Reconstructions of Centriole Formation and Ciliogenesis in Mammalian Lungs

Total Page:16

File Type:pdf, Size:1020Kb

Reconstructions of Centriole Formation and Ciliogenesis in Mammalian Lungs J. Cell Sci. 3, 207-230 (1968) 207 Printed in Great Britain RECONSTRUCTIONS OF CENTRIOLE FORMATION AND CILIOGENESIS IN MAMMALIAN LUNGS S. P. SOROKIN Department of Anatomy, Harvard Medical School, Boston, Massachusetts 02115, U.S.A. SUMMARY This study presents reconstructions of the processes of centriolar formation and ciliogenesis based on evidence found in electron micrographs of tissues and organ cultures obtained chiefly from the lungs of foetal rats. A few observations on living cultures supplement the major findings. In this material, centrioles are generated by two pathways. Those centrioles that are destined to participate in forming the achromatic figure, or to sprout transitory, rudimentary (primary) cilia, arise directly off the walls of pre-existing centrioles. In pulmonary cells of all types this direct pathway operates during interphase. The daughter centrioles are first recognizable as annular structures (procentrioles) which lengthen into cylinders through acropetal deposition of osmiophilic material in the procentriolar walls. Triplet fibres develop in these walls from singlet and doublet fibres that first appear near the procentriolar bases and thereafter extend apically. When little more than half grown, the daughter centrioles are released into the cyto- plasm, where they complete their maturation. A parent centriole usually produces one daughter at a time. Exceptionally, up to 8 have been observed to develop simultaneously about 1 parent centriole. Primary cilia arise from directly produced centrioles in differentiating pulmonary cells of all types throughout the foetal period. In the bronchial epithelium they appear before the time when the ciliated border is generated. Fairly late in foetal life, centrioles destined to become kinetosomes in ciliated cells of the epithelium become assembled from masses of fibrogranular material located in the apical cytoplasm. Formation of these centrioles may be under the remote influence of the diplosomal centrioles. More certainly, the precursor material accumulates in close proximity to Golgi elements. Within the fibrogranular areas, osmiophilic granules (400-800 A) increase in size and eventually become consolidated into dense spheroidal bodies (deuterosomes), which organize the growth of procentrioles around them. When mature, the newly formed centrioles become aligned in rows beneath the apical plasma membrane. There each centriole produces satellites from its sides, a root from its base, and a cilium from its apex. Early stages in the formation of both primary cilia and those of the ciliated border are similar. In developing cilia of the ciliated border, however, the outer ciliary fibres rapidly reach the tips of the elongating shafts, and a central pair of fibres is formed (9 + 2 arrangement). In primary cilia, development of the fibres seems to lag behind the elongation of the shafts, and only the outer ciliary fibres appear (9 + 0 arrangement). The strengths and weaknesses of the proposed reconstructions of centriolar formation and ciliogenesis are discussed, and the occurrence in other living forms of similar pathways for centriolar formation is noted. Further discussion leads to an interpretation of the centriole as a semi-autonomous organelle whose replicative capacity is separable from the characteristic triplet fibre structure of its wall. 208 S. P. Sorokin INTRODUCTION During the development of the lung, two distinct types of cilia are formed: rudi- mentary cilia and those of the ciliated border. The rudimentary cilium is the first to appear. It is produced as a solitary appendage by virtually all of the cells present, including those that later develop a ciliated border. The cilium grows out directly from one centriole of the pair that participates in organizing the achromatic figure, and it seems to have only a transitory existence. In being a direct derivative of the achro- matic centrioles and the first cilium to emerge from the cells, the rudimentary cilium may be termed 'primary' and the process of its formation 'primary ciliogenesis'. Beginning at a later stage of pulmonary development, a second and more familiar kind of cilium is produced by those epithelial cells that are destined to possess a ciliated border. Numerous basal bodies (kinetosomes) at first become visible in the cytoplasm of these cells. Then a long, motile cilium grows out from each basal body. This paper reconstructs from electron micrographs the cytological events that are connected with the formation of the basal bodies and the generation of both types of cilia. One of the most interesting problems related to the genesis of a ciliated epithelial border concerns the formation of the basal bodies, which in most higher animals are morphologically identical to the centrioles. Indeed, it has long been widely accepted that centrioles divide to form the basal bodies (Henneguy, 1898; von Lenhossek, 1898; Lwoff, 1950). None the less, some investigators have shown that centrioles (Faure- Fremiet, Rouiller & Gauchery, 