The 8Th IAL Symposium Lichens in Deep Time August 1–5, 2016 Helsinki, Finland IAL8 Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

The 8Th IAL Symposium Lichens in Deep Time August 1–5, 2016 Helsinki, Finland IAL8 Abstracts The 8th IAL Symposium Lichens in Deep Time August 1–5, 2016 Helsinki, Finland IAL8 Abstracts Welcome Messages, pages 3, 5 Opening Address, page 7 Abstracts of keynote lectures, pages 10–17 Abstracts of oral presentations, pages 21–82 Abstracts of poster presentations, pages 85–200 Welcome Message The President of the International Association of Lichenology Dear Fellow Lichenologist, It is a great pleasure for me to welcome you to IAL8 in Helsinki on behalf of the IAL Council and the Scientific Thorsten Lumbsch Committee of the symposium. IAL President Since the inaugural IAL meeting in Münster in March 1986, our society has had tremendously successful and enjoyable meetings. I still remember the first meeting when, for the first time, I met a number of prestigious colleagues and – as an The 8 undergraduate student – could interact with colleagues in a relaxed atmosphere. These meetings are especially vital for th students and early career scientists where they can interact – Lichens in Deep Time IAL Symposium with colleagues and build networks. Older scientists, like myself, can pass on essential guidance to younger scholars, while at the same time also learn from their new and bright ideas. We are confident that this 8th Symposium in Helsinki will be equally as memorable as the previous ones. Helsinki has a rich history and tradition in lichenological research and we are looking forward to this event, entitled ”Lichens in Deep Time”. Contributions to the symposium will reflect the latest trends in using genomic data to better understand the lichen symbiosis and the evolutionary history of its partners, have a strong part in ecological studies, address the threats imposed by rapid man-made changes occurring to the biosphere and an ever-growing interest in tropical lichens. The topics discussed at the symposium will be as diverse as the field of lichenology itself is today. In addition to the scientific presentations and discussion, there is an opulent and exciting social program. Numerous excursions have been organized which I am confident will produce new friendships and collaborations. The scientific committee is optimistic that you will not only enjoy excellent science, but also engage in stimulating interaction with colleagues and a sense of community in one of the major capitals of lichenology. IAL8 • HELSINKI 2016 3 Welcome Message from the Local Organising Committee Dear Colleagues, It gives me great pleasure to welcome you on behalf of the local organising committee to IAL8. We are very excited to be hosting this important conference in Helsinki. We hope to follow in the successful footsteps of the previous IAL Marko Hyvärinen, symposia and make this event as enjoyable as the previous Chairman of the Local ones. Organising Committee Four and a half years ago, right after the inspiring 7th IAL Symposium in Bangkok, we started planning the content of The 8 its successor. During our first brainstorming sessions it was decided that the motto of the congress should be ”Lichens in th Deep Time”, referring to different timescales in evolution, – Lichens in Deep Time IAL Symposium ecology, and environmental change as well as in the history of lichenology. Our wide selection of sessions reflects this idea of exploring changes in lichens at different timescales and also changes in the way we perceive the very concept of a lichen. To our satisfaction this setting of sessions was well received by the lichenological community, and we now have more than 350 presentations to follow and enjoy during the congress week. The previous IAL symposia have proven to have a significant impact on the scientific activity in the field of lichenology in hosting countries. Invigorating our long tradition in lichen research is one of the major incentives for us to host the congress. However, together with the science we also want to celebrate public outreach. The ways to communicate the value of science and present the beauty of lichen diversity are variable and some of these ways are presented during the social programme of the week as well as in the pre- and post- congress excursions organised by our collaborators in the universities of Turku and Oulu. We in the Finnish Museum of Natural History ’Luomus’ are especially proud to announce the publication of the brand new book, ”Lichens of Finland” that is based on the award-winning Finnish books ”Suomen jäkäläopas” and ”Suomen rupijäkälät”. We welcome you all, and particularly those of you, who have had to travel far to join us; we wish you all a pleasant and fruitful stay. Tervetuloa jäkälöitymään! (Welcome to get lichenized) IAL8 • HELSINKI 2016 5 Opening Address CEO, Finnish Museum of Natural History ’Luomus’ Dear Lichenologists, On behalf of the Finnish Museum of Natural history ’Luomus’ and the University of Helsinki, I am very pleased and happy to welcome all 300 delegates from 46 countries who have Leif Schulman, honoured us by taking part in IAL8 in Helsinki. Director of the Finnish Museum of Natural Lichens in Deep Time is a most suitable topic for a congress History ’Luomus’ at the University of Helsinki, which has a deep tradition in lichenology. This history is reflected in the exceptionally The 8 rich lichen collections that we at Luomus are proud to keep for current and future generations of researchers. They are a th part of Finland’s national natural history collections, the care – Lichens in Deep Time IAL Symposium of which is the core duty of Luomus. In addition, Luomus is constituted to conduct research on the collections and display them to the public. These duties are intertwined in a fruitful interaction – indeed like the symbionts of a lichenized fungus – and I hope you will have some time to familiarise yourselves with and benefit from all these resources of Luomus. I wish to express my warmest thanks to the IAL Council led by the President of the IAL, Thorsten Lumbsch and to the Local Organising Committee led by Marko Hyvärinen for their joint venture to build a platform for fascinating and informative scientific presentations. The scientific programme of the conference looks impressive and seems to address questions that have wide relevance far beyond the borders of lichenology. I hope that the exciting social programme will entail plenty of opportunities for stimulating conversations and relaxation. I wish you a productive symposium and fruitful discussions, and hope that IAL8 will have a major impact on the international community of lichenologists. IAL8 • HELSINKI 2016 7 IAL Council (2012–2016) President Helge Thorsten Lumbsch, The Field Museum of Natural History, USA Vice President Mats Wedin, Swedish Museum of Natural History, Sweden Secretary Sergio Pérez-Ortega, Museo Nacional de Ciencias Naturales, Spain Treasurer Volker Otte, Senckenberg Museum für Naturkunde Görlitz, Germany Assistant Treasurer Christian Printzen, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Germany Editor Ave Suija, Institute of Ecology and Earth Sciences, University of Tartu, Estonia Members-at-Large Heidi Döring, Royal Botanic Gardens, Kew, UK, Jolanta Miadlikowska, Department of Biology, Duke University, USA, Adriano Spielmann, Universidade Federal de Mato Grosso do Sul, Brazil, Marko Hyvärinen, Finnish Museum of Natural History, Finland Auditor Ulf Arup, Botanical Museum, Lund University, Sweden KEYNOTE Vice Auditor Starri Heiðmarsson, Icelandic Institute of Natural History, Iceland Nomination Committee Peter D. Crittenden, The School of Biology, Biology Building, The University of Nottingham, UK, Bruce McCune, Dept. of Botany & Plant Pathology, Oregon State LECTURES University, USA, Leo Sancho, Departmento de Biologia Vegetal II, Facultad de Farmacia, Universidad Complutense, Spain IAL8 Organising committee Chair Marko Hyvärinen, Finnish Museum of Natural History ’LUOMUS’, University of Helsinki Members Soili Stenroos, Leena Myllys, Annina Launis, Raquel Pino Bodas, Laura Hiisivuori, Sampsa Lommi, Leena Helynranta, Leena Gustavsson & Hanna IAL Symposium – Lichens in Deep Time IAL Symposium th Lindgren (also the Field Museum, USA), Finnish Museum of Natural History ’LUOMUS’, University of Helsinki Seppo Huhtinen, Herbarium, University of Turku The 8 Juha Pykälä, Finnish Environment Institute Jouko Rikkinen, LUOMUS and the Dept. of Biological Sciences, University of Helsinki Jouni Aspi, Department of Biology, University of Oulu IAL8 Scientific Committee Chair Thorsten Lumbsch Members Marko Hyvärinen, Leena Myllys, Volker Otte, Sergio Pérez-Ortega, Juha Pykälä, Jouko Rikkinen, Soili Stenroos, Ave Suija, Mats Wedin 8 IAL8 • HELSINKI 2016 Mon 1 Aug 10.15–11.00 Room 1 • KEYNOTE 1 Dr. Silke Werth (Karl-Franzens-Universität Graz) has been an assistant professor (Universitätsassistentin) at Lichen population genetics in the era of high throughput the University of Graz since 2014. She has a diploma sequencing from the University of Tromsø (Norway) in lichen Silke Werth community ecology, and a PhD from the University of Berne (Switzerland). Her thesis on the dispersal Institute of Plant Sciences, University of Graz, Austria biology and population genetics of the tree lungwort, Population genetics deals with the distribution and amount of genetic variation in populations and with Lobaria pulmonaria was awarded in 2005. As a post changes of this variation over space and time. In the past decade, population genetics has received doc at the University of California, Los Angeles, she attention in lichenized fungi and their photobionts, mostly based on neutral markers. We have learnt
