Pu³tusk – Podróże Humboldta – Porowate Chondryty

Total Page:16

File Type:pdf, Size:1020Kb

Pu³tusk – Podróże Humboldta – Porowate Chondryty KWARTALNIK MI£OŒNIKÓW METEORYTÓW METEORYTMETEORYT Nr 2 (50) Czerwiec 2004 ISSN 1642-588X W numerze: – Pu³tusk – podró¿e Humboldta – porowate chondryty – meteoryty w Smithsonian Institution – ping-pong w kosmosie Od redaktora: Meteoryt (ISSN 1642-588X) – biuletyn dla mi³oœników mete- Wszystkie pomys³y uczczenia wydania 50 numeru mia³y jedn¹ orytów wydawany przez Olsz- zasadnicz¹ wadê: wymaga³y wiêcej pracy. Niestety numer ukazuje siê tyñskie Planetarium i Obserwa- w porze najwiêkszego natê¿enia pracy zawodowej obu redaktorów torium Astronomiczne, Muzeum i wydanie normalnego numeru o tej porze roku wymaga du¿ego Miko³aja Kopernika we From- poœwiêcenia. Fajerwerków wiêc nie ma. borku i Pallasite Press – wydaw- Jednym z pomys³ów by³a wiêksza liczba artyku³ów polskich cê kwartalnika Meteorite, z któ- autorów. Pomys³ w zasadzie podoba³ siê paru osobom, do których rego pochodzi wiêksza czêœæ pu- blikowanych materia³ów. zwróci³em siê z tak¹ propozycj¹, ale gdy przysz³o do realizacji, to okaza³o siê, ¿e niemal ka¿dy ma wa¿niejsze obowi¹zki. Paradoksalnie Redaguje Andrzej S. Pilski sporo miejsca polskiemu meteorytowi poœwiêci³ O. Richard Norton. Sk³ad: Jacek Dr¹¿kowski S¹ wiêc w numerze dwa polskie meteoryty i to w kolorze. Druk: Jan, Lidzbark Warm. Chcia³bym zwróciæ uwagê na relacjê z Muzeum Przyrodniczego Adres redakcji: w Bernie, w Szwajcarii. Wytworzy³o siê ostatnio przeœwiadczenie, ¿e skr. poczt. 6 zinstytucjonalizowane poszukiwania meteorytów s¹ nieskuteczne 14-530 Frombork i nowe meteoryty odnajduje siê jedynie dziêki prywatnym tel. (0-55) 243-7218 w. 23 poszukiwaczom. Przyk³ad Muzeum z Berna pokazuje, ¿e mo¿e byæ e-mail: [email protected] inaczej. Kolejny raz przekonujemy siê, ¿e nie jest wa¿na forma lecz Biuletyn wydawany jest kwartal- treœæ. W ka¿dych warunkach organizacyjnych mo¿na dzia³aæ dobrze nie i dostêpny g³ównie w prenu- lub Ÿle. meracie. Roczna prenumerata Ze wzglêdów formalno-prawnych znikn¹³ na pewien czas wynosi w 2004 roku 32 z³. Zain- internetowy katalog meteorytów w zbiorach polskich. Ostatnio jego teresowanych prosimy o wp³ace- twórcy powiadomili, ¿e katalog ju¿ zaczyna dzia³aæ, ale trzeba go nie tej kwoty na konto Olsztyñ- szukaæ pod nowym adresem: http://meteoryty.sarrus-net.com lub po skiego Planetarium i Obserwato- rium Astronomicznego nr: prostu klikn¹æ na winietkê katalogu na stronie Polskiego Serwisu 88 1540 1072 2001 5000 3724 0002 Meteorytów. w BOŒ SA O/Olsztyn, Sytuacja ta uprzytomni³a fakt, ¿e katalog internetowy jest zaznaczaj¹c cel wp³aty i podaj¹c wprawdzie bardzo wygodny i ³atwy do aktualizowania, ale mo¿e czytelny adres. równie ³atwo znikn¹æ. Trzeba wiêc bêdzie chyba pomyœleæ o nowym Wczeœniejsze roczniki powielane wydaniu katalogu w formie ksi¹¿kowej tym bardziej, ¿e ostatnie s¹ na zamówienie za op³at¹ równ¹ wydanie powoli siê wyczerpuje. wysokoœci aktualnej prenumeraty. Andrzej S. Pilski Zapraszamy na strone, 200 lat figur Thomsona Polskiego Serwisu Meteorytowego: jba1.republika.pl Subscribe to METEORITE Pallasite Press P.O. Box 33-1218 Takapuna, Auckland NEW ZEALAND 4 issues per year $US30 (2nd class airmail) VISA & MasterCard accepted www.meteor.co.nz