1956; Bernhard & de Harven, i960) or basal bodies (Gall, 1961) may arise from a position off the wall of a parent centriole, where they almost certainly are not formed by division of the pre-existing organelle. Others have suspected, in the case of ciliated cells, that the basal bodies are formed de novo in the cytoplasm (Randall et al. 1963; Stockinger & Cirelli, 1965). In this paper it will be shown that centrioles or basal bodies can be produced either directly from a pre- existing centriole or indirectly through a range of precursors that do not resemble centrioles. Furthermore, the results permit one to see that the reproductive capacity of a typical centriole is separable from its characteristic triplet fibre structure. Where this study is concerned with centrioles, however, it is limited to a consideration of the 9-membered cylindrical organelle that performs the centriolar functions in most animal cells. It does not encompass a view of other more unusual centrioles that occur in certain flagellates (Cleveland, 1957), in testicular cells of fungus gnats (Phillips, 1966), and in other subjects of the animal kingdom. The reconstructions presented in this paper are based on study of an extensive series of electron micrographs. There is some reason to remark that the reconstruction of a biological process from a series of stages can express a hypothesis, but that it does not establish its truth. In the cases of centriolar formation and ciliogenesis, however, no more than a superficial understanding of these processes so far has been achieved. Some merit may therefore be found in the reconstructions offered if they are helpful in establishing the conceptual framework that so often precedes the design of subtle and telling experiments. Centriole formation and ciliogenesis 209 MATERIALS AND METHODS The developing lungs of foetal rats were the principal materials used for study. They were examined by light and electron microscopy both as they matured in utero and in organ culture (Sorokin, 1961). The normally developing lungs ranged in age from 14 to 21 days of gestation if the morning when spermatozoa were found in the vagina of the mother rat was designated day 1. Organ cultures were explanted on all days between the 14th and 19th and were cultured for varying periods up to 10 days. In general, the ciliated border first appeared in the epithelium of trachea and primary bronchi during the 20th day of gestation or at a corresponding age in vitro, as judged both by examination of sections and by study of living cultures. Consequently attention was focused on lungs that fell in the 19- to 22-day range. In contrast to the preceding, primary cilia could be observed to undergo formation during the entire period surveyed. In addition to the material from rats, tissues from newly hatched chicks were examined for centrioles and primary cilia. Specimens for microscopy were fixed in barbiturate- or phosphate-buffered osmium tetroxide, as well as in glutaraldehyde plus osmium tetroxide or formaldehyde- glutaraldehyde plus osmium tetroxide (Karnovsky, 1965), and all were embedded in Epon. One-micron sections taken for light microscopy were stained with toluidine blue, while thin sections cut with glass knives for electron microscopy were stained sometimes with lead plumbite or lead citrate and sometimes with uranyl acetate. The grids were examined in RCA microscopes EMU 3 E, 3 F, or 3 G. OBSERVATIONS Primary cilia The primary cilia of mammalian lungs resemble closely the rudimentary, or abortive, cilia that are known to occur in a wide variety of cells present in other organs (Zimmer- mann, 1898; Barnes, 1961; Latta, Maunsbach & Madden, 1961; Sorokin, 1962; Grillo & Palay, 1963; Dahl, 1963; Adams & Hertig, 1964; Schuster, 1964; Motta, 1965; Deane & Wurzelmann, 1965; Wheatley, 1967; Breton-Gorius & Stralin, 1967). In the lung such cilia are produced by virtually all of the cell types present during formation of the lung and its glands. During normal development the cilia are in peak production while cells are actively undergoing differentiation. That is, while most of the cells are sufficiently differentiated to be recognizable as to type—fibroblast, chondrocyte, myocyte, epithelial cell (Fig. 18), or mesothelial cell (Fig. 19)—they retain certain characteristics of immaturity, such as an open chromatin pattern in the nucleus, and the presence of many free ribosomes, of glycogen, or of triglyceride (Sorokin, Padykula & Herman, 1959) in the cytoplasm. Epithelial cells in developing bronchi produce primary cilia some days before they begin to produce a ciliated border, and a single cilium may protrude from an immature goblet cell (Fig. 13). Primary cilia occur occasionally in cells of adult lungs, but they occur far more frequently in developing tissues, where they easily are spotted by electron microscopy in scanning grids of thin sections. Owing to their scarcity in adult tissues, these cilia are considered to have 210 S. P. Sorokin only a transitory existence. The cells of adult lungs that possess such cilia are interpre- ted to be undergoing maturation from an indifferent state, after being released to differentiate into replacements for worn elements of the lung.
