Mathematical Structures from Hilbert to Bourbaki: the Evolution of an Image of Mathematics Leo Corry, Tel-Aviv University

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Structures from Hilbert to Bourbaki: the Evolution of an Image of Mathematics Leo Corry, Tel-Aviv University Mathematical Structures from Hilbert to Bourbaki: The Evolution of an Image of Mathematics Leo Corry, Tel-Aviv University The notion of a mathematical structure is a most pervasive and central one in twentieth- century mathematics. Over several decades of this century, many mathematical disciplines, particularly those belonging to the “pure” realm, developed under the conception that the aim of research is the elucidation of certain structures associated with them. At certain periods of time, especially from the 1950s to the 1970s, it was not uncommon in universities around the world to conceive the ideal professional formation of young mathematicians in terms of a gradual mastering of the various structures that were considered to embody the hard-core of mathematics. Two important points of reference for understanding the development of twentieth century mathematics in general pertain the ideas of David Hilbert, on the one hand, and of the Bourbaki group, on the other hand. This is also true, in particular, for the development of the conception of mathematics as a science of structures. In the present article I explain how, and to what extent, the idea of a mathematical structure appears in the works of Hilbert and of Bourbaki. My presentation will be based on defining the idea of a mathematical structure as a classical example of an image of mathematics. This image appeared for the first time in its full-fledged conception in 1930, in van der Waerden’s classical book Moderne Algebra. In the work of David Hilbert we will find many of the basic building blocks from which van der Waerden’s presentation came to be built. In the work of Bourbaki we will find, later on, an attempt to extend to all of mathematics what van der Waerden had accomplished for the relatively limited domain of algebra. Structures: p. 2 But before entering into all these works in more detail, it seems necessary to begin with some preliminary clarifications. The notion of an “image of mathematics”, parallel to that of the “body of mathematics”, is basic to my discussion here, and it is therefore necessary to explain how I use these terms in what follows. Claims advanced as answers to questions directly related to the subject matter of any given discipline build the body of knowledge of that discipline. Claims which express knowledge about that discipline build its images of knowledge. The images of knowledge help us discussing questions which arise from the body of knowledge, but which are in general not part of, and cannot be settled within, the body of knowledge itself, such as the following: Which of the open problems of the discipline most urgently demands attention? What is to be considered a relevant experiment, or a relevant argument? What procedures, individuals or institutions have authority to adjudicate disagreements within the discipline? What is to be taken as the legitimate methodology of the discipline? What is the most efficient and illuminating technique that should be used to solve a certain kind of problem in the discipline? What is the appropriate university curriculum for educating the next generation of scientists in a given discipline? Thus the images of knowledge cover both cognitive and normative views of scientists concerning their own discipline. The distinction between body and images of mathematical knowledge should not be confused with a second distinction that has sometimes been adopted, either explicitly or implicitly, by historians of mathematics, namely, the distinction between “mathematical content” and “mathematical form.” Inasmuch as it tacitly assumes the existence of an immutable core of mathematical ideas that manifest itself differently at different times, this distinction would seem to enhance the everywhere present, potential pitfall of anach- ronistic and historically misleading accounts of the development of mathematical ideas. The distinction between body and images of knowledge, on the other hand, is of a differ- ent kind. The borderline between these two domains is, by its very definition, somewhat blurred and always historically conditioned. Moreover, one should not perceive the differ- ence between the body and the images of knowledge in terms of two layers, one more important, the other less so. Rather than differing in their importance, these two domains differ in the range of the questions they address: whereas the former answers questions Structures: p. 3 dealing with the subject matter of the discipline, the latter answers questions about the dis- cipline itself qua discipline. They appear as organically interconnected domains in the actual history of the discipline, while their distinction may be worked out by historians for analytical purposes and usually in hindsight.1 Analyzing the history of mathematics in terms of the distinction between body and images of knowledge helps attaining some insights that might otherwise pass