (Benjanuwattar et al, 1990; Chunlertrith et 1973 (Pradatsundarasar et al, 1973), then al, 1992; Sangcha et al, 2007). more and more cases were detected from No doubt, Capillaria philippinensis is a both Philippines and Thailand (Sanpakit et mysterious nematode parasite and intestinal al., 1974; Bhaibulaya, 1975; Cross and capillariasis is a mysterious disease. It is Bhaibulaya, 1983). Now more than 2,000 now about half a century since the discovery cases of intestinal capillariasis have been of the first case of the disease in Philippines reported from the Philippines and Thailand, without answering many questions con- 161 cerning the parasite's taxonomy, morpho- (females may produce larvae; adults in logy, life cycle, diagnosis, pathology, warm-blooded vertebrates; larvae in fishes). clinical symptoms, mode of transmission as Sukontason et al. (2006), Nunez et al. well as how it was transported to Egypt and (2010) accepted the classification and named how it started to spread and progressed in it P. Crossicapillaria philippinensis. In the most Egyptian governorates; particularly present authors’ opinion, these differences those of Middle Egypt. This article is a trial are not sufficient to create a new genus or to overview all these aspects of the parasite. subgenus and we should not mix between Classification and Taxonomy: According to human capillarids and those of birds, fishes, Chitwood et al. (1968) this parasite belongs reptiles and amphibians as the latter to Phylum Nematoda Class Adenophorea, parasites have different morphology, mode Subclass Enoplia, Order Trichocephalida, of transmission and life cycles. Moreover, C. Family Capillariidae, Genus Capillaria, philippinensis is the name given to the species philippinensis. On basis of the parasite by the majority of medical inaccurate original description given by parasitologists. Chitwood et al. (1968), Moravec (1982) Description of the parasite: Although C. assigned this parasite provisionally to philippinensis has been extensively studied Anochotheca LopezNeyera, 1947 whereas over the past 50 years, the only existing Anderson (1992) without giving a reason description of this nematode is that named it Colodium philippinensis. Until originally made by Chitwood et al. (1968). recently, the species have generally been Chitwood et al. (1964) described the parasite reported as Capillaria philippinensis in the from specimens collected at autopsy from medical literature (e.g. Hong et al, 1994; the first person known to have the infection Kang et al, 1994; Vilairatauna, 1994; Anis et and in material obtained from several al, 1998; Hwang, 1998), but Moravec (2001) subsequent autopsies. More specimens were redescribed the parasite and found his examined by other investigators, and the description fully corresponding that of initial findings were confirmed. As most of Paracapillaria, Mendonaca, 1963 as refined the laboratory investigators used to find by Moravec (1982) that included calliparids eggs, larvae and adults in the patient's stools, of fishes, amphibians and reptiles. As they should be familiar with the detailed compared to the known Paracapillaria spp morphological features of all the stages of known from cold-blooded hosts, C. phili- the parasite. ppinensis is unique in that its females may According to Moravec (2001), Attia et al. produce free 1st stage larvae besides normal (2012): Male: Length 2.162-3.114µm, thick-walled unembryonated eggs. All Para- maximum width 30-36µm. Entire esophagus capillaria spp. are known to produce only 1.170-1.646 µm long (53-57% of body unembryonated thick-shelled eggs except length). Muscular esophagus measuring 138- Paracapillaria rhamdiae which is a stomach 177µm. Stichosome 1.029-1.484µm long parasite of catfishes in Mexico that may lay (15-19% of body length). Posterior end of eggs containing already formed larvae, but body rounded, provided with well-developed no hatched larvae were observed in uterus membranous bursa, supported by 2 rather (Moravec et al, 1995). Moravec (2001) in a wide digital lateral projections, not reaching key form divided the genus Paracapillaria to posterior margin of bursa, projections into three subgenera according to the directed posteriorly in lateral view and females being oviparous or