Recommended publications
  • Cytoplasmic Organelles
    CYTOPLASMIC ORGANELLES OBJECTIVES: After completing this exercise, you should be able to: 1. Recognize features of the cytoplasm in the light microscope. 2. Identify major cellular organelles in electron micrographs. 3. Provide general functions of cellular organelles. ASSIGNMENT FOR TODAY'S LABORATORY GLASS SLIDES - https://medmicroscope.uc.edu/ SL 181 (spinal cord) rough endoplasmic reticulum SL 108 (pancreas) rough endoplasmic reticulum SL 125 (inflammation) rough endoplasmic reticulum and Golgi apparatus ELECTRON MICROGRAPHS (Gray envelope) EM 3-6, 4-5, 12-1, 16 plasma membrane EM 1-3, 2-1, 2-2, 3-5, 4-1, 10-5, 14-3 rough endoplasmic reticulum EM 4-2, 10-6, 12-3, 13-7, 14-5 smooth endoplasmic reticulum EM 5-2 and 5-inset ribosomes EM 11-1 to 11-4 Golgi apparatus EM 6-10 to 6-13, 2-3 to 2-5 also 3-4, 1-4, 12-2 and 13-6 mitochondria EM 3, 4, 16 and 17 Magnification and Resolution POSTED ELECTRON MICROGRAPHS # 1 Organelles # 6 Organelles Lab 2 Posted EMs SUPPLEMENTAL MATERIAL: SUPPLEMENTARY ELECTRON MICROGRAPHS Rhodin, J. A.G., An Atlas of Histology Plasma membrane Fig. 2-2; 2-3 Rough ER Fig 2-26; 2-29; 2-30; 2-31; 2-32 Smooth ER Fig 2-33; 2-34; 2-35 Ribosomes Fig 2-27; 2-28; 2-30; 2-31; 2-32 Golgi apparatus Fig 2-36; 2-37; 2-38 Mitochondria Fig 2-39; 2-40; 2-41 In the last lab, you were introduced to cells and extracellular matrix, followed by a focus on the nucleus.
    [Show full text]
  • A Tour of the Cell Overview
    Unit 3: The Cell Name______________________ Chapter 6: A Tour of the Cell Overview 6.1 Biologists use microscopes and the tools of biochemistry to study cells The discovery and early study of cells progressed with the invention of microscopes in 1590 and their improvement in the 17th century. In a light microscope (LM), visible light passes through the specimen and then through glass lenses. ○ The lenses refract light so that the image is magnified into the eye or a camera. Microscopes vary in magnification, resolution, and contrast. ○ Magnification is the ratio of an object’s image to its real size. A light microscope can magnify effectively to about 1,000 times the real size of a specimen. ○ Resolution is a measure of image clarity. It is the minimum distance two points can be separated and still be distinguished as two separate points. The minimum resolution of an LM is about 200 nanometers (nm), the size of a small bacterium. ○ Contrast accentuates differences in parts of the sample. It can be improved by staining or labeling of cell components so they stand out. Although an LM can resolve individual cells, it cannot resolve much of the internal anatomy, especially the organelles, membrane-enclosed structures within eukaryotic cells. The size range of cells 1 To resolve smaller structures, scientists use an electron microscope (EM), which focuses a beam of electrons through the specimen or onto its surface. ○ Theoretically, the resolution of a modern EM could reach 0.002 nm, but the practical limit is closer to about 2 nm. Scanning electron microscopes (SEMs) are useful for studying the surface structure or topography of a specimen.