unnoticed to historians. This is particularly the case concerning one specific, characteristic trait that we find in this area of science, but typically not in others. What I have in mind is the possibility offered by mathematics to formulate and prove, as part of the hard-core body of mathematical knowledge, certain statements about the discipline of mathematics, that is to say, the ability to absorb certain images of knowledge directly into the body of knowledge. In disciplinary terms, this ability is manifest in those branches usually grouped under the rubric of meta-mathematics, but by no means it is strictly circumscribed to them. The peculiar capacity of mathematics to become part of its own subject-matter is what I call here “the reflexive character of mathematics.” The terminology introduced here will help us formulating the development of ideas covered by the present account. I will describe the introduction of the notion of structure as the adoption of a new image of mathematical knowledge, that essentially changed the conception of a specific mathematical discipline, namely, algebra. I will thus discuss the roots of this adoption and its early development. In particular, Bourbaki’s contribution will be described as an attempt to reflexively elucidate this image and make it an organic part of the body of knowledge. “Pre-Structural” Algebra I start with a very brief account of the classical, nineteenth-century, image of algebra, which the structural one eventually came to substitute. Throughout the eighteenth century, algebra was the branch of mathematics dealing with the theory of polynomial equations, including all the various kinds of techniques used to find exact or approximate roots, and 1. I have discussed this scheme in detail in Corry [1989]. Structures: p. 4 to analyze the relationships between roots and coefficients of a polynomial. Over the nineteenth century these problems remained a main focus of interest of the discipline, and some new ones were added, including algebraic invariants, determinants, hypercomplex systems, etc. Parallel to this, algebraic number theory underwent a vigorous development, especially with the works of Gauss, Kummer, Dedekind and Kronecker, on problems of divisibility, congruence and factorization. Between 1860 and 1930 an intense research activity was conducted in these mathematical domains, particularly in Germany, thus giving rise to certain, central trends that can be specifically noticed in it. Among them we can mention the following: [1] the penetration of methods derived from Galois’s works into the study of polynomial equations; [2] the gradual introduction and elucidation of concepts like group and field, with the concomitant adoption of abstract mathematical definitions; [3] the improvement of methods for dealing with invariants of systems of polynomial forms, advanced by the German algorithmic school of Gordan and Max Noether; [4] the slow but consistent adoption of set-theoretical methods and of the modern axiomatic approach implied by the works of Cantor and of Hilbert; [5] the systematic study of factorization in general domains, conducted by Emmy Noether, Emil Artin and their students. In 1895, the first edition of Heinrich Weber’s Lehrbuch der Algebra [1895] was published. This book summarized the achievements attained in the body of knowledge of this discipline, and at the same time it embodied more than any other one the spirit of the classical, nineteenth century image of algebra. If one compares it with its most noteworthy predecessors —Serret’s Cours d'algèbre supérieure [1849] and Jordan’s Traité des substitutions et des équations algébriques [1870]— one discovers many important additions and innovations at the level of the body of knowledge, but the image of algebra it embodies remains essentially the same one: algebra as the discipline of polynomial equations and polynomial forms. Abstract concepts such as groups, in so far as they appear, are subordinate to the main classical tasks of algebra. And, most important, all the results are based on the assumption of a thorough knowledge of the basic properties of the systems of rational and real numbers: these systems are conceived as conceptually prior to algebra. Structures: p. 5 The first two decades of the twentieth century were ripe with new ideas, and towards the end of the 1920s, one finds a growing number of works that can be identified with recently consolidated algebraic theories. These works were usually aimed at investigating the properties of abstractly defined mathematical entities, as the focus of interest in algebraic research: groups, fields, ideals, rings, and others. Van der Waerden’s Moderne Algebra appeared —like many other important textbooks— at a time when the need was felt for a comprehensive synthesis of what had been achieved since the publication of its predecessor, in this case Weber’s book. Moderne Algebra presented ideas that had been developed earlier by Emmy Noether and Artin —whose courses van der Waerden had recently attended in Göttingen and Hamburg, respectively— and also by other algebraists, such as Ernst Steinitz, whose works van der Waerden had also studied under their guidance.