larviparous and curved to median line in ventral view. One adults being in worm blooded vertebrates or pair of large round postanal papillae present cold blooded fishes, amphibians and reptiles. at base of caudal projections. Spicule 411- The first subgenus was Crossicapillaria 468um in length, 6-12; 4-5; 3-4um in width 162 at anterior end, middle part; posterior end larvae represent an important diagnostic respectively; its anterior end somewhat stage, laboratory staff should be aware of expanded; posterior end rounded; covered their structure. So, it is easy to differentiate with very long spineless sheath (about them from Strongyloides stercoralis larvae 400um). Female: Length 2.870-3.971µm, which have rhabditiform esophagus. maximum width at the posterior body part Eggs: Peanut-shaped with flattened bi- 36-48µm. Length of entire esophagus 1.224- polar plugs and striated shells (Zhigang et 1.659µm, representing 42-47% of body al, 2012). They contain either a single cell- length, muscular esophagus 120-180µ long, stage embryo or larvae. An inexperienced stichosome 1.104-1.515µm long. Sticho- laboratory worker may confuse them with cytes on the posterior portion appeared Trichuris trichiura eggs which are barrel- somewhat larger than those on the anterior shaped and have prominent mucoid bipolar portion. Vulva located 24–36 µm posterior plugs (Saichua et al, 2008). According to to the esophagus. The uterus contained one Cross (1992), Anderson (2000), Moravec row of either thin- or thick-shelled eggs with (2001) and Attia et al. (2012), there are two defined or ill-defined embryos. Posterior types of C. philippinensis eggs: I- The thick- end rounded, and the anus subterminal. shelled eggs: peanut-shaped and had a Larvae: These stages were first satisfactorily yellowish-brown color, measuring40-48 x described (Chitwood et al,1968) as follows: 17-20 µm with inconspicuous flattened L1 is the smallest with a double row of bipolar plugs measuring 2-3.6 x 9-12 µm. stichocytes and esophagus about 4/5th the The wall thickness is 2-3 µm. Eggs usually body length; L2 is 417-550 um in length contain a single cell stage embryo that filled with double row of stichocytes in the most of the egg. Some eggs have a slipper or esophagus which is approximately 2/3rd the kidney shaped appearance (Khalifa et al, body length, genital column starts to appear; 2000). II- The thin-shelled eggs: peanut- L3 is 1.25 mm in length, most of the shaped measuring 38-45.6 x18-20 µm. They stichocytes are in one column and oral spear are translucent or yellowish in color having apparent, anterior genital column almost single cell-stage embryos or gradually complete and posterior one beginning to maturating larvae with two characteristically develop. L4 started the differentiation of the rounded mucoid plugs protruding from their future sex, but differ from adults in size and poles.
Recommended publications
  • This Is an Open Access Document Downloaded from ORCA, Cardiff University's Institutional Repository
    This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/117055/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Jorge, F., White, R.S.A. and Paterson, Rachel A. 2018. Hiding in the swamp: new capillariid nematode parasitizing New Zealand brown mudfish. Journal of Helminthology 92 (3) , pp. 379-386. 10.1017/S0022149X17000530 file Publishers page: http://dx.doi.org/10.1017/S0022149X17000530 <http://dx.doi.org/10.1017/S0022149X17000530> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders. Title: Hiding in the swamp: new capillariid nematode parasitizing New Zealand brown mudfish Authors: Fátima Jorge1, Richard S. A. White2 and Rachel A. Paterson1,3 Addresses: 1Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; 2School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; 3School of Biosciences, University of Cardiff, Cardiff, CF10 3AX, United Kingdom Running headline: Capillariid nematode parasitizing New Zealand mudfish Corresponding author: Fátima Jorge Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand e-mail: [email protected] 1 Abstract The extent of New Zealand’s freshwater fish-parasite diversity has yet to be fully revealed, with host-parasite relationships still to be described from nearly half the known fish community.