Recommended publications
  • Phylogeny of the Cetrarioid Core (Parmeliaceae) Based on Five
    The Lichenologist 41(5): 489–511 (2009) © 2009 British Lichen Society doi:10.1017/S0024282909990090 Printed in the United Kingdom Phylogeny of the cetrarioid core (Parmeliaceae) based on five genetic markers Arne THELL, Filip HÖGNABBA, John A. ELIX, Tassilo FEUERER, Ingvar KÄRNEFELT, Leena MYLLYS, Tiina RANDLANE, Andres SAAG, Soili STENROOS, Teuvo AHTI and Mark R. D. SEAWARD Abstract: Fourteen genera belong to a monophyletic core of cetrarioid lichens, Ahtiana, Allocetraria, Arctocetraria, Cetraria, Cetrariella, Cetreliopsis, Flavocetraria, Kaernefeltia, Masonhalea, Nephromopsis, Tuckermanella, Tuckermannopsis, Usnocetraria and Vulpicida. A total of 71 samples representing 65 species (of 90 worldwide) and all type species of the genera are included in phylogentic analyses based on a complete ITS matrix and incomplete sets of group I intron, -tubulin, GAPDH and mtSSU sequences. Eleven of the species included in the study are analysed phylogenetically for the first time, and of the 178 sequences, 67 are newly constructed. Two phylogenetic trees, one based solely on the complete ITS-matrix and a second based on total information, are similar, but not entirely identical. About half of the species are gathered in a strongly supported clade composed of the genera Allocetraria, Cetraria s. str., Cetrariella and Vulpicida. Arctocetraria, Cetreliopsis, Kaernefeltia and Tuckermanella are monophyletic genera, whereas Cetraria, Flavocetraria and Tuckermannopsis are polyphyletic. The taxonomy in current use is compared with the phylogenetic results, and future, probable or potential adjustments to the phylogeny are discussed. The single non-DNA character with a strong correlation to phylogeny based on DNA-sequences is conidial shape. The secondary chemistry of the poorly known species Cetraria annae is analyzed for the first time; the cortex contains usnic acid and atranorin, whereas isonephrosterinic, nephrosterinic, lichesterinic, protolichesterinic and squamatic acids occur in the medulla.
    [Show full text]
  • New Or Interesting Lichens and Lichenicolous Fungi from Belgium, Luxembourg and Northern France
    New or interesting lichens and lichenicolous fungi from Belgium, Luxembourg and northern France. X Emmanuël SÉRUSIAUX1, Paul DIEDERICH2, Damien ERTZ3, Maarten BRAND4 & Pieter VAN DEN BOOM5 1 Plant Taxonomy and Conservation Biology Unit, University of Liège, Sart Tilman B22, B-4000 Liège, Belgique ([email protected]) 2 Musée national d’histoire naturelle, 25 rue Munster, L-2160 Luxembourg, Luxembourg ([email protected]) 3 Jardin Botanique National de Belgique, Domaine de Bouchout, B-1860 Meise, Belgium ([email protected]) 4 Klipperwerf 5, NL-2317 DX Leiden, the Netherlands ([email protected]) 5 Arafura 16, NL-5691 JA Son, the Netherlands ([email protected]) Sérusiaux, E., P. Diederich, D. Ertz, M. Brand & P. van den Boom, 2006. New or interesting lichens and lichenicolous fungi from Belgium, Luxembourg and northern France. X. Bul- letin de la Société des naturalistes luxembourgeois 107 : 63-74. Abstract. Review of recent literature and studies on large and mainly recent collections of lichens and lichenicolous fungi led to the addition of 35 taxa to the flora of Belgium, Lux- embourg and northern France: Abrothallus buellianus, Absconditella delutula, Acarospora glaucocarpa var. conspersa, Anema nummularium, Anisomeridium ranunculosporum, Artho- nia epiphyscia, A. punctella, Bacidia adastra, Brodoa atrofusca, Caloplaca britannica, Cer- cidospora macrospora, Chaenotheca laevigata, Collemopsidium foveolatum, C. sublitorale, Coppinsia minutissima, Cyphelium inquinans, Involucropyrenium squamulosum, Lecania fructigena, Lecanora conferta, L. pannonica, L. xanthostoma, Lecidea variegatula, Mica- rea micrococca, Micarea subviridescens, M. vulpinaris, Opegrapha prosodea, Parmotrema stuppeum, Placynthium stenophyllum var. isidiatum, Porpidia striata, Pyrenidium actinellum, Thelopsis rubella, Toninia physaroides, Tremella coppinsii, Tubeufia heterodermiae, Verru- caria acrotella and Vezdaea stipitata.
