Introduction to Group Theory

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Group Theory Introduction to Group Theory With Applications to Quantum Mechanics and Solid State Physics Roland Winkler [email protected] August 2011 (Lecture notes version: November 3, 2015) Please, let me know if you find misprints, errors or inaccuracies in these notes. Thank you. Roland Winkler, NIU, Argonne, and NCTU 2011−2015 General Literature I J. F. Cornwell, Group Theory in Physics (Academic, 1987) general introduction; discrete and continuous groups I W. Ludwig and C. Falter, Symmetries in Physics (Springer, Berlin, 1988). general introduction; discrete and continuous groups I W.-K. Tung, Group Theory in Physics (World Scientific, 1985). general introduction; main focus on continuous groups I L. M. Falicov, Group Theory and Its Physical Applications (University of Chicago Press, Chicago, 1966). small paperback; compact introduction I E. P. Wigner, Group Theory (Academic, 1959). classical textbook by the master I Landau and Lifshitz, Quantum Mechanics, Ch. XII (Pergamon, 1977) brief introduction into the main aspects of group theory in physics I R. McWeeny, Symmetry (Dover, 2002) elementary, self-contained introduction I and many others Roland Winkler, NIU, Argonne, and NCTU 2011−2015 Specialized Literature I G. L. Bir und G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974) thorough discussion of group theory and its applications in solid state physics by two pioneers I C. J. Bradley and A. P. Cracknell, The Mathematical Theory of Symmetry in Solids (Clarendon, 1972) comprehensive discussion of group theory in solid state physics I G. F. Koster et al., Properties of the Thirty-Two Point Groups (MIT Press, 1963) small, but very helpful reference book tabulating the properties of the 32 crystallographic point groups (character tables, Clebsch-Gordan coefficients, compatibility relations, etc.) I A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, 1960) comprehensive discussion of the (group) theory of angular momentum in quantum mechanics I and many others Roland Winkler, NIU, Argonne, and NCTU 2011−2015 These notes are dedicated to Prof. Dr. h.c. Ulrich R¨ossler from whom I learned group theory R.W. Roland Winkler, NIU, Argonne, and NCTU 2011−2015 Introduction and Overview Definition: Group A set G = fa; b; c;:::g is called a group, if there exists a group multiplication connecting the elements in G in the following way (1) a; b 2 G : c = a b 2 G (closure) (2) a; b; c 2 G :(ab)c = a(bc) (associativity) (3) 9 e 2 G : a e = a 8a 2 G (identity / neutral element) (4) 8a 2 G 9 b 2 G : a b = e; i.e., b ≡ a−1 (inverse element) Corollaries (a) e−1 = e (b) a−1a = a a−1 = e 8a 2 G (left inverse = right inverse) (c) e a = a e = a 8a 2 G (left neutral = right neutral) (d) 8a; b 2 G : c = a b , c−1 = b−1a−1 Commutative (Abelian) Group (5) 8a; b 2 G : a b = b a (commutatitivity) Order of a Group = number of group elements Roland Winkler, NIU, Argonne, and NCTU 2011−2015 Examples I integer numbers Z with addition (Abelian group, infinite order) I rational numbers Qnf0g with multiplication (Abelian group, infinite order) I complex numbers fexp(2πi m=n): m = 1;:::; ng with multiplication (Abelian group, finite order, example of cyclic group) I invertible (= nonsingular) n × n matrices with matrix multiplication (nonabelian group, infinite order, later important for representation theory!) I permutations of n objects: Pn (nonabelian group, n! group elements) I symmetry operations (rotations, reflections, etc.) of equilateral triangle ≡ P3 ≡ permutations of numbered corners of triangle { more later! n I (continuous) translations in R : (continuous) translation group ≡ vector addition in Rn I symmetry operations of a sphere only rotations: SO(3) = special orthogonal group in R3 = real orthogonal 3 × 3 matrices Roland Winkler, NIU, Argonne, and NCTU 2011−2015 Group Theory in Physics Group theory is the natural language to describe symmetries of a physical system I symmetries correspond to conserved quantities I symmetries allow us to classify quantum mechanical states • representation theory • degeneracies / level splittings I evaluation of matrix elements ) Wigner-Eckart theorem e.g., selection rules: dipole matrix elements for optical transitions I Hamiltonian H^ must be invariant under the symmetries of a quantum system ) construct H^ via symmetry arguments I ::: Roland Winkler, NIU, Argonne, and NCTU 2011−2015 Group Theory in Physics Classical Mechanics I Lagrange function L(q; q_ ), d @L @L I Lagrange equations = i = 1;:::; N dt @q_ i @qi @L @L I If for one j : = 0 ) pj ≡ is a conserved quantity @qj @q_ j Examples I qj linear coordinate I qj angular coordinate • translational invariance • rotational invariance • linear momentum pj = const. • angular momentum pj = const. • translation group • rotation group Roland Winkler, NIU, Argonne, and NCTU 2011−2015 Group Theory in Physics Quantum Mechanics (1) Evaluation of matrix elements I Consider particle in potential V (x) = V (−x) even I two possiblities for eigenfunctions (x) e (x) even: e (x) = e (−x) o (x) odd: o (x) = − o (−x) R ∗ I overlapp i (x) j (x) dx = δij i; j 2 fe; og R ∗ I expectation value hijxjii = i (x) x i (x) dx = 0 well-known explanation I product of two even / two odd functions is even I product of one even and one odd function is odd I integral over an odd function vanishes Roland Winkler, NIU, Argonne, and NCTU 2011−2015 Group Theory in Physics Quantum Mechanics (1) Evaluation of matrix elements (cont'd) Group theory provides systematic generalization of these statements I representation theory ≡ classification of how functions and operators transform under symmetry operations I Wigner-Eckart theorem ≡ statements on matrix elements if we know how the functions and operators transform under the symmetries of a system Roland Winkler, NIU, Argonne, and NCTU 2011−2015 Group Theory in Physics Quantum Mechanics (2) Degeneracies of Energy Eigenvalues ^ ^ I Schr¨odingerequation H = E or i~@t = H ^ ^ ^ ^ ^ I Let O with i~@t O = [O; H] = 0 ) O is conserved quantity ^ ^ ) eigenvalue equations H = E and O = λO^ can be solved simultaneously ^ ) eigenvalue λO^ of O is good quantum number for Example: H atom 2 @2 2 @ L^2 e2 H^ = ~ + + − ) group SO(3) I 2m @r 2 r @r 2mr 2 r 2 2 ) [L^ ; H^ ] = [L^z ; H^ ] = [L^ ; L^z ] = 0 2 ) eigenstates nlm(r): index l $ L^ ; m $ L^z I really another example for representation theory I degeneracy for 0 ≤ l ≤ n − 1: dynamical symmetry (unique for H atom) Roland Winkler, NIU, Argonne, and NCTU 2011−2015 Group Theory in Physics Quantum Mechanics (3) Solid State Physics in particular: crystalline solids, periodic assembly of atoms ) discrete translation invariance (i) Electrons in periodic potential V (r) I V (r + R) = V (r) 8 R 2 flattice vectorsg ) translation operator T^R : T^R f (r) = f (r + R) [T^R; H^ ] = 0 ik·r ) Bloch theorem k(r) = e uk(r) with uk(r + R) = uk(r) ) wave vector k is quantum number for the discrete translation invariance, k 2 first Brillouin zone Roland Winkler, NIU, Argonne, and NCTU 2011−2015 Group Theory in Physics Quantum Mechanics (3) Solid State Physics (ii) Phonons rotation by 90o I Consider square lattice I frequencies of modes are equal I degeneracies for particular propagation directions (iii) Theory of Invariants I How can we construct models for the dynamics of electrons or phonons that are compatible with given crystal symmetries? Roland Winkler, NIU, Argonne, and NCTU 2011−2015 Group Theory in Physics Quantum Mechanics (4) Nuclear and Particle Physics Physics at small length scales: strong interaction Proton mp = 938:28 MeV rest mass of nucleons almost equal Neutron mn = 939:57 MeV ∼ degeneracy I Symmetry: isospin ^I with [^I ; H^strong] = 0 1 1 1 1 I SU(2): proton j 2 2 i, neutron j 2 − 2 i Roland Winkler, NIU, Argonne, and NCTU 2011−2015 Mathematical Excursion: Groups Basic Concepts Group Axioms: see above Definition: Subgroup Let G be a group. A subset U ⊆ G that is itself a group with the same multiplication as G is called a subgroup of G. Group Multiplication Table: compilation of all products of group elements ) complete information on mathematical structure of a (finite) group P3 e a b c d f Example: permutation group P3 e e a b c d f 1 2 3 1 2 3 1 2 3 e = a = b = a