    [Show full text]
  • A Parasite of Red Grouse (Lagopus Lagopus Scoticus)
    THE ECOLOGY AND PATHOLOGY OF TRICHOSTRONGYLUS TENUIS (NEMATODA), A PARASITE OF RED GROUSE (LAGOPUS LAGOPUS SCOTICUS) A thesis submitted to the University of Leeds in fulfilment for the requirements for the degree of Doctor of Philosophy By HAROLD WATSON (B.Sc. University of Newcastle-upon-Tyne) Department of Pure and Applied Biology, The University of Leeds FEBRUARY 198* The red grouse, Lagopus lagopus scoticus I ABSTRACT Trichostrongylus tenuis is a nematode that lives in the caeca of wild red grouse. It causes disease in red grouse and can cause fluctuations in grouse pop ulations. The aim of the work described in this thesis was to study aspects of the ecology of the infective-stage larvae of T.tenuis, and also certain aspects of the pathology and immunology of red grouse and chickens infected with this nematode. The survival of the infective-stage larvae of T.tenuis was found to decrease as temperature increased, at temperatures between 0-30 C? and larvae were susceptible to freezing and desiccation. The lipid reserves of the infective-stage larvae declined as temperature increased and this decline was correlated to a decline in infectivity in the domestic chicken. The occurrence of infective-stage larvae on heather tips at caecal dropping sites was monitored on a moor; most larvae were found during the summer months but very few larvae were recovered in the winter. The number of larvae recovered from the heather showed a good correlation with the actual worm burdens recorded in young grouse when related to food intake. Examination of the heather leaflets by scanning electron microscopy showed that each leaflet consists of a leaf roll and the infective-stage larvae of T.tenuis migrate into the humid microenvironment' provided by these leaf rolls.
    [Show full text]
  • Public Health Significance of Intestinal Parasitic Infections*
    Articles in the Update series Les articles de la rubrique give a concise, authoritative, Le pointfournissent un bilan and up-to-date survey of concis et fiable de la situa- the present position in the tion actuelle dans les do- Update selectedfields, coveringmany maines consideres, couvrant different aspects of the de nombreux aspects des biomedical sciences and sciences biomedicales et de la , po n t , , public health. Most of santepublique. Laplupartde the articles are written by ces articles auront donc ete acknowledged experts on the redigeis par les specialistes subject. les plus autorises. Bulletin of the World Health Organization, 65 (5): 575-588 (1987) © World Health Organization 1987 Public health significance of intestinal parasitic infections* WHO EXPERT COMMITTEE' Intestinal parasitic infections are distributed virtually throughout the world, with high prevalence rates in many regions. Amoebiasis, ascariasis, hookworm infection and trichuriasis are among the ten most common infections in the world. Other parasitic infections such as abdominal angiostrongyliasis, intestinal capil- lariasis, and strongyloidiasis are of local or regional public health concern. The prevention and control of these infections are now more feasible than ever before owing to the discovery of safe and efficacious drugs, the improvement and sim- plification of some diagnostic procedures, and advances in parasite population biology. METHODS OF ASSESSMENT The amount of harm caused by intestinal parasitic infections to the health and welfare of individuals and communities depends on: (a) the parasite species; (b) the intensity and course of the infection; (c) the nature of the interactions between the parasite species and concurrent infections; (d) the nutritional and immunological status of the population; and (e) numerous socioeconomic factors.