Canyon Diablo. Kolekcja Martina Altmanna. str. 2 METEORYT 2/2004 Pu³tusk i inne kawa³ki gruzu z planetoidy 6 Hebe Andrzej S. Pilski a aukcjach internetowych po- ale przewa¿nie nie s¹ one przeciête jawiaj¹ siê od czasu do czasu i niewiele jest okazji do zobaczenia ich Nfragmenty meteorytu Pu³tusk. struktury. Mimo to uda³o mi siê zoba- Ogl¹daj¹c je mo¿na odnieœæ wra¿enie, czyæ okazy o jednolitej budowie, ze s³a- ¿e pochodz¹ z zupe³nie ró¿nych mete- bo widocznymi chondrami, ¿y³kowa- orytów. Szczególnie p³ytki, które doœæ ne lub nie, takie w³aœnie, jakich regularnie oferuje Michael Farmer, fragmenty oferuje Farmer. Jego okazy przypominaj¹ wygl¹dem bardziej frag- pochodz¹ jednak z Naturhistorisches menty El Hammami ni¿ okaz, który Museum w Wiedniu. Widzia³em te¿ opisuje w tym numerze dr Jacek Sie- okazy zbrekcjowane z okruchami sza- Fot. 2. Zbrekcjowana p³ytka Pu³tuska z kolek- mi¹tkowski. Jak w³aœciwie powinien rymi i ¿ó³tawymi, przy czym ¿ó³tawe cji autora, z której wykonano szlif opisany przez wygl¹daæ ten meteoryt? zabarwienie wyraŸnie nie by³o wyni- dr Siemi¹tkowskiego. Wymiary 30×19 mm kiem wietrzenia. Napotka³em te¿ oka- stopniem zwietrzenia. Wymieni³em tyl- zy z doœæ grubymi ¿y³kami, a nawet ko najpopularniejsze, ale lista podob- natrafi³em w zbiorach Muzeum Wy- nych meteorytów jest d³uga. Wydaje siê dzia³u Geologii UW na ma³y okaz coraz bardziej prawdopodobne, ¿e Pu³tuska bêd¹cy w ca³oœci stopem po- wszystkie one pochodz¹ z jednej ma³ej zderzeniowym. Ciemna materia bez wi- planety. docznej struktury i bez œladu chondr, Fot. 3. (ok³adka) Piêtka Pu³tuska o brekcjowej jedynie z ziarenkami metalu, która zwy- budowie. U góry jasna ¿y³ka metalu. Na pozo- kle tworzy ¿y³ki, tutaj tworzy³a ca³y sta³ej czêœci przekroju metal jest ciemny. Wymiary Fot. 1. Fragment Pu³tuska o jednorodnej bu- meteoryt. Meteoryty pu³tuskie mog¹ 41×25 mm. dowie oferowany przez Farmera. Wymiary wiêc wygl¹daæ bardzo ró¿nie. Zdaniem naukowców najlepsz¹ 20×16 mm. Kolekcja Dariusza Tuzinowskiego. Statystyka wskazuje, ¿e co trzeci kandydatk¹ na macierzyst¹ planetkê Pytanie wydawa³oby siê retorycz- spadaj¹cy na Ziemiê meteoryt wygl¹- Pu³tuska jest planetoida 6 Hebe. Kr¹¿y ne. Pu³tusk jest brekcj¹ regolitow¹ da tak samo, jak Pu³tusk. Istotnie bar- ona wokó³ S³oñca w wewnêtrznej czê- zaliczan¹ do typu H5 wiêc powinien za- dzo podobne do meteorytów pu³tuskich œci pasa planetoid po lekko eliptycznej wieraæ doœæ du¿o ziaren metalu i niezbyt s¹ okazy z deszczów meteorytowych orbicie wchodz¹cej w obszar rezonan- du¿o chondr oraz powinien sk³adaæ siê Jilin, Juancheng, czy Zag, a tak¿e Gao- su 3:1 z Jowiszem i usytuowanej bar- ν z okruchów. Problem polega na tym, ¿e Guenie. Ten ostatni odró¿nia siê tylko dzo blisko rezonansu wiekowego 6. Jak te okruchy mog¹ byæ du¿e, a wiêkszoœæ prze- krojów Pu³tuska, jakie mo¿na zobaczyæ, jest ma³a. Nawet w przypad- ku okazu z Muzeum Mi- neralogicznego UJ w Krakowie nie ma pewno- œci, czy jest to fragment litej ska³y, na której osia- da³ gruz, czy te¿ frag- ment wyj¹tkowo du¿ego okruchu z gruzowiska. W chondrycie H5 Pla- inview zdarzaj¹ siê okru- chy o rozmiarach kilku- nastu centymetrów. W polskich zbio- rach zachowa³o siê doœæ Fot. 4. P³ytka Portales Valley. Przestrzeñ miêdzy okruchami wype³nia metal (na zdjêciu ciemny). Wymiary 