a b e f c d 1 2 3 2 3 1 3 1 2 b b e a d f c 1 2 3 1 2 3 1 2 3 c c d f e a b c = d = f = 1 3 2 3 2 1 2 1 3 d d f c b e a f f c d a b e I feg, fe; a; bg, fe; cg, fe; dg, fe; f g, G are subgroups of G Roland Winkler, NIU, Argonne, and NCTU 2011−2015 P3 e a b c d f Conclusions from e e a b c d f Group Multiplication Table a a b e f c d b b e a d f c I Symmetry w.r.t. main diagonal ) group is Abelian c c d f e a b d d f c b e a n I order n of g 2 G: smallest n > 0 with g = e f f c d a b e 2 n I fg; g ;:::; g = eg with g 2 G is Abelian subgroup (a cyclic group) I in every row / column every element appears exactly once because: Rearrangement Lemma: for any fixed g 0 2 G, we have G = fg 0g : g 2 Gg = fgg 0 : g 2 Gg i.e., the latter sets consist of the elements in G rearranged in order.
Recommended publications
  • The Mathematical Structure of the Aesthetic
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2017 doi:10.20944/preprints201706.0055.v1 Peer-reviewed version available at Philosophies 2017, 2, 14; doi:10.3390/philosophies2030014 Article A New Kind of Aesthetics – The Mathematical Structure of the Aesthetic Akihiro Kubota 1,*, Hirokazu Hori 2, Makoto Naruse 3 and Fuminori Akiba 4 1 Art and Media Course, Department of Information Design, Tama Art University, 2-1723 Yarimizu, Hachioji, Tokyo 192-0394, Japan; [email protected] 2 Interdisciplinary Graduate School, University of Yamanashi, 4-3-11 Takeda, Kofu,Yamanashi 400-8511, Japan; [email protected] 3 Network System Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795, Japan; [email protected] 4 Philosophy of Information Group, Department of Systems and Social Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-42-679-5634 Abstract: This paper proposes a new approach to investigation into the aesthetics. Specifically, it argues that it is possible to explain the aesthetic and its underlying dynamic relations with axiomatic structure (the octahedral axiom derived category) based on contemporary mathematics – namely, category theory – and through this argument suggests the possibility for discussion about the mathematical structure of the aesthetic. If there was a way to describe the structure of aesthetics with the language of mathematical structures and mathematical axioms – a language completely devoid of arbitrariness – then we would make possible a synthetical argument about the essential human activity of “the aesthetics”, and we would also gain a new method and viewpoint on the philosophy and meaning of the act of creating a work of art and artistic activities.
    [Show full text]
  • Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
    Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory.
    [Show full text]
  • Classification of Finite Abelian Groups
    Math 317 C1 John Sullivan Spring 2003 Classification of Finite Abelian Groups (Notes based on an article by Navarro in the Amer. Math. Monthly, February 2003.) The fundamental theorem of finite abelian groups expresses any such group as a product of cyclic groups: Theorem. Suppose G is a finite abelian group. Then G is (in a unique way) a direct product of cyclic groups of order pk with p prime. Our first step will be a special case of Cauchy’s Theorem, which we will prove later for arbitrary groups: whenever p |G| then G has an element of order p. Theorem (Cauchy). If G is a finite group, and p |G| is a prime, then G has an element of order p (or, equivalently, a subgroup of order p). ∼ Proof when G is abelian. First note that if |G| is prime, then G = Zp and we are done. In general, we work by induction. If G has no nontrivial proper subgroups, it must be a prime cyclic group, the case we’ve already handled. So we can suppose there is a nontrivial subgroup H smaller than G. Either p |H| or p |G/H|. In the first case, by induction, H has an element of order p which is also order p in G so we’re done. In the second case, if ∼ g + H has order p in G/H then |g + H| |g|, so hgi = Zkp for some k, and then kg ∈ G has order p. Note that we write our abelian groups additively. Definition. Given a prime p, a p-group is a group in which every element has order pk for some k.