    [Show full text]
  • Parasitic Contaminants in Food
    SOUTHEAST ASIAN J TROP MED PUBLIC HEALTH PARASITIC CONTAMINANTS IN FOOD Malinee T Anantaphruti Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand Abstract. There is a wide variety of food products that may be contaminated with one or more parasites and consequently enabling transmission to human beings. The prevalence of specific parasites in food supplies varies between countries and regions. Sources of food-borne products contaminated with parasites are pigs, cattle, fish, crabs, crayfish, snails, frogs, snakes and aquatic plants. One of the major factors influencing the prevalence of parasitic infections in the population is the habit, and traditional popularity of eating raw or inadequately cooked foods. The parasites that may be acquired by eating these foods are nematodes, trematodes, cestodes and protozoa. The major genera of parasites are Trichinella, Gnathostoma, Angiostrongylus, Anisakis, Paragonimus, Clonorchis, Opisthorchis, Fasciola, Fasciolopsis, Echinostoma, Taenia, Spirometra and Toxoplasma. These food-borne parasitic infections are public health problems worldwide. The contamination of food affects many including humans, livestock industry, agriculture, and food manufacturing and processing. Unsafe foods must be condemned and destroyed. Today there is increasing travel hence there is the risk of humans’ acquiring food-borne parasitic infections through eating native food often raw. Moreover, the consumption of imported livestock and foods, especially from endemic areas of food-borne parasitic zoonoses, can be the cause of infection. Awareness should be heightened wherever and whenever raw or inadequately cooked food are consumed. INTRODUCTION Since these parasitic infections are highly prevalent in the Asian region, this paper places its emphasis on the Food safety is important to enable humans to attain existence of helminths in foods in many Asian a better quality of life.
    [Show full text]
  • "Structure, Function and Evolution of the Nematode Genome"
    Structure, Function and Advanced article Evolution of The Article Contents . Introduction Nematode Genome . Main Text Online posting date: 15th February 2013 Christian Ro¨delsperger, Max Planck Institute for Developmental Biology, Tuebingen, Germany Adrian Streit, Max Planck Institute for Developmental Biology, Tuebingen, Germany Ralf J Sommer, Max Planck Institute for Developmental Biology, Tuebingen, Germany In the past few years, an increasing number of draft gen- numerous variations. In some instances, multiple alter- ome sequences of multiple free-living and parasitic native forms for particular developmental stages exist, nematodes have been published. Although nematode most notably dauer juveniles, an alternative third juvenile genomes vary in size within an order of magnitude, com- stage capable of surviving long periods of starvation and other adverse conditions. Some or all stages can be para- pared with mammalian genomes, they are all very small. sitic (Anderson, 2000; Community; Eckert et al., 2005; Nevertheless, nematodes possess only marginally fewer Riddle et al., 1997). The minimal generation times and the genes than mammals do. Nematode genomes are very life expectancies vary greatly among nematodes and range compact and therefore form a highly attractive system for from a few days to several years. comparative studies of genome structure and evolution. Among the nematodes, numerous parasites of plants and Strikingly, approximately one-third of the genes in every animals, including man are of great medical and economic sequenced nematode genome has no recognisable importance (Lee, 2002). From phylogenetic analyses, it can homologues outside their genus. One observes high rates be concluded that parasitic life styles evolved at least seven of gene losses and gains, among them numerous examples times independently within the nematodes (four times with of gene acquisition by horizontal gene transfer.
    [Show full text]
  • Protein-Losing Enteropathy Secondary to Intestinal Capillariasis – a Case Report from Singapore Sim Jean¹, Sim HC James², Chien MF Jaime¹
    Protein-losing Enteropathy secondary to Intestinal Capillariasis – a case report from Singapore Sim Jean¹, Sim HC James², Chien MF Jaime¹ ¹Department of Infectious Diseases, Singapore General Hospital. ²Department of Pathology, Singapore General Hospital Email address: [email protected] Background Magnetic resonance imaging enterography revealed distal jejunal and Intestinal infection due to Capillaria philipinensis causes chronic proximal ileal mural thickening (see below). Random biopsies of diarrhea and malabsorption with cases reported mainly from jejunum showed Philippines and Thailand. Untreated disease has devastating distortion of small consequences and carries a substantial mortality. bowel architecture with active chronic enteritis, We present the first reported case of intestinal capillariasis in significant eosinophilia Singapore. and parasitic organisms Results (see left). A 32 year old male foreign worker, with no significant medical In view of the above, a search for strongyloides hyperinfection history, presented with bilateral lower limb swelling and 18 was performed. Serology for strongyloides and HTLV-I/II and months of watery, non-bloody, non-mucoid diarrhea associated He underwent esophagoduodenoscopy and colonoscopy that were strongyloides PCR performed on the biopsy tissue were negative. with weight loss of 17kg. He did not have fever, chills, facial macroscopically normal. Double balloon enterography revealed Slides were reviewed in conjunction with the histopathologist. In swelling, frothy urine, joint pains or rash. He was not on long term moderate to severe enteritidis from mid-jejunum to ileum with friable view of his epidemiological exposure, histological appearance of medications. He originated from northern Philippines, Ilocos Sur mucosa (see below). the parasite and negative strongyloides tests, we found the province and relocated to Singapore in 2011 working as an aircraft diagnosis consistent with intestinal capillariasis.