Recommended publications
  • The Mathematical Structure of the Aesthetic
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2017 doi:10.20944/preprints201706.0055.v1 Peer-reviewed version available at Philosophies 2017, 2, 14; doi:10.3390/philosophies2030014 Article A New Kind of Aesthetics – The Mathematical Structure of the Aesthetic Akihiro Kubota 1,*, Hirokazu Hori 2, Makoto Naruse 3 and Fuminori Akiba 4 1 Art and Media Course, Department of Information Design, Tama Art University, 2-1723 Yarimizu, Hachioji, Tokyo 192-0394, Japan; [email protected] 2 Interdisciplinary Graduate School, University of Yamanashi, 4-3-11 Takeda, Kofu,Yamanashi 400-8511, Japan; [email protected] 3 Network System Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795, Japan; [email protected] 4 Philosophy of Information Group, Department of Systems and Social Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-42-679-5634 Abstract: This paper proposes a new approach to investigation into the aesthetics. Specifically, it argues that it is possible to explain the aesthetic and its underlying dynamic relations with axiomatic structure (the octahedral axiom derived category) based on contemporary mathematics – namely, category theory – and through this argument suggests the possibility for discussion about the mathematical structure of the aesthetic. If there was a way to describe the structure of aesthetics with the language of mathematical structures and mathematical axioms – a language completely devoid of arbitrariness – then we would make possible a synthetical argument about the essential human activity of “the aesthetics”, and we would also gain a new method and viewpoint on the philosophy and meaning of the act of creating a work of art and artistic activities.
    [Show full text]
  • Structure” of Physics: a Case Study∗ (Journal of Philosophy 106 (2009): 57–88)
    The “Structure” of Physics: A Case Study∗ (Journal of Philosophy 106 (2009): 57–88) Jill North We are used to talking about the “structure” posited by a given theory of physics. We say that relativity is a theory about spacetime structure. Special relativity posits one spacetime structure; different models of general relativity posit different spacetime structures. We also talk of the “existence” of these structures. Special relativity says that the world’s spacetime structure is Minkowskian: it posits that this spacetime structure exists. Understanding structure in this sense seems important for understand- ing what physics is telling us about the world. But it is not immediately obvious just what this structure is, or what we mean by the existence of one structure, rather than another. The idea of mathematical structure is relatively straightforward. There is geometric structure, topological structure, algebraic structure, and so forth. Mathematical structure tells us how abstract mathematical objects t together to form different types of mathematical spaces. Insofar as we understand mathematical objects, we can understand mathematical structure. Of course, what to say about the nature of mathematical objects is not easy. But there seems to be no further problem for understanding mathematical structure. ∗For comments and discussion, I am extremely grateful to David Albert, Frank Arntzenius, Gordon Belot, Josh Brown, Adam Elga, Branden Fitelson, Peter Forrest, Hans Halvorson, Oliver Davis Johns, James Ladyman, David Malament, Oliver Pooley, Brad Skow, TedSider, Rich Thomason, Jason Turner, Dmitri Tymoczko, the philosophy faculty at Yale, audience members at The University of Michigan in fall 2006, and in 2007 at the Paci c APA, the Joint Session of the Aristotelian Society and Mind Association, and the Bellingham Summer Philosophy Conference.
    [Show full text]
  • Group Theory
    Appendix A Group Theory This appendix is a survey of only those topics in group theory that are needed to understand the composition of symmetry transformations and its consequences for fundamental physics. It is intended to be self-contained and covers those topics that are needed to follow the main text. Although in the end this appendix became quite long, a thorough understanding of group theory is possible only by consulting the appropriate literature in addition to this appendix. In order that this book not become too lengthy, proofs of theorems were largely omitted; again I refer to other monographs. From its very title, the book by H. Georgi [211] is the most appropriate if particle physics is the primary focus of interest. The book by G. Costa and G. Fogli [102] is written in the same spirit. Both books also cover the necessary group theory for grand unification ideas. A very comprehensive but also rather dense treatment is given by [428]. Still a classic is [254]; it contains more about the treatment of dynamical symmetries in quantum mechanics. A.1 Basics A.1.1 Definitions: Algebraic Structures From the structureless notion of a set, one can successively generate more and more algebraic structures. Those that play a prominent role in physics are defined in the following. Group A group G is a set with elements gi and an operation ◦ (called group multiplication) with the properties that (i) the operation is closed: gi ◦ g j ∈ G, (ii) a neutral element g0 ∈ G exists such that gi ◦ g0 = g0 ◦ gi = gi , (iii) for every gi exists an −1 ∈ ◦ −1 = = −1 ◦ inverse element gi G such that gi gi g0 gi gi , (iv) the operation is associative: gi ◦ (g j ◦ gk) = (gi ◦ g j ) ◦ gk.