    [Show full text]
  • Mathematics 310 Examination 1 Answers 1. (10 Points) Let G Be A
    Mathematics 310 Examination 1 Answers 1. (10 points) Let G be a group, and let x be an element of G. Finish the following definition: The order of x is ... Answer: . the smallest positive integer n so that xn = e. 2. (10 points) State Lagrange’s Theorem. Answer: If G is a finite group, and H is a subgroup of G, then o(H)|o(G). 3. (10 points) Let ( a 0! ) H = : a, b ∈ Z, ab 6= 0 . 0 b Is H a group with the binary operation of matrix multiplication? Be sure to explain your answer fully. 2 0! 1/2 0 ! Answer: This is not a group. The inverse of the matrix is , which is not 0 2 0 1/2 in H. 4. (20 points) Suppose that G1 and G2 are groups, and φ : G1 → G2 is a homomorphism. (a) Recall that we defined φ(G1) = {φ(g1): g1 ∈ G1}. Show that φ(G1) is a subgroup of G2. −1 (b) Suppose that H2 is a subgroup of G2. Recall that we defined φ (H2) = {g1 ∈ G1 : −1 φ(g1) ∈ H2}. Prove that φ (H2) is a subgroup of G1. Answer:(a) Pick x, y ∈ φ(G1). Then we can write x = φ(a) and y = φ(b), with a, b ∈ G1. Because G1 is closed under the group operation, we know that ab ∈ G1. Because φ is a homomorphism, we know that xy = φ(a)φ(b) = φ(ab), and therefore xy ∈ φ(G1). That shows that φ(G1) is closed under the group operation.
    [Show full text]
  • Structure” of Physics: a Case Study∗ (Journal of Philosophy 106 (2009): 57–88)
    The “Structure” of Physics: A Case Study∗ (Journal of Philosophy 106 (2009): 57–88) Jill North We are used to talking about the “structure” posited by a given theory of physics. We say that relativity is a theory about spacetime structure. Special relativity posits one spacetime structure; different models of general relativity posit different spacetime structures. We also talk of the “existence” of these structures. Special relativity says that the world’s spacetime structure is Minkowskian: it posits that this spacetime structure exists. Understanding structure in this sense seems important for understand- ing what physics is telling us about the world. But it is not immediately obvious just what this structure is, or what we mean by the existence of one structure, rather than another. The idea of mathematical structure is relatively straightforward. There is geometric structure, topological structure, algebraic structure, and so forth. Mathematical structure tells us how abstract mathematical objects t together to form different types of mathematical spaces. Insofar as we understand mathematical objects, we can understand mathematical structure. Of course, what to say about the nature of mathematical objects is not easy. But there seems to be no further problem for understanding mathematical structure. ∗For comments and discussion, I am extremely grateful to David Albert, Frank Arntzenius, Gordon Belot, Josh Brown, Adam Elga, Branden Fitelson, Peter Forrest, Hans Halvorson, Oliver Davis Johns, James Ladyman, David Malament, Oliver Pooley, Brad Skow, TedSider, Rich Thomason, Jason Turner, Dmitri Tymoczko, the philosophy faculty at Yale, audience members at The University of Michigan in fall 2006, and in 2007 at the Paci c APA, the Joint Session of the Aristotelian Society and Mind Association, and the Bellingham Summer Philosophy Conference.
    [Show full text]
  • Group Theory
    Appendix A Group Theory This appendix is a survey of only those topics in group theory that are needed to understand the composition of symmetry transformations and its consequences for fundamental physics. It is intended to be self-contained and covers those topics that are needed to follow the main text. Although in the end this appendix became quite long, a thorough understanding of group theory is possible only by consulting the appropriate literature in addition to this appendix. In order that this book not become too lengthy, proofs of theorems were largely omitted; again I refer to other monographs. From its very title, the book by H. Georgi [211] is the most appropriate if particle physics is the primary focus of interest. The book by G. Costa and G. Fogli [102] is written in the same spirit. Both books also cover the necessary group theory for grand unification ideas. A very comprehensive but also rather dense treatment is given by [428]. Still a classic is [254]; it contains more about the treatment of dynamical symmetries in quantum mechanics. A.1 Basics A.1.1 Definitions: Algebraic Structures From the structureless notion of a set, one can successively generate more and more algebraic structures. Those that play a prominent role in physics are defined in the following. Group A group G is a set with elements gi and an operation ◦ (called group multiplication) with the properties that (i) the operation is closed: gi ◦ g j ∈ G, (ii) a neutral element g0 ∈ G exists such that gi ◦ g0 = g0 ◦ gi = gi , (iii) for every gi exists an −1 ∈ ◦ −1 = = −1 ◦ inverse element gi G such that gi gi g0 gi gi , (iv) the operation is associative: gi ◦ (g j ◦ gk) = (gi ◦ g j ) ◦ gk.