    [Show full text]
  • Morphology, Life Cycle, Pathogenicity and Prophylaxis of Trichinella Spiralis
    Paper No. : 08 Biology of Parasitism Module : 26 Morphology, Life Cycle, Pathogenicity and Prophylaxis of Trichinella Development Team Principal Investigator: Prof. Neeta Sehgal Head, Department of Zoology, University of Delhi Paper Coordinator: Dr. Pawan Malhotra ICGEB, New Delhi Content Writer: Dr. Rita Rath Dyal Singh College, University of Delhi Content Reviewer: Prof. Virender Kumar Bhasin Department of Zoology, University of Delhi 1 Biology of Parasitism ZOOLOGY Morphology, Life Cycle and Pathogenicity and Prophylaxis of Trichinella Description of Module Subject Name ZOOLOGY Paper Name Biology of Parasitism- ZOOL OO8 Module Name/Title Morphology, Life Cycle, Pathogenicity and Prophylaxis of Trichinella Module Id 26; Morphology, Life Cycle, Pathogenicity and Prophylaxis Keywords Trichinosis, pork worm, encysted larva, striated muscle , intestinal parasite Contents 1. Learning Outcomes 2. History 3. Geographical Distribution 4. Habit and Habitat 5. Morphology 5.1. Adult 5.2. Larva 6. Life Cycle 7. Pathogenicity 7.1. Diagnosis 7.2. Treatment 7.3. Prophylaxis 8. Phylogenetic Position 9. Genomics 10. Proteomics 11. Summary 2 Biology of Parasitism ZOOLOGY Morphology, Life Cycle and Pathogenicity and Prophylaxis of Trichinella 1. Learning Outcomes This unit will help to: Understand the medical importance of Trichinella spiralis. Identify the male and female worm from its morphological characteristics. Explain the importance of hosts in the life cycle of Trichinella spiralis. Diagnose the symptoms of the disease caused by the parasite. Understand the genomics and proteomics of the parasite to be able to design more accurate diagnostic, preventive, curative measures. Suggest various methods for the prevention and control of the parasite. Trichinella spiralis (Pork worm) Classification Kingdom: Animalia Phylum: Nematoda Class: Adenophorea Order: Trichocephalida Superfamily: Trichinelloidea Genus: Trichinella Species: spiralis 2.
    [Show full text]
  • New Capillariid Nematode Parasitizing New Zealand Brown Mudfish Authors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Online Research @ Cardiff Title: Hiding in the swamp: new capillariid nematode parasitizing New Zealand brown mudfish Authors: Fátima Jorge1, Richard S. A. White2 and Rachel A. Paterson1,3 Addresses: 1Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; 2School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; 3School of Biosciences, University of Cardiff, Cardiff, CF10 3AX, United Kingdom Running headline: Capillariid nematode parasitizing New Zealand mudfish Corresponding author: Fátima Jorge Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand e-mail: [email protected] 1 Abstract The extent of New Zealand’s freshwater fish-parasite diversity has yet to be fully revealed, with host-parasite relationships still to be described from nearly half the known fish community. Whilst advancements in the number of fish species examined and parasite taxa described are being made; some parasite groups, such as nematodes, remain poorly understood. In the present study we combined morphological and molecular analyses to characterize a capillariid nematode found infecting the swim bladder of the brown mudfish Neochanna apoda, an endemic New Zealand fish from peat-swamp-forests. Morphologically, the studied nematodes are distinct from other Capillariinae taxa by the features of the male posterior end, namely the shape of the bursa lobes, and shape of spicule distal end. Male specimens were classified in three different types according to differences in shape of the bursa lobes at the posterior end, but only one was successfully molecularly characterized.
