A Comprehensive Portrait of Cilia and Ciliopathies from a CRISPR-Based Screen for Hedgehog Signaling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplementary Data
Figure 2S 4 7 A - C 080125 CSCs 080418 CSCs - + IFN-a 48 h + IFN-a 48 h + IFN-a 72 h 6 + IFN-a 72 h 3 5 MRFI 4 2 3 2 1 1 0 0 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 7 B 13 080125 FBS - D 080418 FBS - + IFN-a 48 h 12 + IFN-a 48 h + IFN-a 72 h + IFN-a 72 h 6 080125 FBS 11 10 5 9 8 4 7 6 3 MRFI 5 4 2 3 2 1 1 0 0 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 Molecule Molecule FIGURE 4S FIGURE 5S Panel A Panel B FIGURE 6S A B C D Supplemental Results Table 1S. Modulation by IFN-α of APM in GBM CSC and FBS tumor cell lines. Molecule * Cell line IFN-α‡ HLA β2-m# HLA LMP TAP1 TAP2 class II A A HC§ 2 7 10 080125 CSCs - 1∞ (1) 3 (65) 2 (91) 1 (2) 6 (47) 2 (61) 1 (3) 1 (2) 1 (3) + 2 (81) 11 (80) 13 (99) 1 (3) 8 (88) 4 (91) 1 (2) 1 (3) 2 (68) 080125 FBS - 2 (81) 4 (63) 4 (83) 1 (3) 6 (80) 3 (67) 2 (86) 1 (3) 2 (75) + 2 (99) 14 (90) 7 (97) 5 (75) 7 (100) 6 (98) 2 (90) 1 (4) 3 (87) 080418 CSCs - 2 (51) 1 (1) 1 (3) 2 (47) 2 (83) 2 (54) 1 (4) 1 (2) 1 (3) + 2 (81) 3 (76) 5 (75) 2 (50) 2 (83) 3 (71) 1 (3) 2 (87) 1 (2) 080418 FBS - 1 (3) 3 (70) 2 (88) 1 (4) 3 (87) 2 (76) 1 (3) 1 (3) 1 (2) + 2 (78) 7 (98) 5 (99) 2 (94) 5 (100) 3 (100) 1 (4) 2 (100) 1 (2) 070104 CSCs - 1 (2) 1 (3) 1 (3) 2 (78) 1 (3) 1 (2) 1 (3) 1 (3) 1 (2) + 2 (98) 8 (100) 10 (88) 4 (89) 3 (98) 3 (94) 1 (4) 2 (86) 2 (79) * expression of APM molecules was evaluated by intracellular staining and cytofluorimetric analysis; ‡ cells were treatead or not (+/-) for 72 h with 1000 IU/ml of IFN-α; # β-2 microglobulin; § β-2 microglobulin-free HLA-A heavy chain; ∞ values are indicated as ratio between the mean of fluorescence intensity of cells stained with the selected mAb and that of the negative control; bold values indicate significant MRFI (≥ 2). -
Seq2pathway Vignette
seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl Für
TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Entwicklungsgenetik Functional and regulatory network analysis of Pitx3 in aphakia – a mouse model for microphthalmia and Parkinson's disease Nafees Ahmad Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. S. Scherer Prüfer der Dissertation: 1. apl. Prof. Dr. J. Graw 2. Univ.-Prof. Dr. H. H. D. Meyer Die Dissertation wurde am 29.06.2011 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 29.08.2011 angenommen. In the name of Allah the most merciful and compassionate The most gracious and beneficient Dedicated to my parents Contents Contents ...................................................................................................................................... i List of Tables ............................................................................................................................ iii Abbreviations............................................................................................................................. v Summary ................................................................................................................................... ix Zusammenfassung.................................................................................................................... -
Establishment of the Early Cilia Preassembly Protein Complex
Establishment of the early cilia preassembly protein PNAS PLUS complex during motile ciliogenesis Amjad Horania,1, Alessandro Ustioneb, Tao Huangc, Amy L. Firthd, Jiehong Panc, Sean P. Gunstenc, Jeffrey A. Haspelc, David W. Pistonb, and Steven L. Brodyc aDepartment of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110; bDepartment of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110; cDepartment of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and dDepartment of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033 Edited by Kathryn V. Anderson, Sloan Kettering Institute, New York, NY, and approved December 27, 2017 (received for review September 9, 2017) Motile cilia are characterized by dynein motor units, which preas- function of these proteins is unknown; however, missing dynein semble in the cytoplasm before trafficking into the cilia. Proteins motor complexes in the cilia of mutants and cytoplasmic locali- required for dynein preassembly were discovered by finding human zation (or absence in the cilia proteome) suggest a role in the mutations that result in absent ciliary motors, but little is known preassembly of dynein motor complexes. Studies in C. reinhardtii about their expression, function, or interactions. By monitoring show motor components in the cell body before transport to ciliogenesis in primary airway epithelial cells and MCIDAS-regulated flagella (22–25). However, the expression, interactions, and induced pluripotent stem cells, we uncovered two phases of expres- functions of preassembly proteins, as well as the steps required sion of preassembly proteins. An early phase, composed of HEATR2, for preassembly, are undefined. -