62 x 43 du¿o okazów Pu³tuska, mm. Kolekcja Kazimierza Mazurka. METEORYT str. 3 wyliczono, wystarczy aby po zderze- niu od³amki uzyska³y prêdkoœæ 280 m/s i ju¿ wchodz¹ w obszar rezonansu, sk¹d po nieca³ym milionie lat trafiaj¹ na orbitê przecinaj¹c¹ orbitê Ziemi. Oceniono, ¿e od³amki ska³ z tej plane- toidy mog¹ stanowiæ nawet 10% stru- mienia meteoroidów zmierzaj¹cych ku Ziemi, wiêc 6 Hebe mo¿e byæ Ÿród³em jednej z wiêkszych grup chondrytów zwyczajnych. Dlaczego w³aœnie chondrytów zwyczajnych? Ten typ meteorytów sprawia najwiêcej k³opotu, gdy chce- my odnaleŸæ jego macierzyste plane- toidy. Istnieje spora grupa planetoid typu S, ale ich widmo odbiciowe ró¿- ni siê doœæ wyraŸnie od widma chon- Fot. 5. P³ytka chondrytu H5 Juancheng: scementowany gruz z powierzchni 6 Hebe. Wymiary drytów zwyczajnych. Z jednej strony 52×32 mm. Kolekcja autora. mamy wiêc du¿¹ grupê meteorytów, których widmo odbiciowe nie pasuje z czego wyci¹gniêto wniosek, ¿e ma krzepniêcia chondrytowej ska³y w wy- do ¿adnej planetoidy, a z drugiej spor¹ ona doœæ jednorodn¹ budowê, a wiêc niku uderzenia fragmentu innej plane- grupê planetoid, których widma nie najprawdopodobniej nie uleg³a dyferen- toidy. Jednym z mocnych argumentów pasuj¹ do ¿adnych meteorytów. Dopie- cjacji. Dla porównania widmo zdyfe- za takim pochodzeniem meteorytów ro niedawno obserwacje Erosa z bli- rencjowanej Westy zmienia siê doœæ ¿elaznych IIE jest ich wiek, m³odszy ska pokaza³y, ¿e jedn¹ z przyczyn tych znacznie w trakcie jej wirowania, po- od wiêkszoœci meteorytów ¿elaznych. rozbie¿noœci jest tak zwane wietrze- niewa¿ na dnie g³êbokich kraterów wi- Meteoryty IIE powstawa³y jeszcze wte- nie kosmiczne. Widmo odbiciowe daæ ska³y z g³êbszych warstw o odmien- dy, gdy na ma³ych planetach zakoñczy³a z okolicy œwie¿o utworzonych krate- nym sk³adzie. siê aktywnoœæ magmowa, a ich ¿elazne rów znacznie lepiej pasuje do widma Sk³ad chemiczny krzemianów na j¹dra zakrzep³y. chondrytów zwyczajnych ni¿ œrednie powierzchni 6 Hebe odpowiada krze- Mo¿emy wiêc sobie wyobraziæ, ¿e widmo planetoidy typu S. mianom z chondrytów H. Problemem uderzenia skalnych fragmentów w po- Planetoida 6 Hebe jest zaliczana do jest jednak wysoka zdolnoœæ odbijania wierzchniê 6 Hebe powoduj¹ powsta- typu S, ale jest nietypowa pod tym w³a- œwiat³a, wiêksza ni¿ w przypadku chon- wanie ma³ych i wiêkszych kraterków, œnie wzglêdem, ¿e jej widmo jest bar- drytów H. Œwiat³o odbija siê tak, jakby przy czym energia zderzenia powodu- dziej zbli¿one do widma chondrytów znaczna czêœæ powierzchni tej planeto- je stopienie ska³y i zebranie siê p³ynne- zwyczajnych ni¿ widmo przeciêtnej idy by³a obita blach¹. Z ró¿nych mode- go metalu na dnie krateru. Tworz¹ siê planetoidy tego typu. Ma ona œrednicê li budowy powierzchni tej planetoidy w ten sposób mniejsze i wiêksze blasz- 185 km i obraca siê z okresem 7,274 najlepsz¹ zgodnoœæ z obserwacjami ki o ró¿nej gruboœci. Kolejne zderze- godziny. Podczas wirowania jej jasnoœæ da³o po³¹czenie 60% gruboziarnistej nia rozbijaj¹ pokrywaj¹c¹ je warstwê i kszta³t widma niewiele siê zmienia, mieszaniny materii chondrytu H z 40% krzemianów, a wstrz¹sy regolitu wywo- metalicznego ¿elaza niklonoœnego. ³ane uderzeniami powoduj¹, ¿e te blasz- Niedu¿e blaszki metalu nie s¹ ki wêdruj¹ stopniowo ku powierzchni.