    [Show full text]
  • Nor Hawani Salikin
    Characterisation of a novel antinematode agent produced by the marine epiphytic bacterium Pseudoalteromonas tunicata and its impact on Caenorhabditis elegans Nor Hawani Salikin A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences Faculty of Science August 2020 Thesis/Dissertation Sheet Surname/Family Name : Salikin Given Name/s : Nor Hawani Abbreviation for degree as give in the University : Ph.D. calendar Faculty : UNSW Faculty of Science School : School of Biological, Earth and Environmental Sciences Characterisation of a novel antinematode agent produced Thesis Title : by the marine epiphytic bacterium Pseudoalteromonas tunicata and its impact on Caenorhabditis elegans Abstract 350 words maximum: (PLEASE TYPE) Drug resistance among parasitic nematodes has resulted in an urgent need for the development of new therapies. However, the high re-discovery rate of antinematode compounds from terrestrial environments necessitates a new repository for future drug research. Marine epiphytic bacteria are hypothesised to produce nematicidal compounds as a defence against bacterivorous predators, thus representing a promising, yet underexplored source for antinematode drug discovery. The marine epiphytic bacterium Pseudoalteromonas tunicata is known to produce a number of bioactive compounds. Screening genomic libraries of P. tunicata against the nematode Caenorhabditis elegans identified a clone (HG8) showing fast-killing activity. However, the molecular, chemical and biological properties of HG8 remain undetermined. A novel Nematode killing protein-1 (Nkp-1) encoded by an uncharacterised gene of HG8 annotated as hp1 was successfully discovered through this project. The Nkp-1 toxicity appears to be nematode-specific, with the protein being highly toxic to nematode larvae but having no impact on nematode eggs.
    [Show full text]
  • Clinical Appendix for Parasitic Diseases Seventh Edition
    Clincal Appendix for the Seventh Edition Parasitic Diseases Despommier Griffin Gwadz Hotez Knirsch Parasites Without Borders, Inc. NY Dickson D. Despommier, Daniel O. Griffin, Robert W. Gwadz, Peter J. Hotez, Charles A. Knirsch Clinical Appendix for Parasitic Diseases Seventh Edition see full text of Parasitic Diseases Seventh Edition for references Parasites Without Borders, Inc. NY The organization and numbering of the sections of the clinical appendix is based on the full text of the seventh edition of Parasitic Diseases. Dickson D. Despommier, Ph.D. Professor Emeritus of Public Health (Parasitology) and Microbiology, The Joseph L. Mailman School of Public Health, Columbia University in the City of New York 10032, Adjunct Professor, Fordham University Daniel O. Griffin, M.D., Ph.D. CTropMed® ISTM CTH© Department of Medicine-Division of Infectious Diseases, Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center New York, New York, NY 10032, ProHealth Care, Plainview, NY 11803. Robert W. Gwadz, Ph.D. Captain USPHS (ret), Visiting Professor, Collegium Medicum, The Jagiellonian University, Krakow, Poland, Fellow of the Hebrew University of Jerusalem, Fellow of the Ain Shams University, Cairo, Egypt, Chevalier of the Nation, Republic of Mali Peter J. Hotez, M.D., Ph.D., FASTMH, FAAP, Dean, National School of Tropical Medicine, Professor, Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, Texas Children’s Hospital Endowed Chair of Tropical Pediatrics, Co-Director, Texas Children’s Hospital Center for Vaccine Development, Baker Institute Fellow in Disease and Poverty, Rice University, University Professor, Baylor University, former United States Science Envoy Charles A.