    [Show full text]
  • On Discrete Generalised Triangle Groups
    Proceedings of the Edinburgh Mathematical Society (1995) 38, 397-412 © ON DISCRETE GENERALISED TRIANGLE GROUPS by M. HAGELBERG, C. MACLACHLAN and G. ROSENBERGER (Received 29th October 1993) A generalised triangle group has a presentation of the form where R is a cyclically reduced word involving both x and y. When R=xy, these classical triangle groups have representations as discrete groups of isometries of S2, R2, H2 depending on In this paper, for other words R, faithful discrete representations of these groups in Isom + H3 = PSL(2,C) are considered with particular emphasis on the case /? = [x, y] and also on the relationship between the Euler characteristic x and finite covolume representations. 1991 Mathematics subject classification: 20H15. 1. Introduction In this article, we consider generalised triangle groups, i.e. groups F with a presentation of the form where R(x,y) is a cyclically reduced word in the free product on x,y which involves both x and y. These groups have been studied for their group theoretical interest [8, 7, 13], for topological reasons [2], and more recently for their connections with hyperbolic 3-manifolds and orbifolds [12, 10]. Here we will be concerned with faithful discrete representations p:T-*PSL(2,C) with particular emphasis on the cases where the Kleinian group p(F) has finite covolume. In Theorem 3.2, we give necessary conditions on the group F so that it should admit such a faithful discrete representation of finite covolume. For certain generalised triangle groups where the word R(x,y) has a specified form, faithful discrete representations as above have been constructed by Helling-Mennicke- Vinberg [12] and by the first author [11].
    [Show full text]
  • Projective Geometry: a Short Introduction
    Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g.
    [Show full text]
  • On Some Generation Methods of Finite Simple Groups
    Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography On Some Generation Methods of Finite Simple Groups Ayoub B. M. Basheer Department of Mathematical Sciences, North-West University (Mafikeng), P Bag X2046, Mmabatho 2735, South Africa Groups St Andrews 2017 in Birmingham, School of Mathematics, University of Birmingham, United Kingdom 11th of August 2017 Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Abstract In this talk we consider some methods of generating finite simple groups with the focus on ranks of classes, (p; q; r)-generation and spread (exact) of finite simple groups. We show some examples of results that were established by the author and his supervisor, Professor J. Moori on generations of some finite simple groups. Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Introduction Generation of finite groups by suitable subsets is of great interest and has many applications to groups and their representations. For example, Di Martino and et al. [39] established a useful connection between generation of groups by conjugate elements and the existence of elements representable by almost cyclic matrices. Their motivation was to study irreducible projective representations of the sporadic simple groups. In view of applications, it is often important to exhibit generating pairs of some special kind, such as generators carrying a geometric meaning, generators of some prescribed order, generators that offer an economical presentation of the group.