    [Show full text]
  • Protein Export Via the Type III Secretion System of the Bacterial Flagellum
    biomolecules Review Protein Export via the Type III Secretion System of the Bacterial Flagellum Manuel Halte and Marc Erhardt * Institute for Biology–Bacterial Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany; [email protected] * Correspondence: [email protected] Abstract: The bacterial flagellum and the related virulence-associated injectisome system of pathogenic bacteria utilize a type III secretion system (T3SS) to export substrate proteins across the inner membrane in a proton motive force-dependent manner. The T3SS is composed of an export gate (FliPQR/FlhA/FlhB) located in the flagellar basal body and an associated soluble ATPase complex in the cytoplasm (FliHIJ). Here, we summarise recent insights into the structure, assembly and protein secretion mechanisms of the T3SS with a focus on energy transduction and protein transport across the cytoplasmic membrane. Keywords: bacterial flagellum; flagellar assembly; type III protein export; ATPase; proton motive force; secretion model 1. Introduction Flagella are complex rotary nanomachines embedded in the cell envelope of many Citation: Halte, M.; Erhardt, M. bacteria. In addition to functions in adhering to surfaces, flagella allow bacteria to move Protein Export via the Type III in their environment towards nutrients or to escape harmful molecules. They are present Secretion System of the Bacterial in both Gram-negative and Gram-positive bacteria, and are evolutionary related to the Flagellum. Biomolecules 2021, 11, 186. injectisome device, which various Gram-negative bacterial species use to inject effectors into https://doi.org/10.3390/ eukaryotic target cells [1]. Both the flagellum and injectisome are complex nanomachines biom11020186 and made of around 20 different proteins, ranging from a copy number of very few to several thousand [2].
    [Show full text]
  • A Study of Extracellular Space in Central Nervous Tissue by Freeze-Substitution
    A STUDY OF EXTRACELLULAR SPACE IN CENTRAL NERVOUS TISSUE BY FREEZE-SUBSTITUTION A. VAN HARREVELD, M.D., JANE CROWELL, Ph.D., and S. K. MALHOTRA, D.Phil. From the Kerckhoff Laboratories of the Biological Sciences, California Institute of Technology, Pasadena, California ABSTRACT Downloaded from It was attempted to preserve the water distribution in central nervous tissue by rapid freezing followed by substitution fixation at low temperature. The vermis of the cerebellum of white mice was frozen by bringing it into contact with a polished silver mirror maintained at a temperature of about -207C. The tissue was subjected to substitution fixation in acetone containing 2 per cent Os0 4 at -85°C for 2 days, and then prepared for electron micros- copy by embedding in Maraglas, sectioning, and staining with lead citrate or uranyl www.jcb.org acetate and lead. Cerebellum frozen within 30 seconds of circulatory arrest was compared with cerebellum frozen after 8 minutes' asphyxiation. From impedance measurements under these conditions, it could be expected that in the former tissue the electrolyte and water distribution is similar to that in the normal, oxygenated cerebellum, whereas in the on August 22, 2006 asphyxiated tissue a transport of water and electrolytes into the intracellular compartment has taken place. Electron micrographs of tissue frozen shortly after circulatory arrest re- vealed the presence of an appreciable extracellular space between the axons of granular layer cells. Between glia, dendrites, and presynaptic endings the usual narrow clefts and even tight junctions were found. Also the synaptic cleft was of the usual width (250 to 300 A).