Recommended publications
  • Martin Horejsi Jim’S Fragments by Jim Tobin Bob’S Findings by Robert Verish Micro Visions by John Kashuba Mitch’S Universe by Mitch Noda
    Meteorite Times Magazine Contents Paul Harris Featured Articles Accretion Desk by Martin Horejsi Jim’s Fragments by Jim Tobin Bob’s Findings by Robert Verish Micro Visions by John Kashuba Mitch’s Universe by Mitch Noda Terms Of Use Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service. © Copyright 2002–2021 The Meteorite Exchange, Inc. All rights reserved. No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner. Meteorite Times Magazine Ogi Japan: Meteorite Worship Then and Now Martin Horejsi Way back in 2003, in this very meteorite forum, I wrote: If only all meteorites could be as rich in tradition as the Ogi meteorite.
    [Show full text]
  • Curt Teich Postcard Archives Towns and Cities
    Curt Teich Postcard Archives Towns and Cities Alaska Aialik Bay Alaska Highway Alcan Highway Anchorage Arctic Auk Lake Cape Prince of Wales Castle Rock Chilkoot Pass Columbia Glacier Cook Inlet Copper River Cordova Curry Dawson Denali Denali National Park Eagle Fairbanks Five Finger Rapids Gastineau Channel Glacier Bay Glenn Highway Haines Harding Gateway Homer Hoonah Hurricane Gulch Inland Passage Inside Passage Isabel Pass Juneau Katmai National Monument Kenai Kenai Lake Kenai Peninsula Kenai River Kechikan Ketchikan Creek Kodiak Kodiak Island Kotzebue Lake Atlin Lake Bennett Latouche Lynn Canal Matanuska Valley McKinley Park Mendenhall Glacier Miles Canyon Montgomery Mount Blackburn Mount Dewey Mount McKinley Mount McKinley Park Mount O’Neal Mount Sanford Muir Glacier Nome North Slope Noyes Island Nushagak Opelika Palmer Petersburg Pribilof Island Resurrection Bay Richardson Highway Rocy Point St. Michael Sawtooth Mountain Sentinal Island Seward Sitka Sitka National Park Skagway Southeastern Alaska Stikine Rier Sulzer Summit Swift Current Taku Glacier Taku Inlet Taku Lodge Tanana Tanana River Tok Tunnel Mountain Valdez White Pass Whitehorse Wrangell Wrangell Narrow Yukon Yukon River General Views—no specific location Alabama Albany Albertville Alexander City Andalusia Anniston Ashford Athens Attalla Auburn Batesville Bessemer Birmingham Blue Lake Blue Springs Boaz Bobler’s Creek Boyles Brewton Bridgeport Camden Camp Hill Camp Rucker Carbon Hill Castleberry Centerville Centre Chapman Chattahoochee Valley Cheaha State Park Choctaw County
    [Show full text]
  • Petrography, Mineralogy, and Geochemistry of Lunar Meteorite Sayh Al Uhaymir 300
    Meteoritics & Planetary Science 43, Nr 8, 1363–1381 (2008) Abstract available online at http://meteoritics.org Petrography, mineralogy, and geochemistry of lunar meteorite Sayh al Uhaymir 300 Weibiao HSU1*, Aicheng ZHANG1, Rainer BARTOSCHEWITZ2 , Yunbin GUAN3, Takayuki USHIKUBO3, Urs KRÄHENBÜHL4, Rainer NIEDERGESAESS5, Rudolf PEPELNIK5, Ulrich REUS5, Thomas KURTZ6, and Paul KURTZ6 1Laboratory for Astrochemistry and Planetary Sciences, Lunar and Planetary Science Center, Purple Mountain Observatory, 2 West Beijing Road, Nanjing, 210008, China 2Bartoschewitz Meteorite Lab, Lehmweg 53, D-38518 Gifhorn, Germany 3Department of Geological Sciences, Arizona State University, Tempe, Arizona 85287, USA 4Abteilung für Chemie und Biochemie, Universität Bern, Freiestr. 