Glass Waveguide Fabrication by Ion Implantation for Optical Communication Applications
Total Page:16
File Type:pdf, Size:1020Kb
Yunfei ZHAO Glass Waveguide Fabrication by Ion Implantation for Optical Communication Applications Mémoire présenté à la Faculté des études supérieures de l'Université Laval pour l'obtention du grade de Maître ès Sciences(M. Sc.) Département deM génie électrique et génie informatique* FACULTÉ DES SCIENCES ET DE GÉNIE UNIVERSITÉ LAVAL QUÉBEC National Library Bibliothèque nationale I*I of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services senices bibliog rap hiques 395 Wefiington Street 395. rue Wellington OttawaON K1AW OttawaON K1AOW canach Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence dowing the exclusive permettant à la National Lîbrary of Canada to Bibliothèque nationale du Canada de reproduce, loan, distriiute or sell reproduire, prêter, distri'buer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nùn, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Ne- the droit d'auteur qui protège cette thèse. thesis nor substantid.extractsfiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Glass waveguide fabrication by ion implantation for optical cornn?unication applications Yunfei Zhao ABSTRACT PIanar and channel waveguides in fused silica were fabncated by 3.0 MeV proton implantation. At 0.6338 pn wavelength, the pIanar waveguide is single mode with optical loss of 2.57 dB/cm. The channel waveguide is mukirnode with optical loss of 2.07 dB/cm at 0.6328 pmwavelength, and a single-mode at 1.55 p. Planar waveguides in ZBLAN glas were fabricated in two samples, the first one with 4 MeV and the second one with 2 and 4 MeV double He+ implantation. The induced index change was observed to be negative. The first plana waveguide had a fundamenta1 mode up to 0.98 p,but it was cut off at 1.3 p.The optical loss was 1.8 dB/cm at 0.633 p.The second planar waveguide had a double guiding Iayer structure up to 0.98 p,but the top guide was cut-off at 1.06 pm. The index change was reconstructed by near-field mode propagation method, having a peak value of -5x10? Fabrication de guides d'onde en verre par implantation ionique pour applications aux communications optiques Yudei Zhao Des guides d'onde plans et canaux dans la silice ont été fabriqués par implantation de protons avec des énergies de 3 MeV. À la longueur d'onde de 0.6328 pm, le guide d'onde plan est monomode avec une perte optique de 2.57 dB/cm. Le guide d'onde canai est multimode avec une perte optique de 2.07 dIB/cm à 0.6328 p.II est cependant mononode à 1.55 p. Deux guides d'onde plans en verre de ZBLAN ont été fabriqués par implantation ionique d'helium, avec une énergie de 4 MeV dans un premier échantillon et des énergies des 2 et 4 MeV dans un deuxième cas. Le changement d'indice de réfraction observé est négatif. Le premier guide d'onde est monomode jusqu' à 0.98 prn mais il ne guide pas à 1.3 pm. La perte optique est de 1.77 dB/cm. Le second échantillon a une structure comportant deux ré>= ons guidantes jusqu'à 0.98 p.m. Le mode du guide supérieur est cependant coupé à 1.06 p. Le profil de l'indice de réfraction a été reconstruit en utilisant la méthode de propagation du champ proche. La valeur maximale du changement de l'indice est de - 5x10~~. (ii) Acknowedgements For many years when 1 was Young, 1 dreamed to be an optical scientist. 1 had the chance to entre the optics world in 1997 when 1 came to Centre d'Optique, Photonique et Laser (COPL) at the Electrical Engineering Department, Université Laval. After studying and working in such an excellent academic environment of COPUGEL, 1 have built up knowledge in this field, and 1 have a deep understanding of fiber opticai communication as a whole. 1 would first like to acknowledge my research director, Professor Sophie LaRochelie: and equally 1 thank my research CO-director,Professor Emile J. Knystautas, for introducing me to this exciting guided-wave optics world. 1 would next Iike to acknowledge Professor Alain Villeneuve from COPUPHY, who gave me many insights on my research topic from the be-oinning to the end during my study. Mr. André Fer1and, technicien-expert in COPUGEL, continuously gave me technicd assistance, and never hesitated to answer my questions. Mr. Nicolas Bélanger, doctoral student in COPLPHY, helped me to measure optical guided-mode profde and cut-off condition evaiuation for planar waveguide in ZBLAN glass at wavelena& around 0.8 - 0.98 pn. 1 also want to thank Mr. Mohammed Saad, optical scientist in INO(Institut National d'optique), who supplied ZBLAN glasses that we used in Our experiments. 