    [Show full text]
  • The (Homo)Morphism Concept: Didactic Transposition, Meta-Discourse and Thematisation Thomas Hausberger
    The (homo)morphism concept: didactic transposition, meta-discourse and thematisation Thomas Hausberger To cite this version: Thomas Hausberger. The (homo)morphism concept: didactic transposition, meta-discourse and the- matisation. International Journal of Research in Undergraduate Mathematics Education, Springer, 2017, 3 (3), pp.417-443. 10.1007/s40753-017-0052-7. hal-01408419 HAL Id: hal-01408419 https://hal.archives-ouvertes.fr/hal-01408419 Submitted on 20 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Noname manuscript No. (will be inserted by the editor) The (homo)morphism concept: didactic transposition, meta-discourse and thematisation Thomas Hausberger Received: date / Accepted: date Abstract This article focuses on the didactic transposition of the homomor- phism concept and on the elaboration and evaluation of an activity dedicated to the teaching of this fundamental concept in Abstract Algebra. It does not restrict to Group Theory but on the contrary raises the issue of the teaching and learning of algebraic structuralism, thus bridging Group and Ring Theo- ries and highlighting the phenomenon of thematisation. Emphasis is made on epistemological analysis and its interaction with didactics. The rationale of the isomorphism and homomorphism concepts is discussed, in particular through a textbook analysis focusing on the meta-discourse that mathematicians offer to illuminate the concepts.
    [Show full text]
  • The Design and Validation of a Group Theory Concept Inventory
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Summer 8-10-2015 The Design and Validation of a Group Theory Concept Inventory Kathleen Mary Melhuish Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Algebra Commons, Higher Education Commons, and the Science and Mathematics Education Commons Let us know how access to this document benefits ou.y Recommended Citation Melhuish, Kathleen Mary, "The Design and Validation of a Group Theory Concept Inventory" (2015). Dissertations and Theses. Paper 2490. https://doi.org/10.15760/etd.2487 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. The Design and Validation of a Group Theory Concept Inventory by Kathleen Mary Melhuish A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Education Dissertation Committee: Sean Larsen, Chair John Caughman Samuel Cook Andrea Goforth Portland State University 2015 © 2015 Kathleen Mary Melhuish Abstract Within undergraduate mathematics education, there are few validated instruments designed for large-scale usage. The Group Concept Inventory (GCI) was created as an instrument to evaluate student conceptions related to introductory group theory topics. The inventory was created in three phases: domain analysis, question creation, and field-testing. The domain analysis phase included using an expert protocol to arrive at the topics to be assessed, analyzing curriculum, and reviewing literature.
    [Show full text]
  • Structure, Isomorphism and Symmetry We Want to Give a General Definition
    Structure, Isomorphism and Symmetry We want to give a general definition of what is meant by a (mathematical) structure that will cover most of the structures that you will meet. It is in this setting that we will define what is meant by isomorphism and symmetry. We begin with the simplest type of structure, that of an internal structure on a set. Definition 1 (Internal Structure). An internal structure on a set A is any element of A or of any set that can be obtained from A by means of Cartesian products and the power set operation, e.g., A £ A, }(A), A £ }(A), }((A £ A) £ A),... Example 1 (An Element of A). a 2 A Example 2 (A Relation on A). R ⊆ A £ A =) R 2 }(A £ A). Example 3 (A Binary Operation on A). p : A £ A ! A =) p 2 }((A £ A) £ A). To define an external structure on a set A (e.g. a vector space structure) we introduce a second set K. The elements of K or of those sets which can be obtained from K and A by means of Cartesian products and the power set operation and which is not an internal structure on A are called K-structures on A. Definition 2 (K-Structure). A K-structure on a set A is any element of K or of those sets which can be obtained from K and A by means of Cartesian products and the power set operation and which is not an internal structure on A. Example 4 (External Operation on A).