3, CH-3012 Bern, Switzerland 5GKSS Forschungszentrum GmbH, Institut für Küstenforschung, Max-Planck-Strasse, D-21502 Geesthacht, Germany 6Henckellweg 25, D-30459 Hannover, Germany *Corresponding author. E-mail: [email protected] (Received 24 May 2007; revision accepted 19 March 2008) Abstract–We report here the petrography, mineralogy, and geochemistry of lunar meteorite Sayh al Uhaymir 300 (SaU 300). SaU 300 is dominated by a fine-grained crystalline matrix surrounding mineral fragments (plagioclase, pyroxene, olivine, and ilmenite) and lithic clasts (mainly feldspathic to noritic). Mare basalt and KREEPy rocks are absent. Glass melt veins and impact melts are present, indicating that the rock has been subjected to a second impact event. FeNi metal and troilite grains were observed in the matrix. Major element concentrations of SaU 300 (Al2O3 21.6 wt% and FeO 8.16 wt%) are very similar to those of two basalt-bearing feldspathic regolith breccias: Calcalong Creek and Yamato (Y-) 983885. However, the rare earth element (REE) abundances and pattern of SaU 300 resemble the patterns of feldspathic highlands meteorites (e.g., Queen Alexandra Range (QUE) 93069 and Dar al Gani (DaG) 400), and the average lunar highlands crust.
    [Show full text]
  • 1950 Da, 205, 269 1979 Va, 230 1991 Ry16, 183 1992 Kd, 61 1992
    Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H. Burbine Index More Information 356 Index 1950 DA, 205, 269 single scattering, 142, 143, 144, 145 1979 VA, 230 visual Bond, 7 1991 RY16, 183 visual geometric, 7, 27, 28, 163, 185, 189, 190, 1992 KD, 61 191, 192, 192, 253 1992 QB1, 233, 234 Alexandra, 59 1993 FW, 234 altitude, 49 1994 JR1, 239, 275 Alvarez, Luis, 258 1999 JU3, 61 Alvarez, Walter, 258 1999 RL95, 183 amino acid, 81 1999 RQ36, 61 ammonia, 223, 301 2000 DP107, 274, 304 amoeboid olivine aggregate, 83 2000 GD65, 205 Amor, 251 2001 QR322, 232 Amor group, 251 2003 EH1, 107 Anacostia, 179 2007 PA8, 207 Anand, Viswanathan, 62 2008 TC3, 264, 265 Angelina, 175 2010 JL88, 205 angrite, 87, 101, 110, 126, 168 2010 TK7, 231 Annefrank, 274, 275, 289 2011 QF99, 232 Antarctic Search for Meteorites (ANSMET), 71 2012 DA14, 108 Antarctica, 69–71 2012 VP113, 233, 244 aphelion, 30, 251 2013 TX68, 64 APL, 275, 292 2014 AA, 264, 265 Apohele group, 251 2014 RC, 205 Apollo, 179, 180, 251 Apollo group, 230, 251 absorption band, 135–6, 137–40, 145–50, Apollo mission, 129, 262, 299 163, 184 Apophis, 20, 269, 270 acapulcoite/ lodranite, 87, 90, 103, 110, 168, 285 Aquitania, 179 Achilles, 232 Arecibo Observatory, 206 achondrite, 84, 86, 116, 187 Aristarchus, 29 primitive, 84, 86, 103–4, 287 Asporina, 177 Adamcarolla, 62 asteroid chronology function, 262 Adeona family, 198 Asteroid Zoo, 54 Aeternitas, 177 Astraea, 53 Agnia family, 170, 198 Astronautica, 61 AKARI satellite, 192 Aten, 251 alabandite, 76, 101 Aten group, 251 Alauda family, 198 Atira, 251 albedo, 7, 21, 27, 185–6 Atira group, 251 Bond, 7, 8, 9, 28, 189 atmosphere, 1, 3, 8, 43, 66, 68, 265 geometric, 7 A- type, 163, 165, 167, 169, 170, 177–8, 192 356 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H.