    [Show full text]
  • Cetrarioid Lichen Genera and Species in NE China
    Ann. Bot. Fennici 46: 365–380 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 30 October 2009 © Finnish Zoological and Botanical Publishing Board 2009 Cetrarioid lichen genera and species in NE China Ming-Jou Lai, Xi-Ling Chen1, Zhi-Guang Qian2 , Lei Xu3 & Teuvo Ahti4,* 1) Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China 2) Shanghai Scienceland & Shanghai Museum of Natural History, Pudong New Area, Shanghai 201204, China 3) Tunghai University, P.O. Box 834, Taichung, Taiwan 407, China 4) Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland (*corresponding author’s e-mail: [email protected]) Received 5 Apr. 2007, revised version received 28 Apr. 2009, accepted 11 Sep. 2008 Lai, M. J., Chen, X. L., Qian, Z. G., Xu, L. & Ahti, T. 2009: Cetrarioid lichen genera and species in NE China. — Ann. Bot. Fennici 46: 365–380. Twenty-five species in ten cetrarioid lichen genera belonging to the family Parme- liaceae are reported for the lichen flora of NE China. Keys to the genera and species as well as short descriptions are given. Cetrelia japonica, Tuckermannopsis americana and T. ulophylloides are reported as new to China. Seven additional species are new to NE China. Nephromopsis endocrocea is excluded from the lichen flora of China. Key words: Asia, biodiversity, floristics, lichenized Ascomycetes Professor Ming-Jou Lai, the first author of the cetrarioid lichens for NE China. present article, sadly passed away soon after sub- Geographically NE China comprises the mitting the manuscript to Annales Botanici Fen- eastern part of Neimenggu (Inner Mongolia) nici.
    [Show full text]
  • A New Species of Allocetraria (Parmeliaceae, Ascomycota) in China
    The Lichenologist 47(1): 31–34 (2015) 6 British Lichen Society, 2015 doi:10.1017/S0024282914000528 A new species of Allocetraria (Parmeliaceae, Ascomycota) in China Rui-Fang WANG, Xin-Li WEI and Jiang-Chun WEI Abstract: Allocetraria yunnanensis R. F. Wang, X. L. Wei & J. C. Wei is described as a new species from the Yunnan Province of China, and is characterized by having a shiny upper surface, strongly wrinkled lower surface, and marginal pseudocyphellae present on the lower side in the form of a white continuous line or spot. The phylogenetic analysis based on nrDNA ITS sequences suggests that the new species is related to A. sinensis X. Q. Gao. Key words: Allocetraria yunnanensis, lichen, taxonomy Accepted for publication 26 June 2014 Introduction genus, as all ten species have been reported there (Kurokawa & Lai 1991; Thell et al. The lichenized genus Allocetraria Kurok. & 1995; Randlane et al. 2001; Wang et al. M. J. Lai was described in 1991, with a new 2014). During our taxonomic study of Allo- species A. isidiigera Kurok. & M. J. Lai, and cetraria, a new species was found. two new combinations: A. ambigua (C. Bab.) Kurok. & M. J. Lai and A. stracheyi (C. Bab.) Kurok. & M. J. Lai (Kurokawa & Lai 1991). The main distribution area of Allocetraria Materials and Methods species was reported to be in the Himalayas, A dissecting microscope (ZEISS Stemi SV11) and com- including China, India, and Nepal. pound microscope (ZEISS Axioskop 2 plus) were used Allocetraria is characterized by dichoto- to study the morphology and anatomy of the specimens. Colour test reagents [10% aqueous KOH, saturated mously or subdichotomously branched lobes aqueous Ca(OCl)2, and concentrated alcoholic p- and a foliose to suberect or erect thallus with phenylenediamine] and thin-layer chromatography sparse rhizines, angular to sublinear pseudo- (TLC, solvent system C) were used for the detection cyphellae, palisade plectenchymatous upper of lichen substances (Culberson & Kristinsson 1970; Culberson 1972).