    [Show full text]
  • How Structure Sense for Algebraic Expressions Or Equations Is Related to Structure Sense for Abstract Algebra
    Mathematics Education Research Journal 2008, Vol. 20, No. 2, 93-104 How Structure Sense for Algebraic Expressions or Equations is Related to Structure Sense for Abstract Algebra Jarmila Novotná Maureen Hoch Charles University, Czech Republic Tel Aviv University, Israel Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense components, and that several components of university algebra structure sense are analogies of high school algebra structure sense components. We present a theoretical argument for these hypotheses, with some examples. We recommend emphasizing structure sense in high school algebra in the hope of easing students’ paths in university algebra. The cooperation of the authors in the domain of structure sense originated at a scientific conference where they each presented the results of their research in their own countries: Israel and the Czech Republic. Their findings clearly show that they are dealing with similar situations, concepts, obstacles, and so on, at two different levels—high school and university. In their classrooms, high school teachers are dismayed by students’ inability to apply basic algebraic techniques in contexts different from those they have experienced. Many students who arrive in high school with excellent grades in mathematics from the junior-high school prove to be poor at algebraic manipulations. Even students who succeed well in 10th grade algebra show disappointing results later on, because of the algebra.
    [Show full text]
  • Set (Mathematics) from Wikipedia, the Free Encyclopedia
    Set (mathematics) From Wikipedia, the free encyclopedia A set in mathematics is a collection of well defined and distinct objects, considered as an object in its own right. Sets are one of the most fundamental concepts in mathematics. Developed at the end of the 19th century, set theory is now a ubiquitous part of mathematics, and can be used as a foundation from which nearly all of mathematics can be derived. In mathematics education, elementary topics such as Venn diagrams are taught at a young age, while more advanced concepts are taught as part of a university degree. Contents The intersection of two sets is made up of the objects contained in 1 Definition both sets, shown in a Venn 2 Describing sets diagram. 3 Membership 3.1 Subsets 3.2 Power sets 4 Cardinality 5 Special sets 6 Basic operations 6.1 Unions 6.2 Intersections 6.3 Complements 6.4 Cartesian product 7 Applications 8 Axiomatic set theory 9 Principle of inclusion and exclusion 10 See also 11 Notes 12 References 13 External links Definition A set is a well defined collection of objects. Georg Cantor, the founder of set theory, gave the following definition of a set at the beginning of his Beiträge zur Begründung der transfiniten Mengenlehre:[1] A set is a gathering together into a whole of definite, distinct objects of our perception [Anschauung] and of our thought – which are called elements of the set. The elements or members of a set can be anything: numbers, people, letters of the alphabet, other sets, and so on.
    [Show full text]
  • 2. Duality in Mathematical Structure by Tadashi OHKUMA Departmentof Mathematics,Tokyo Institute of Technology,Tokyo (Comm
    6 [Vol. 34, 2. Duality in Mathematical Structure By Tadashi OHKUMA Departmentof Mathematics,Tokyo Institute of Technology,Tokyo (Comm. by Z. SUETUNA,M.J,A., Jan. 13, 1958) 1. In many representation theorems of different branches of ab- stract mathematics, for example, representation of ordered sets by cuts, that of lattices by sets of ideals, the conjugate spaces of Banach spaces, or the duality of groups, there seem to appear some similar concep- tions. In order to deal with those representation theorems simultane- ously, we made an attempt to set up a concept of a universal mathe- matical structure, in which the main role is played by some selected applications of a system to a system, which we call homomorphisms, but they may be continuous mappings in topological spaces, order- preserving mappings in ordered sets or linear operators in linear spaces. The definitions of our structure and some results of them will be stated in this note, but we omit the detail of proofs which, as well as the applications to individual specialized systems, will be published elsewhere. 2. Let be a family of sets. A set in is called a system. If X and Z are systems and Z C X, then Z is called a subsystem of X. We assume that, to each pair of systems X and Y, a family Hom (X, Y) of applications which map X into Y is distinguished. An application co in Hom (X, Y) is called a homomorphism of X in Y. Further we assume that those homomorphisms and the family satisfy the following axioms which fall into five groups (A)-(E).