    [Show full text]
  • THE REGOLITH PORTION of the LUNAR METEORITE SAYH AL UHAYMIR 169 A. Al-Kathiri1, 2, E. Gnos1 and B. A. Hofmann3 1Institut Für Ge
    69th Annual Meteoritical Society Meeting (2006) 5098.pdf THE REGOLITH PORTION OF THE LUNAR METEORITE SAYH AL UHAYMIR 169 A. Al-Kathiri1, 2, E. Gnos1 and B. A. Hofmann3 1Institut für Geologie, Universität Bern, Baltzerstrasse 1, CH- 3012 Bern, Switzerland 2Directorate General of Commerce and Industry, Ministry of Commerce and Industry, Salalah, Sultanate of Oman. 3Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, CH-3005 Bern, Switzerland. Introduction: SaU 169 is a complete, light gray- greenish stone (70 x 43 x 40 mm) with a mass of 206.45 g found in the Sultanate of Oman in January 2002. The rock consists of two contrasting lithologies. Approximately 87 vol% consists of a holocrystalline, fine-grained poikilitic polymict KREEP-rich im- pact melt breccia, the other 13 vol% are shock-lithified regolith [1]. Discussion: The regolith shows two formation stages and contains the following clasts: Ti-poor to Ti-rich basalts, gab- bros to granulites, and regolith breccias. The younger regolith additionally contains a highland gabbronorite clast with anorthite (An96-97), forsteritic (Fo85) and fayalitic (Fo12) mineral clasts, and impact melt glass shards. The average regolith bulk chemical composition and its REE content lie between the soil and regolith breccias of Apollo 12 and 14 , with more affinity with Apollo 14 [2,3,4]. The largest KREEP breccia clast in the regolith is identi- cal in its chemical composition and total REE content to the ITE- rich high-K KREEP rocks of the Apollo 14 landing site, pointing to a similar source. The regolith shows characteristic lunar ratios of Fe/Mn (74-80) and K/U (535-1682).
    [Show full text]
  • Lev A. Muravyev , Viktor I. Grokhovsky
    The Chrono List of Bad Meteorites Harmful № Date Name Place Type Fall Description Source 1Ural Federal University, specimen 1,2 Lombardia, Doubtful 2 1 04.09.1511 Crema shwr several killed birds, sheep, and a man (dbt) [3, 7] Lev A. Muravyev , Institute of Geophysics Ural Branch of RAS, Italy meteorite Doubtful 2 04.09.1654 Milan Italy {?} - killed a monk (dbt) [3, 7] 1 Ekaterinburg, Russia; meteorite Aquitaine, crushed cottage, killed farmer and Viktor I. Grokhovsky 3 24.07.1790 Barbotan H5 shwr - [1, 10] [email protected], [email protected] France some cattle (dbt) Uttar Pradesh, [7, 9, Abstract. The problem of the asteroid-comet hazard is now being 4 19.12.1798 Benares (a) LL4 shwr 0,9 kg building India 10] actively discussed, because the consequences of the fall of large cosmic Bayern, 5 13.12.1803 Mässing Howardite U - building struck [1, 10] bodies on the earth can be catastrophic and affect the survival of Germany humanity and all living things. Fragments of smaller celestial bodies - Moscow, 6 05.09.1812 Borodino H5 U 0,5 kg observed by a soldier on guard [7] meteorites, fall to the earth much more often, and they can also emanate Russia a certain danger. In several papers that were published about 20 years Rajasthan, Doubtful killed a men and injured a women 7 16.01.1825 Oriang {?} - [3, 7] ago, attempts were made to compile a list of events related to the India meteorite (dbt) Uttar Pradesh, [3, 7, 9, damage caused by meteorites falling from the sky.
    [Show full text]
  • Parauapebas Meteorite from Pará, Brazil, a “Hammer” Breccia Chondrite
    SILEIR RA A D B E E G D E A O D L E O I G C I A O ARTICLE BJGEO S https://doi.org/10.1590/2317-4889202020190085 Brazilian Journal of Geology D ESDE 1946 Parauapebas meteorite from Pará, Brazil, a “hammer” breccia chondrite Daniel Atencio1* , Dorília Cunha1 , André Luiz Ribeiro Moutinho2 , Maria Elizabeth Zucolotto3 , Amanda Araujo Tosi3 , Caio Vidaurre Nassif Villaça3 Abstract The Parauapebas meteorite, third official meteorite discovered in the Brazilian Amazon region, is a “hammer meteorite” which fell on De- cember 9th, 2013, in the city of Parauapebas, Pará State, Brazil. Mineralogy is dominated by forsterite, enstatite, iron, troilite, and tetrataenite. Albite, chromite, diopside, augite, pigeonite, taenite, and merrillite are minor components. Two main clasts are separated by black shock-in- duced melt veins. One clast exhibits an abundance of chondrules with well-defined margins set on a recrystallized matrix composed mostly of forsterite and enstatite, consistent with petrologic type 4 chondrites. The other clast displays chondrules with outlines blurring into the groundmass as evidence of increasing recrystallization, consistent with petrologic type 5 chondrites. The clasts of petrologic type 4 have a fine-grained texture compared to those of type 5. It is a genomict breccia (indicated by shock melt veins) with the clasts and matrix of the same compositional group, but different petrologic types, H4 and H5. The melted outer crust of the Parauapebas meteorite is comprised of forsterite with interstitial dendritic iron oxide, and is rich in irregular vesicles, which are evidence of the rapid formation of the crust. The type specimen is deposited in the Museum of Geosciences of the University of São Paulo, Brazil.