Supplemental Information
Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig. -
Reconstructions of Centriole Formation and Ciliogenesis in Mammalian Lungs
J. Cell Sci. 3, 207-230 (1968) 207 Printed in Great Britain RECONSTRUCTIONS OF CENTRIOLE FORMATION AND CILIOGENESIS IN MAMMALIAN LUNGS S. P. SOROKIN Department of Anatomy, Harvard Medical School, Boston, Massachusetts 02115, U.S.A. SUMMARY This study presents reconstructions of the processes of centriolar formation and ciliogenesis based on evidence found in electron micrographs of tissues and organ cultures obtained chiefly from the lungs of foetal rats. A few observations on living cultures supplement the major findings. In this material, centrioles are generated by two pathways. Those centrioles that are destined to participate in forming the achromatic figure, or to sprout transitory, rudimentary (primary) cilia, arise directly off the walls of pre-existing centrioles. In pulmonary cells of all types this direct pathway operates during interphase. The daughter centrioles are first recognizable as annular structures (procentrioles) which lengthen into cylinders through acropetal deposition of osmiophilic material in the procentriolar walls. Triplet fibres develop in these walls from singlet and doublet fibres that first appear near the procentriolar bases and thereafter extend apically. When little more than half grown, the daughter centrioles are released into the cyto- plasm, where they complete their maturation. A parent centriole usually produces one daughter at a time. Exceptionally, up to 8 have been observed to develop simultaneously about 1 parent centriole. Primary cilia arise from directly produced centrioles in differentiating pulmonary cells of all types throughout the foetal period. In the bronchial epithelium they appear before the time when the ciliated border is generated. Fairly late in foetal life, centrioles destined to become kinetosomes in ciliated cells of the epithelium become assembled from masses of fibrogranular material located in the apical cytoplasm. -
Análise Integrativa De Perfis Transcricionais De Pacientes Com
UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. -
(A) Co-IP of HA Tagged ARMC9 with Flag Tagged Interactors
Supplemental Figures Supplemental Figure 1 Validation of ARMC9 interactome. (A) Co-IP of HA tagged ARMC9 with Flag tagged interactors. HA tagged ARMC9 was transfected alone or in conjunction with Flag tagged interactor constructs, HA beads were used to pull down the bait construct and blots were probed for the presence of the Flag tagged interactors. Experiment was performed in biological triplicates. Full blots are viewable in Plemental Figure 10. (B) Single transfection of PalmMyr-CFP-ARMC9 (green) and (C) single transfection of mRFP-TOGARAM1 (red) shows the localization in the absence of the respective interactor. (D) Co-expression of mRFP-TOGARAM1 and PalmMyr-CFP-ARMC9 shows microtubule colocalization. Scale bar indicates 20 μm. 1 Supplemental Figure 2 In silico modeling of the TOG2 variants. (A) Ribbon model of the wild type TOG2 domain structure of TOGARAM1 generated using HOPE. The protein is colored by the following elements: alpha-helices are show in blue, beta-strand is shown in red, turns are green, 3/10 helix is yellow, and random coil is cyan. (B) p. Arg368Trp missense variant in the TOG2 domain in ribbon-presentation generated using HOPE. TOG2 is shown in grey, the side chain of the mutated residue is shown in magenta. (C) A close up of the side chain of both wild type and mutated residue is shown in green and red respectively. (D) Inverted view of wild type TOG2 domain structure of TOGARAM1 as compared to (a). (E) p.Leu375Pro missense variant modeled in the TOG2 domain of TOGARAM1 in ribbon-presentation. TOG2 is shown in grey, the side chain of the mutated residue is shown in magenta. -
A CRISPR-Based Screen for Hedgehog Signaling Provides Insights Into Ciliary Function and Ciliopathies
ARTICLES https://doi.org/10.1038/s41588-018-0054-7 A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies David K. Breslow 1,2,7*, Sascha Hoogendoorn 3,7, Adam R. Kopp2, David W. Morgens4, Brandon K. Vu2, Margaret C. Kennedy1, Kyuho Han4, Amy Li4, Gaelen T. Hess4, Michael C. Bassik4, James K. Chen 3,5* and Maxence V. Nachury 2,6* Primary cilia organize Hedgehog signaling and shape embryonic development, and their dysregulation is the unifying cause of ciliopathies. We conducted a functional genomic screen for Hedgehog signaling by engineering antibiotic-based selection of Hedgehog-responsive cells and applying genome-wide CRISPR-mediated gene disruption. The screen can robustly identify factors required for ciliary signaling with few false positives or false negatives. Characterization of hit genes uncovered novel components of several ciliary structures, including a protein complex that