    [Show full text]
  • Lavansaari) – One of the Remote Islands in the Gulf of Finland
    Folia Cryptog. Estonica, Fasc. 56: 31–52 (2019) https://doi.org/10.12697/fce.2019.56.05 The lichens of Moshchny Island (Lavansaari) – one of the remote islands in the Gulf of Finland Irina S. Stepanchikova1,2, Dmitry E. Himelbrant1,2, Ulf Schiefelbein3, Jurga Motiejūnaitė4, Teuvo Ahti5, Mikhail P. Andreev2 1St. Petersburg State University, Universitetskaya emb. 7–9, 199034 St. Petersburg, Russia. E-mails: [email protected], [email protected] 2Laboratory of Lichenology and Bryology, Komarov Botanical Institute RAS, Professor Popov St. 2, 197376 St. Petersburg, Russia. E-mail: [email protected] 3Blücherstrasse 71, D-18055 Rostock, Germany. E-mail: [email protected] 4Laboratory of Mycology, Institute of Botany, Nature Research Centre, Žaliųjų Ežerų 49, LT–08406 Vilnius, Lithuania. E-mail: [email protected] 5Botanical Museum, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland. E-mail: [email protected] Abstract: We present a checklist for Moshchny Island (Leningrad Region, Russia). The documented lichen biota comprises 349 species, including 313 lichens, 30 lichenicolous fungi and 6 non-lichenized saprobic fungi. Endococcus exerrans and Lichenopeltella coppinsii are reported for the first time for Russia;Cercidospora stenotropae, Erythricium aurantiacum, Flavoplaca limonia, Lecidea haerjedalica, and Myriospora myochroa for European Russia; Flavoplaca oasis, Intralichen christiansenii, Nesolechia fusca, and Myriolecis zosterae for North-Western European Russia; and Arthrorhaphis aeruginosa, Calogaya pusilla, and Lecidea auriculata subsp. auriculata are new for Leningrad Region. The studied lichen biota is moderately rich and diverse, but a long history of human activity likely caused its transformation, especially the degradation of forest lichen biota.
    [Show full text]
  • New Records of Crustose Teloschistaceae (Lichens, Ascomycota) from the Murmansk Region of Russia
    vol. 37, no. 3, pp. 421–434, 2016 doi: 10.1515/popore-2016-0022 New records of crustose Teloschistaceae (lichens, Ascomycota) from the Murmansk region of Russia Ivan FROLOV1* and Liudmila KONOREVA2,3 1 Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, CZ-37005, Czech Republic 2 Laboratory of Flora and Vegetations, The Polar-Alpine Botanical Garden and Institute KSC RAS, Kirovsk, Murmansk region, 184209, Russia 3 Laboratory of Lichenology and Bryology, Komarov Botanical Institute RAS, Professor Popov St. 2, St. Petersburg, 197376, Russia * corresponding author <[email protected]> Abstract: Twenty-three species of crustose Teloschistaceae were collected from the northwest of the Murmansk region of Russia during field trips in 2013 and 2015. Blas- tenia scabrosa is a new combination supported by molecular data. Blastenia scabrosa, Caloplaca fuscorufa and Flavoplaca havaasii are new to Russia. Blastenia scabrosa is also new to the Caucasus Mts and Sweden. Detailed morphological measurements of the Russian specimens of these species are provided. Caloplaca exsecuta, C. grimmiae and C. sorocarpa are new to the Murmansk region. The taxonomic position of C. alcarum is briefly discussed. Key words: Arctic, Rybachy Peninsula, Caloplaca s. lat., Blastenia scabrosa. Introduction Although the Murmansk region is one of the best studied regions of Russia in terms of lichen diversity, there are numerous reports in recent literature of new discoveries there (e.g. Fadeeva et al. 2013; Konoreva 2015; Melechin 2015; Urbanavichus 2015). Several localities in the northwest of the Murmansk region, mainly on the Pechenga Tundra Mountains and the Rybachy Peninsula, were visited in 2013 and 2015.
    [Show full text]
  • Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, Alaska
    AN ABSTRACT OF THE THESIS OF Kaleigh Spickerman for the degree of Master of Science in Botany and Plant Pathology presented on June 11, 2015 Title: Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, Alaska Abstract approved: ______________________________________________________ Bruce McCune Functional traits of vascular plants have been an important component of ecological studies for a number of years; however, in more recent times vascular plant ecologists have begun to formalize a set of key traits and universal system of trait measurement. Many recent studies hypothesize global generality of trait patterns, which would allow for comparison among ecosystems and biomes and provide a foundation for general rules and theories, the so-called “Holy Grail” of ecology. However, the majority of these studies focus on functional trait patterns of vascular plants, with a minority examining the patterns of cryptograms such as lichens. Lichens are an important component of many ecosystems due to their contributions to biodiversity and their key ecosystem services, such as contributions to mineral and hydrological cycles and ecosystem food webs. Lichens are also of special interest because of their reliance on atmospheric deposition for nutrients and water, which makes them particularly sensitive to air pollution. Therefore, they are often used as bioindicators of air pollution, climate change, and general ecosystem health. This thesis examines the functional trait patterns of lichens in two contrasting regions with fundamentally different kinds of data. To better understand the patterns of lichen functional traits, we examined reproductive, morphological, and chemical trait variation along precipitation and temperature gradients in Oregon.