    [Show full text]
  • Wetumptka Impact Crater
    DISCOVERINGAlabama Teacher’s Guide Suggested Curriculum Areas Wetumpka Impact Crater Science Geography Synopsis Social Studies labama bears the scar of an ancient terrible event, the fall Aof a giant meteorite near Wetumpka. Because this happened so long ago — near the end of the Age of Dinosaurs —scientists Suggested Grade Levels were slow to recognize the eroded four-mile wide crater, or as- 4 –12 trobleme, in Elmore County, northeast of Montgomery. Discov- ering Alabama visits this interesting spot, talks to the geologists who discovered it, and interviews scientists who have been study- Key Concepts ing it. Scientific Hypothesis Update: At the time of this video production, featured scien- & Verification tists were studying geologic samples from the astrobleme, search- ing for microscopic evidence of “shocked quartz,” uniquely frac- Catastrophic Events tured quartz grains that would confirm the meteoric origins of the crater. No other known earthly process, not even volcanos, can shatter the hard grains of quartz present in most rocks. After Key Skills this video was produced, the scientists found shocked quartz col- Map Reading lected in the drill cores from the bottom of the astrobleme — proof positive that the Wetumpka Crater was the result of the impact of a large meteorite. Discovering Alabama is a production of the Alabama Museum of Natural History in cooperation with Alabama Public Television. For a complete list of titles in the Discovering Alabama series, as well as for information about ordering videos and accompanying Teacher’s Guides, contact us at either: Discovering Alabama, Box 870340, Tuscaloosa AL 35487–0340; phone: 205–348–2036; fax: 205–348–4219; or email: [email protected].
    [Show full text]
  • Meteors and Meteorites Lithograph
    National Aeronautics and Space Administration Meteors and Meteorites www.nasa.gov “Shooting stars,” or meteors, are bits of interplanetary material Meteorites may resemble Earth rocks, but they usually have a SIGNIFICANT DATES falling through Earth’s atmosphere and heated to incandescence “burned” exterior. This fusion crust is formed as the meteorite 4.55 billion years ago — Formation age of most meteorites, by friction. These objects are called meteoroids as they are hur- is melted by friction as it passes through the atmosphere. There taken to be the age of the solar system. tling through space, becoming meteors for the few seconds they are three major types of meteorites: the “irons,” the “stones,” 65 million years ago — Chicxulub impact leads to the death of streak across the sky and create glowing trails. and the “stony-irons.” Although the majority of meteorites that 75 percent of the animals on Earth, including the dinosaurs. fall to Earth are stony, more of the meteorites that are discovered Several meteors per hour can usually be seen on any given 50,000 years — Age of Barringer Meteorite Crater in Arizona. long after they fall are “irons” — these heavy objects are easier night. Sometimes the number increases dramatically — these 1478 BCE — First recorded observation of meteors. to distinguish from Earth rocks than stony meteorites. Meteorites events are termed meteor showers. Some occur annually or at 1794 — Ernst Friedrich Chladni publishes the first book on also fall on other solar system bodies. Mars Exploration Rover regular intervals as the Earth passes through the trail of dusty meteorites, in which he proposes that they have an extra- Opportunity found the first meteorite of any type on another debris left by a comet.