    [Show full text]
  • Diffeomorphic Density Registration
    DIFFEOMORPHIC DENSITY REGISTRATION MARTIN BAUER, SARANG JOSHI, AND KLAS MODIN Abstract. In this book chapter we study the Riemannian Geometry of the density registration problem: Given two densities (not necessarily probability densities) defined on a smooth finite dimensional manifold find a diffeomorphism which transforms one to the other. This problem is motivated by the medical imaging application of track- ing organ motion due to respiration in Thoracic CT imaging where the fundamental physical property of conservation of mass naturally leads to modeling CT attenuation as a density. We will study the intimate link between the Riemannian metrics on the space of diffeomorphisms and those on the space of densities. We finally develop novel computationally efficient algorithms and demonstrate there applicability for registering RCCT thoracic imaging. Contents 1. Introduction1 2. Diffeomorphisms and densities2 2.1. α-actions.4 3. Diffeomorphic Density registration5 4. Density registration in the LDDMM-framework6 5. Optimal Information Transport7 5.1. Application: random sampling from non-uniform distribution 10 6. A gradient flow approach 12 6.1. Thoracic Density Registration 16 Acknowledgements 20 References 21 1. Introduction Over the last decade image registration has received intense interest, both with re- spect to medical imaging applications as well to the mathematical foundations of the general problem of estimating a transformation that brings two or more given medical images into a common coordinate system [18, 22, 41, 27, 39,2,1, 13]. In this chapter arXiv:1807.05505v2 [math.OC] 23 Jul 2018 we focus on a subclass of registration problems which term as density registration. The primary difference between density registration and general image registration is in how Date: July 24, 2018.
    [Show full text]
  • Exotic Smoothness and Physics
    Exotic Smoothness and Physics Carl H. Brans Physics Department Loyola University New Orleans, LA 70118 e-mail:BRANS @ MUSIC.LOYNO.EDU March 29, 1994 Abstract The essential role played by differentiable structures in physics is reviewed in light of recent mathematical discoveries that topologically trivial space-time models, especially the simplest one, R4, possess a rich multiplicity of such structures, no two of which are diffeomorphic to each other and thus to the standard one. This means that physics has available to it a new panoply of structures available for space-time models. These can be thought of as source of new global, but not properly topological, features. This paper reviews some background differential topology together with a discussion of the role which a differentiable structure necessarily plays in the statement of any physical theory, recalling that diffeomorphisms are at the heart of the principle of general relativity. Some of the history of the discovery of exotic, i.e., non-standard, differentiable structures is reviewed. Some new results suggesting the spatial localization of such exotic structures are described and speculations are made on the possible opportunities that such structures present for the further development of physical theories. To be published in Journal of Mathematical Physics. arXiv:gr-qc/9405010v1 4 May 1994 1 Introduction Almost all modern physical theories are stated in terms of fields over a smooth manifold, typically involving differential equations for these fields. Obviously the mechanism underlying the notion of differentiation in a space-time model is indispensable for physics. However, the essentially local nature of differentiation has led us to assume that the mathematics underlying calculus as applied to physics is trivial and unique.
    [Show full text]
  • The Mathematical Structure of Integrated Information Theory
    ORIGINAL RESEARCH published: 04 June 2021 doi: 10.3389/fams.2020.602973 The Mathematical Structure of Integrated Information Theory Johannes Kleiner 1* and Sean Tull 2* 1Ludwig Maximilian University of Munich, Munich, Germany, 2Cambridge Quantum Computing Limited, Cambridge, United Kingdom Integrated Information Theory is one of the leading models of consciousness. It aims to describe both the quality and quantity of the conscious experience of a physical system, such as the brain, in a particular state. In this contribution, we propound the mathematical structure of the theory, separating the essentials from auxiliary formal tools. We provide a definition of a generalized IIT which has IIT 3.0 of Tononi et al., as well as the Quantum IIT introduced by Zanardi et al. as special cases. This provides an axiomatic definition of the theory which may serve as the starting point for future formal investigations and as an introduction suitable for researchers with a formal background. Keywords: Integrated Information Theory, experience spaces, mathematical consciousness science, IIT 3.0, IIT 3.x, Edited by: generalized IIT Heng Liu, Guangxi University for Nationalities, China 1 INTRODUCTION Reviewed by: Guangming Xue, Integrated Information Theory (IIT), developed by Giulio Tononi and collaborators [5, 45–47], has Guangxi University of Finance and emerged as one of the leading scientific theories of consciousness. At the heart of the latest version of Economics, China the theory [19, 25, 26, 31, 40] is an algorithm which, based on the level of integration of the internal Shumin Ha, Shaanxi Normal University, China functional relationships of a physical system in a given state, aims to determine both the quality and quantity (‘Φ value’) of its conscious experience.
    [Show full text]