    [Show full text]
  • Parasites 1: Trematodes and Cestodes
    Learning Objectives • Be familiar with general prevalence of nematodes and life stages • Know most important soil-borne transmitted nematodes • Know basic attributes of intestinal nematodes and be able to distinguish these nematodes from each other and also from other Lecture 4: Emerging Parasitic types of nematodes • Understand life cycles of nematodes, noting similarities and significant differences Helminths part 2: Intestinal • Know infective stages, various hosts involved in a particular cycle • Be familiar with diagnostic criteria, epidemiology, pathogenicity, Nematodes &treatment • Identify locations in world where certain parasites exist Presented by Matt Tucker, M.S, MSPH • Note common drugs that are used to treat parasites • Describe factors of intestinal nematodes that can make them emerging [email protected] infectious diseases HSC4933 Emerging Infectious Diseases HSC4933. Emerging Infectious Diseases 2 Readings-Nematodes Monsters Inside Me • Ch. 11 (pp. 288-289, 289-90, 295 • Just for fun: • Baylisascariasis (Baylisascaris procyonis, raccoon zoonosis): Background: http://animal.discovery.com/invertebrates/monsters-inside-me/baylisascaris- [box 11.1], 298-99, 299-301, 304 raccoon-roundworm/ Video: http://animal.discovery.com/videos/monsters-inside-me-the-baylisascaris- [box 11.2]) parasite.html Strongyloidiasis (Strongyloides stercoralis, the threadworm): Background: http://animal.discovery.com/invertebrates/monsters-inside-me/strongyloides- • Ch. 14 (p. 365, 367 [table 14.1]) stercoralis-threadworm/ Videos: http://animal.discovery.com/videos/monsters-inside-me-the-threadworm.html http://animal.discovery.com/videos/monsters-inside-me-strongyloides-threadworm.html Angiostrongyliasis (Angiostrongylus cantonensis, the rat lungworm): Background: http://animal.discovery.com/invertebrates/monsters-inside- me/angiostrongyliasis-rat-lungworm/ Video: http://animal.discovery.com/videos/monsters-inside-me-the-rat-lungworm.html HSC4933.
    [Show full text]
  • Guide to the Parasites of Fishes of Canada Part V: Nematoda
    Wilfrid Laurier University Scholars Commons @ Laurier Biology Faculty Publications Biology 2016 ZOOTAXA: Guide to the Parasites of Fishes of Canada Part V: Nematoda Hisao P. Arai Pacific Biological Station John W. Smith Wilfrid Laurier University Follow this and additional works at: https://scholars.wlu.ca/biol_faculty Part of the Biology Commons, and the Marine Biology Commons Recommended Citation Arai, Hisao P., and John W. Smith. Zootaxa: Guide to the Parasites of Fishes of Canada Part V: Nematoda. Magnolia Press, 2016. This Book is brought to you for free and open access by the Biology at Scholars Commons @ Laurier. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. Zootaxa 4185 (1): 001–274 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4185.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:0D054EDD-9CDC-4D16-A8B2-F1EBBDAD6E09 ZOOTAXA 4185 Guide to the Parasites of Fishes of Canada Part V: Nematoda HISAO P. ARAI3, 5 & JOHN W. SMITH4 3Pacific Biological Station, Nanaimo, British Columbia V9R 5K6 4Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5. E-mail: [email protected] 5Deceased Magnolia Press Auckland, New Zealand Accepted by K. DAVIES (Initially edited by M.D.B. BURT & D.F. McALPINE): 5 Apr. 2016; published: 8 Nov. 2016 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 HISAO P. ARAI & JOHN W.
    [Show full text]