    [Show full text]
  • Lysosome Trafficking Is Necessary for EGF-Driven Invasion and Is
    Dykes et al. BMC Cancer (2017) 17:672 DOI 10.1186/s12885-017-3660-3 RESEARCH ARTICLE Open Access Lysosome trafficking is necessary for EGF- driven invasion and is regulated by p38 MAPK and Na+/H+ exchangers Samantha S. Dykes1,2,4, Joshua J. Steffan3* and James A. Cardelli1,2 Abstract Background: Tumor invasion through a basement membrane is one of the earliest steps in metastasis, and growth factors, such as Epidermal Growth Factor (EGF) and Hepatocyte Growth Factor (HGF), stimulate this process in a majority of solid tumors. Basement membrane breakdown is one of the hallmarks of invasion; therefore, tumor cells secrete a variety of proteases to aid in this process, including lysosomal proteases. Previous studies demonstrated that peripheral lysosome distribution coincides with the release of lysosomal cathepsins. Methods: Immunofluorescence microscopy, western blot, and 2D and 3D cell culture techniques were performed to evaluate the effects of EGF on lysosome trafficking and cell motility and invasion. Results: EGF-mediated lysosome trafficking, protease secretion, and invasion is regulated by the activity of p38 mitogen activated protein kinase (MAPK) and sodium hydrogen exchangers (NHEs). Interestingly, EGF stimulates anterograde lysosome trafficking through a different mechanism than previously reported for HGF, suggesting that there are redundant signaling pathways that control lysosome positioning and trafficking in tumor cells. Conclusions: These data suggest that EGF stimulation induces peripheral (anterograde) lysosome trafficking, which is critical for EGF-mediated invasion and protease release, through the activation of p38 MAPK and NHEs. Taken together, this report demonstrates that anterograde lysosome trafficking is necessary for EGF-mediated tumor invasion and begins to characterize the molecular mechanisms required for EGF-stimulated lysosome trafficking.
    [Show full text]
  • Establishment of the Early Cilia Preassembly Protein Complex
    Establishment of the early cilia preassembly protein PNAS PLUS complex during motile ciliogenesis Amjad Horania,1, Alessandro Ustioneb, Tao Huangc, Amy L. Firthd, Jiehong Panc, Sean P. Gunstenc, Jeffrey A. Haspelc, David W. Pistonb, and Steven L. Brodyc aDepartment of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110; bDepartment of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110; cDepartment of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and dDepartment of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033 Edited by Kathryn V. Anderson, Sloan Kettering Institute, New York, NY, and approved December 27, 2017 (received for review September 9, 2017) Motile cilia are characterized by dynein motor units, which preas- function of these proteins is unknown; however, missing dynein semble in the cytoplasm before trafficking into the cilia. Proteins motor complexes in the cilia of mutants and cytoplasmic locali- required for dynein preassembly were discovered by finding human zation (or absence in the cilia proteome) suggest a role in the mutations that result in absent ciliary motors, but little is known preassembly of dynein motor complexes. Studies in C. reinhardtii about their expression, function, or interactions. By monitoring show motor components in the cell body before transport to ciliogenesis in primary airway epithelial cells and MCIDAS-regulated flagella (22–25). However, the expression, interactions, and induced pluripotent stem cells, we uncovered two phases of expres- functions of preassembly proteins, as well as the steps required sion of preassembly proteins. An early phase, composed of HEATR2, for preassembly, are undefined.
    [Show full text]
  • Intracellular Transport in Eukaryotes
    Intracellular transport in eukaryotes Overview Compartmentalization and inner membranes enables eukaryotic cells • to be 1000-10000 times larger than prokaryotes • to isolate specialized chemical processes in specific parts of the cell • to produce “packages” (vesicles) of chemical components that can be shuttled around the cell actively Membrane-enclosed organelles take up ~50% of the volume of eukaryotic cells: • nucleus – genomic function • endoplasmic reticulum – synthesis of lipids; on the border with the cytosol, synthesis of proteins destined for many organelles and the plasma membrane • Golgi apparatus – modification, sorting, and packaging of proteins and lipids for specific intracellular destination (akin to a mail sort facility) • lysosomes – degradation • endosomes – sorting of endocytosed (engulfed) material by the cell • peroxisomes – oxidation of toxic species • mitochondria , chloroplasts – energy conversion Cells contain ͥͤ ͥͦ protein molecules that are constantly being synthesized and 10 Ǝ 10 degraded Proteins are synthesized in the cytosol , but not all proteins remain there and many must be transported to the appropriate compartment For comparison: transport by diffusion Even without active transport requiring free energy transduction, movement of molecules in the cell is rapid by diffusive motion © M. S. Shell 2009 1/11 last modified 10/27/2010 Consider a sea of molecules. Pinpoint one molecule and note its starting position at time 0. Due to thermal motion, the particle on average makes a random jump of length every units ͠ of time. The jump is random in the radial direction. This is called a random walk . Repeat this process for many jumps n and interrogate the final distance of the particle from its starting point ͦ ͠ We could imagine doing many such experiments.