    [Show full text]
  • An Overview of Topological Groups: Yesterday, Today, Tomorrow
    axioms Editorial An Overview of Topological Groups: Yesterday, Today, Tomorrow Sidney A. Morris 1,2 1 Faculty of Science and Technology, Federation University Australia, Victoria 3353, Australia; [email protected]; Tel.: +61-41-7771178 2 Department of Mathematics and Statistics, La Trobe University, Bundoora, Victoria 3086, Australia Academic Editor: Humberto Bustince Received: 18 April 2016; Accepted: 20 April 2016; Published: 5 May 2016 It was in 1969 that I began my graduate studies on topological group theory and I often dived into one of the following five books. My favourite book “Abstract Harmonic Analysis” [1] by Ed Hewitt and Ken Ross contains both a proof of the Pontryagin-van Kampen Duality Theorem for locally compact abelian groups and the structure theory of locally compact abelian groups. Walter Rudin’s book “Fourier Analysis on Groups” [2] includes an elegant proof of the Pontryagin-van Kampen Duality Theorem. Much gentler than these is “Introduction to Topological Groups” [3] by Taqdir Husain which has an introduction to topological group theory, Haar measure, the Peter-Weyl Theorem and Duality Theory. Of course the book “Topological Groups” [4] by Lev Semyonovich Pontryagin himself was a tour de force for its time. P. S. Aleksandrov, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko described this book in glowing terms: “This book belongs to that rare category of mathematical works that can truly be called classical - books which retain their significance for decades and exert a formative influence on the scientific outlook of whole generations of mathematicians”. The final book I mention from my graduate studies days is “Topological Transformation Groups” [5] by Deane Montgomery and Leo Zippin which contains a solution of Hilbert’s fifth problem as well as a structure theory for locally compact non-abelian groups.
    [Show full text]
  • Orders on Computable Torsion-Free Abelian Groups
    Orders on Computable Torsion-Free Abelian Groups Asher M. Kach (Joint Work with Karen Lange and Reed Solomon) University of Chicago 12th Asian Logic Conference Victoria University of Wellington December 2011 Asher M. Kach (U of C) Orders on Computable TFAGs ALC 2011 1 / 24 Outline 1 Classical Algebra Background 2 Computing a Basis 3 Computing an Order With A Basis Without A Basis 4 Open Questions Asher M. Kach (U of C) Orders on Computable TFAGs ALC 2011 2 / 24 Torsion-Free Abelian Groups Remark Disclaimer: Hereout, the word group will always refer to a countable torsion-free abelian group. The words computable group will always refer to a (fixed) computable presentation. Definition A group G = (G : +; 0) is torsion-free if non-zero multiples of non-zero elements are non-zero, i.e., if (8x 2 G)(8n 2 !)[x 6= 0 ^ n 6= 0 =) nx 6= 0] : Asher M. Kach (U of C) Orders on Computable TFAGs ALC 2011 3 / 24 Rank Theorem A countable abelian group is torsion-free if and only if it is a subgroup ! of Q . Definition The rank of a countable torsion-free abelian group G is the least κ cardinal κ such that G is a subgroup of Q . Asher M. Kach (U of C) Orders on Computable TFAGs ALC 2011 4 / 24 Example The subgroup H of Q ⊕ Q (viewed as having generators b1 and b2) b1+b2 generated by b1, b2, and 2 b1+b2 So elements of H look like β1b1 + β2b2 + α 2 for β1; β2; α 2 Z.
    [Show full text]
  • Arxiv:Math/0306105V2
    A bound for the number of automorphisms of an arithmetic Riemann surface BY MIKHAIL BELOLIPETSKY Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia e-mail: [email protected] AND GARETH A. JONES Faculty of Mathematical Studies, University of Southampton, Southampton, SO17 1BJ e-mail: [email protected] Abstract We show that for every g ≥ 2 there is a compact arithmetic Riemann surface of genus g with at least 4(g − 1) automorphisms, and that this lower bound is attained by infinitely many genera, the smallest being 24. 1. Introduction Schwarz [17] proved that the automorphism group of a compact Riemann surface of genus g ≥ 2 is finite, and Hurwitz [10] showed that its order is at most 84(g − 1). This bound is sharp, by which we mean that it is attained for infinitely many g, and the least genus of such an extremal surface is 3. However, it is also well known that there are infinitely many genera for which the bound 84(g − 1) is not attained. It therefore makes sense to consider the maximal order N(g) of the group of automorphisms of any Riemann surface of genus g. Accola [1] and Maclachlan [14] independently proved that N(g) ≥ 8(g +1). This bound is also sharp, and according to p. 93 of [2], Paul Hewitt has shown that the least genus attaining it is 23. Thus we have the following sharp bounds for N(g) with g ≥ 2: 8(g + 1) ≤ N(g) ≤ 84(g − 1). arXiv:math/0306105v2 [math.GR] 21 Nov 2004 We now consider these bounds from an arithmetic point of view, defining arithmetic Riemann surfaces to be those which are uniformized by arithmetic Fuchsian groups.
    [Show full text]