1 would like to thank Martin Cloutier and Daniel Gagnon, techniciens in the accelerator laboratory; Marc D'Auteuil, technicien-expert in COPUPHY; Ali Salirnania, doctoral student in COPUPHY; Christine Latrasse, professionelle in COPUGEL, and Karine Le Foulgoc, post-doctoral fellow in COPWPHY, for their invaluable assistance. 1also thank dl the professors and students in our COPUGEL group. 1 felt a fnendship and exciting academic environment during my study. Special thaaks was given to Professor Michel Tetu for his course, encouragement, help and understanding to a foreign student. I would Iike to thank my wife, Hong Zhou for her support and understanding. By accom- panying me to Quebec, she lost herself a lot. And my daughter, Yvonne, she always brightens my life with her open and optimistic nature, vigour of childhood, and her active living style. Finally 1 acknowledge the NSERC, FCAR, Bell Canada and Québec Telephone for their financial support. (iii) Table of Contents Abstract .................................................................................... i .. Résumé .................................................................................... II ... Ackno wledgements ...................................................................... LU Table of contents ......................................................................... iv List of figures ........................................................................... viï List of tables ............................................................................... x Introduction................................................................................ I Chapter I Optical vvnveguides: Theory. fabrication and application in optical communications ................................................... 7 1.1 Theory of optical waveguides. ..................................................................... 7 1.1.1 Electromagnetic mode theory for optical propagation .................................. 7 1.1.2 Planar waveguide ............................................................................ 9 1.1.2.1 The basic three-layer planar waveguide.. .................................... 11 1.1.2.2 The gaded-index planar waveguide.. ....................................... 13 1.1 -3 Cylindrical waveguide --- optical fiber. .................................................. 14 1.1.4 Rectangular waveguide --- charme1 waveguide ....................................... 15 Waveguide fabrication............................................................................. 17 Waveguide charactenzation ...................................................................... 17 1-3 . 1 Mode-profile characterization ............................................................ 18 . 1-3 -3 Index-profile detemunation .............................................................. 19 1.3.3 Loss measurernent ..................................................................... 19 Application of waveguides in optical communication ........................................ 20 4.2.1 Proton implantation. ........................................................................ 52 4.2.2 TRIM calculation........................................................................... 53 . 4.3 Planar waveguide fabrication.. ............... ... ............................................... 53 4.3.1 Near-field mode-profile measurement .................................................... 53 4.3.2 Optical loss evaluation..................................................................... 55 4.3.3 Refractive-index reconstruction ........................................................... 56 * . 4.4 Channel waveguide fabncabon ................................................................... 57 4.4.1 Near-field mode-proflle characterization................................................ 57 4.4.2 Optical loss evaluation .............. .... ................................................ 60 4.4.3 Refractive-index reconstruction ........................................................... 61 4.5 BPM-CAD simulation ............................................................................ -63 Reference ................................................................................................. 63 Chapter 5 Waveguide Fabrication in ZBLAN by He+ Implantation ....64 ZBLAN glas........................... ... ......................................................... 65 MeV helium ion implantation into ZBLAN ......... ........................................... 66 5.2.1 He f-implantation ............................................................................ 66 5.2.2 TMcalculation ..........................................................................