    [Show full text]
  • Membrane Structure in Mammalian Astrocytes: a Review of Freeze-Fracture Studies on Adult, Developing, Reactive and Cultured Astrocytes
    y. exp. Bid. (1981), 95. 35~48 35 JVith 6 figures 'Printed in Great Britain MEMBRANE STRUCTURE IN MAMMALIAN ASTROCYTES: A REVIEW OF FREEZE-FRACTURE STUDIES ON ADULT, DEVELOPING, REACTIVE AND CULTURED ASTROCYTES BY DENNIS M. D. LANDIS Department of Neurology, Massachusetts General Hospital, Boston, MA. 02114 AND THOMAS S. REESE Section on Functional Neuroanatomy, National Institute of Neurological and Communicative Diseases and Stroke, National Institutes of Health, Bethesda, MD. 20014 SUMMARY The application of freeze-fracture techniques to studies of brain structure has led to the recognition of two unsuspected specializations of membrane structure, each distributed in a specific pattern across the surface of astro- cytes. 'Assemblies' (aggregates of uniform, small particles packed in orthogonal array into rectangular or square aggregates) are found to characterize astrocytic plasma membranes apposed to blood vessels or to the cerebrospinal fluid at the surface of the brain. These particle aggregates are much less densely packed in astrocytic processes in brain parenchyma. Assemblies are not fixation artifacts, have been shown to extend to the true outer surface of the membrane, are remarkably labile in the setting of anoxia, and are at least in part protein. The function of assemblies is unknown, but their positioning suggests that they may have a role in the transport of some material into or out of the blood and cerebrospinal fluid compartments. A second specialization of intramembrane particle distri- bution, the polygonal particle junction, links astrocytic processes at the surface of the brain, and also links proximal, large caliber astrocytic processes in brain parenchyma. The function of this membrane specialization also is unknown, but it may subserve a mechanical role.
    [Show full text]
  • Ciliary Dyneins and Dynein Related Ciliopathies
    cells Review Ciliary Dyneins and Dynein Related Ciliopathies Dinu Antony 1,2,3, Han G. Brunner 2,3 and Miriam Schmidts 1,2,3,* 1 Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany; [email protected] 2 Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands; [email protected] 3 Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands * Correspondence: [email protected]; Tel.: +49-761-44391; Fax: +49-761-44710 Abstract: Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel Citation: Antony, D.; Brunner, H.G.; developments in the field.
    [Show full text]
  • Putative Roles of Cilia in Polycystic Kidney Disease☆
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1812 (2011) 1256–1262 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbadis Review Putative roles of cilia in polycystic kidney disease☆ Paul Winyard a, Dagan Jenkins b,⁎ a Nephro-Urology Unit, UCL Institute of Child Health, 30 Guilford St, London, WC1N 1EH, UK b Molecular Medicine Unit, UCL Institute of Child Health, 30 Guilford St, London, WC1N 1EH, UK article info abstract Article history: The last 10 years has witnessed an explosion in research into roles of cilia in cystic renal disease. Cilia are Received 26 November 2010 membrane-enclosed finger-like projections from the cell, usually on the apical surface or facing into a lumen, Received in revised form 18 April 2011 duct or airway. Ten years ago, the major recognised functions related to classical “9+2” cilia in the respiratory Accepted 29 April 2011 and reproductive tracts, where co-ordinated beating clears secretions and assists fertilisation respectively. Available online 8 May 2011 Primary cilia, which have a “9+0” arrangement lacking the central microtubules, were anatomical curiosities but several lines of evidence have implicated them in both true polycystic kidney disease and other cystic Keywords: Cilia renal conditions: ranging from the homology between Caenorhabditis elegans proteins expressed on sensory Development cilia to mammalian polycystic kidney disease (PKD) 1 and 2 proteins, through the discovery that orpk cystic Wnt mice have structurally abnormal cilia to numerous recent studies wherein expression of nearly all cyst- Hedgehog associated proteins has been reported in the cilia or its basal body.