    [Show full text]
  • The Chlorine Isotope Composition of Martian Meteorites 2. Implications for the Early Solar System and the Formation of Mars
    Meteoritics & Planetary Science 1–16 (2016) doi: 10.1111/maps.12591 The chlorine isotope composition of Martian meteorites 2. Implications for the early solar system and the formation of Mars Zachary SHARP1,2,*, Jeffrey WILLIAMS1, Charles SHEARER3, Carl AGEE3, and Kevin McKEEGAN4 1Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131–0001, USA 2Center for Stable Isotopes, University of New Mexico, Albuquerque, New Mexico 87131–0001, USA 3Institute of Meteoritics, University of New Mexico, Albuquerque, New Mexico 87131–0001, USA 4Earth and Space Sciences, University of California, Los Angeles, California 90095–1567, USA *Corresponding author. E-mail: [email protected] (Received 15 July 2015; revision accepted 29 October 2015) Abstract–We determined the chlorine isotope composition of 16 Martian meteorites using gas source mass spectrometry on bulk samples and in situ secondary ion microprobe analysis on apatite grains. Measured d37Cl values range from À3.8 to +8.6&. The olivine- phyric shergottites are the isotopically lightest samples, with d37Cl mostly ranging from À4 to À2&. Samples with evidence for a crustal component have positive d37Cl values, with an extreme value of 8.6&. Most of the basaltic shergottites have intermediate d37Cl values of À1to0&, except for Shergotty, which is similar to the olivine-phyric shergottites. We interpret these data as due to mixing of a two-component system. The first component is the mantle value of À4toÀ3&. This most likely represents the original bulk Martian Cl isotope value. The other endmember is a 37Cl-enriched crustal component. We speculate that preferential loss of 35Cl to space has resulted in a high d37Cl value for the Martian surface, similar to what is seen in other volatile systems.
    [Show full text]
  • Kleines Lehrbuch Der Astronomie Und Astrophysik Band 9
    Kleines Lehrbuch der Astronomie und Astrophysik M. Scholz Band 9: Meteore und Meteorite Meteoroide, Meteorite und Meteorströme, Interplanetare Materie Kleines Lehrbuch der Astronomie und Astrophysik Band 9 M. Scholz Kleines Lehrbuch der Astronomie und Astrophysik Band 9: Meteore und Meteorite Meteoroide, Meteorite und Meteorströme, Interplanetare Materie E-Book-Ausgabe 2009 Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Autors unzulässig. Bildnachweis: Wikipedia Commons, NASA, ESA, Autor M.Scholz Kleines Lehrbuch der Astronomie und Astrophysik Band 9 Meteore und Meteorite Meteoroide, Meteorite und Meteorströme, Interplanetare Materie Ausgabe 2009 [email protected] INHALTSVERZEICHNIS METEOROIDE, METEORITE UND METEORSTRÖME .......................................................................... 2 METEORE ......................................................................................................................................................... 3 Meteorbeobachtung ........................................................................................................................................................ 5 Meteorströme ............................................................................................................................................................. 10 Feuerkugeln und Meteoritenfälle ...............................................................................................................................
    [Show full text]
  • The Regolith Portion of the Lunar Meteorite Sayh Al Uhaymir 169
    Meteoritics & Planetary Science 42, Nr 12, 2137–2152 (2007) Abstract available online at http://meteoritics.org The regolith portion of the lunar meteorite Sayh al Uhaymir 169 A. AL-KATHIRI1, 2*, E. GNOS1, 3, and B. A. HOFMANN4 1Institut für Geologie, Universität Bern, Baltzerstrasse 1, CH-3012 Bern, Switzerland 2Directorate General of Commerce and Industry, Ministry of Commerce and Industry, Salalah, Oman 3Muséum d’histoire naturelle de Genève, 1, route de Malagnou, CP 6434, CH-1211 Geneva 6, Switzerland 4Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, CH-3005 Bern, Switzerland *Corresponding author. E-mail: [email protected] (Received 13 February 2006; revision accepted 25 June 2007) Abstract–Sayh al Uhaymir (SaU) 169 is a composite lunar meteorite from Oman that consists of polymict regolith breccia (8.44 ppm Th), adhering to impact-melt breccia (IMB; 32.7 ppm Th). In this contribution we consider the regolith breccia portion of SaU 169, and demonstrate that it is composed of two generations representing two formation stages, labeled II and III. The regolith breccia also contains the following clasts: Ti-poor to Ti-rich basalts, gabbros to granulites, and incorporated regolith breccias. The average SaU 169 regolith breccia bulk composition lies within the range of Apollo 12 and 14 soil and regolith breccias, with the closest correspondence being with that of Apollo 14, but Sc contents indicate a higher portion of mare basalts. This is supported by relations between Sm-Al2O3, FeO-Cr2O3-TiO2, Sm/Eu and Th-K2O. The composition can best be modeled as a mixture of high-K KREEP, mare basalt and norite/troctolite, consistent with the rareness of anorthositic rocks.
    [Show full text]