contains δ -tubulin and ε -tubulin and is required for centriole maintenance. The screen also provides an unbiased tool for classifying ciliopathies and showed that many congenital heart disorders are caused by loss of ciliary signaling. Collectively, our study enables a systematic analysis of ciliary function and of ciliopathies, and also defines a versatile platform for dissecting signaling pathways through CRISPR-based screening. he primary cilium is a surface-exposed microtubule-based approach. Indeed, most studies to date have searched for genes that compartment that serves as an organizing center for diverse either intrinsically affect cell growth or affect sensitivity to applied Tsignaling pathways1–3. Mutations affecting cilia cause ciliopa- perturbations16–23. thies, a group of developmental disorders including Joubert syn- Here, we engineered a Hh-pathway-sensitive reporter to enable drome, Meckel syndrome (MKS), nephronophthisis (NPHP), and an antibiotic-based selection platform. -
Title: Therapeutic Potential of HSP90 Inhibition for Neurofibromatosis Type 2
Author Manuscript Published OnlineFirst on May 28, 2013; DOI: 10.1158/1078-0432.CCR-12-3167 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Title: Therapeutic Potential of HSP90 Inhibition for Neurofibromatosis type 2 Karo Tanaka1, Ascia Eskin3, Fabrice Chareyre1, Walter J. Jessen4, Jan Manent5, Michiko Niwa-Kawakita6, Ruihong Chen7, Cory H. White2, Jeremie Vitte1, Zahara M. Jaffer1, Stanley F. Nelson3, Allan E. Rubenstein8, Marco Giovannini1,9§. Authors’ affiliations: House Research Institute, 1Center for Neural Tumor Research and 2Section on Genetics of Hereditary Ear Disorders, Los Angeles, CA; 3Department of Human Genetics, University of California, Los Angeles, CA; 4Informatics, Covance Inc., Princeton, NJ; 5Peter MacCallum Cancer Institute, Melbourne, Australia; 6Inserm U944, CNRS U7212, Université Paris, Institut Universitaire d'Hématologie, Paris, France; 7NexGenix Pharmaceuticals, Burlingame, CA; and 8New York University Langone Medical Center, New York, NY; and Department of Cell and Neurobiology, University of Southern California, Keck School of Medicine, Los Angeles, CA Running title: HSP90 Inhibition for NF2 Keywords: NF2, HSP90 inhibitors, Transcriptome Financial support: This work was supported by a Drug Discovery Initiative Award, Children’s Tumor Foundation, to M.G., and by the House Research Institute. Corresponding author: Marco Giovannini, House Research Institute, Center for Neural Tumor Research, 2100 West 3rd street, Los Angeles, CA90057. Phone: +1-213-989-6708; Fax: +1-213-989-6778; E-mail: [email protected] 1 Downloaded from clincancerres.aacrjournals.org on September 30, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 28, 2013; DOI: 10.1158/1078-0432.CCR-12-3167 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. -
Fine-Scale Survey of X Chromosome Copy Number Variants and Indels Underlying Intellectual Disability
ARTICLE Fine-Scale Survey of X Chromosome Copy Number Variants and Indels Underlying Intellectual Disability Annabel C. Whibley,1 Vincent Plagnol,1,2 Patrick S. Tarpey,3 Fatima Abidi,4 Tod Fullston,5,6 Maja K. Choma,1 Catherine A. Boucher,1 Lorraine Shepherd,1 Lionel Willatt,7 Georgina Parkin,7 Raffaella Smith,3 P. Andrew Futreal,3 Marie Shaw,8 Jackie Boyle,9 Andrea Licata,4 Cindy Skinner,4 Roger E. Stevenson,4 Gillian Turner,9 Michael Field,9 Anna Hackett,9 Charles E. Schwartz,4 Jozef Gecz,5,6,8 Michael R. Stratton,3 and F. Lucy Raymond1,* Copy number variants and indels in 251 families with evidence of X-linked intellectual disability (XLID) were investigated by array comparative genomic hybridization on a high-density oligonucleotide X chromosome array platform. We identified pathogenic copy number variants in 10% of families, with mutations ranging from 2 kb to 11 Mb in size. The challenge of assessing causality was facilitated by prior knowledge of XLID-associated genes and the ability to test for cosegregation of variants with disease through extended pedigrees. Fine-scale analysis of rare variants in XLID families leads us to propose four additional genes, PTCHD1, WDR13, FAAH2, and GSPT2,as candidates for XLID causation and the identification of further deletions and duplications affecting X chromosome genes but without apparent disease consequences. Breakpoints of pathogenic variants were characterized to provide insight into the underlying mutational mechanisms and indicated a predominance of mitotic rather than meiotic events. By effectively bridging the gap between karyotype-level investigations and X chromosome exon resequencing, this study informs discussion of alternative mutational mechanisms, such as non- coding variants and non-X-linked disease, which might explain the shortfall of mutation yield in the well-characterized International Genetics of Learning Disability (IGOLD) cohort, where currently disease remains unexplained in two-thirds of families.