    [Show full text]
  • The Flagellum and Flagellar Pocket of Trypanosomatids
    Molecular & Biochemical Parasitology 115 (2001) 1–17 www.parasitology-online.com. Reviews: Parasite cell Biology: 1 The flagellum and flagellar pocket of trypanosomatids Scott M. Landfear *, Marina Ignatushchenko Department of Molecular Microbiology and Immunology, Oregon Health Sciences Uni6ersity, Portland, OR 97201, USA Received 9 November 2000; received in revised form 26 January 2001; accepted 5 March 2001 Abstract The flagellum and flagellar pocket are distinctive organelles present among all of the trypanosomatid protozoa. Currently, recognized functions for these organelles include generation of motility for the flagellum and dedicated secretory and endocytic activities for the flagellar pocket. The flagellar and flagellar pocket membranes have long been recognized as morphologically separate domains that are component parts of the plasma membrane that surrounds the entire cell. The structural and functional specialization of these two membranes has now been underscored by the identification of multiple proteins that are targeted selectively to each of these domains, and non-membrane proteins have also been identified that are targeted to the internal lumina of these organelles. Investigations on the functions of these organelle-specific proteins should continue to shed light on the unique biological activities of the flagellum and flagellar pocket. In addition, work has begun on identifying signals or modifications of these proteins that direct their targeting to the correct subcellular location. Future endeavors should further refine our knowledge of targeting signals and begin to dissect the molecular machinery involved in transporting and retaining each polypeptide at its designated cellular address. © 2001 Elsevier Science B.V. All rights reserved. Keywords: Trypanosomatid protozoa; Flagellum; Flagellar Pocket; Organelle-specific proteins; Review 1.
    [Show full text]
  • Transient Ciliogenesis Involving Bardet-Biedl Syndrome Proteins Is a Fundamental Characteristic of Adipogenic Differentiation
    Transient ciliogenesis involving Bardet-Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation Vincent Mariona,1, Corinne Stoetzela, Dominique Schlichta, Nadia Messaddeqb, Michael Kochb, Elisabeth Floric, Jean Marc Dansea, Jean-Louis Mandelb,d, and He´ le` ne Dollfusa aLaboratoire Physiopathologie des Syndromes Rares He´re´ ditaires, AVENIR-Inserm, EA3949, Faculte´deMe´ decine de Strasbourg, Universite´Louis Pasteur, 11 rue Humann, 67085 Strasbourg, France; bInstitut de Ge´ne´ tique et de Biologie Mole´culaire et Cellulaire, Inserm U596, CNRS, UMR7104; Universite´Louis Pasteur, Strasbourg, Illkirch, F-67400 France; cService de Cytoge´ne´ tique, Hoˆpitaux Universitaires de Strasbourg, Avenue Molie`re, Strasbourg, France; and dChaire de Ge´ne´ tique Humaine, Colle`ge de France, Illkirch, F-67400 France Communicated by Pierre Chambon, Institut de Ge´ne´ tique et de Biologie Mole´culaire et Cellulaire, Illkirch-Cedex, France, December 10, 2008 (received for review September 4, 2008) Bardet-Biedl syndrome (BBS) is an inherited ciliopathy generally pocytes in a process described as adipogenesis (14). At this cross- associated with severe obesity, but the underlying mechanism road, several pathways antagonize each other: the antiadipogenic remains hypothetical and is generally proposed to be of neuroen- Wnt and Hh pathways are potent inhibitors of adipogenesis, whose docrine origin. In this study, we show that while the proliferating activities need to be repressed before the cells can undergo final preadipocytes or mature adipocytes are nonciliated in culture, a differentiation, whereas the peroxisome proliferator-activated re- typical primary cilium is present in differentiating preadipocytes. ceptor-␥ (PPAR␥) and CCAAT-enhancer-binding proteins (c/ This transient cilium carries receptors for Wnt and Hedgehog EBP␣,-␤) are potent pro-adipogenic factors (15–17).
    [Show full text]