    [Show full text]
  • Steciana Doi:10.12657/Steciana.020.008 ISSN 1689-653X
    2016, Vol. 20(2): 63–72 Steciana doi:10.12657/steciana.020.008 www.up.poznan.pl/steciana ISSN 1689-653X LICHENS AS INDICATORS OF AIR POLLUTION IN ŁOMŻA ANNA MATWIEJUK, PAULINA CHOJNOWSKA A. Matwiejuk, P. Chojnowska, Institute of Biology, University of Bialystok, Konstanty Ciołkowski 1 J, 15-245 Białystok, Poland, e-mail: [email protected], [email protected] (Received: December 9, 2015. Accepted: March 29, 2016) ABSTRACT. Research using lichens as bioindicators of air pollution has been conducted in the city of Łomża. The presence of indicator species of epiphytic and epilithic lichens has been analysed. A 4-point lichen scale has been developed for the test area, on the basis of which four lichenoindication zones have been deter- mined. The least favourable conditions for lichen growth have been recorded in the city center. Green areas and open spaces are the areas with the most favourable impact of the urban environment on lichen biota. KEY WORDS: air pollution, biodiversity, lichens, urban environment INTRODUCTION terised by high resistance to factors such as extreme temperatures, lack of water and short growing peri- Lichens (lichenized fungi, Fungi lichenisati) are symbi- od, yet highest sensitivity to air pollution (Fałtyno­ otic organisms, created in most cases by an associa- wicz 1995). For more than 140 years lichens have tion of green algae (Chlorophyta) or blue-green algae been considered one of the best bioindicators of air (Cyanobacteria) and fungi, especially ascomycetes pollution (NYLANDER 1866). (Ascomycota) (NASH 1996, PURVIS 2000). They are Areas with particularly heavy impact of civili- mushrooms with a specific nutritional strategy, in- zation on the environment are cities.
    [Show full text]
  • BLS Bulletin 111 Winter 2012.Pdf
    1 BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2012 PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] VICE-PRESIDENT J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: S.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • Facultative Parasitism and Reproductive Strategies in Chroodiscus (Ascomycota, Ostrapales)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stapfia Jahr/Year: 2002 Band/Volume: 0080 Autor(en)/Author(s): Lücking Robert, Grube Martin Artikel/Article: Facultative parasitism and reproductive strategies in Chroodiscus (Ascomycota, Ostrapales). 267-292 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Stapfia 80 267-292 5.7.2002 Facultative parasitism and reproductive strategies in Chroodiscus (Ascomycota, Ostropales) R. LUCKING & M. GRUBE Abstract: LUCKING R. & M. GRUBE (2002): Facultative parasitism and reproductive strategies in Chroodiscus (Ascomycota, Ostropales). — Stapfia 80: 267-292. Facultative parasitism in foliicolous species of Chroodiscus was investigated using epifluo- rescence microscopy and the evolution of biological features within members of the genus was studied using a phenotype-based phylogenetic approach. Facultative parasitism occurs in at least five taxa, all on species of Porina, and a quantitative approach to this phenomenon was possible in the two most abundant taxa, C. australiensis and C. coccineus. Both show a high degree of host specificity: C. australiensis on Porina mirabilis and C. coccineus on P. subepiphylla. Parasitic specimens are significantly more frequent in C. australiensis, and this species also shows a more aggressive behaviour towards its host. Cryptoparasitic specimens, in which host features are macroscopically inapparent, are also most frequent in C. australiensis. Facultative vs. obligate parasitism and corresponding photobiont switch are discussed as mechanisms potentially triggering the evolution of new lineages in species with trentepohlioid photobionts. C. parvisporus and C. rubentiicola are described as new to sci- ence. The terminology for the vegetative propagules of C. mirificus is discussed. Zusammenfassung: LUCKING R.
    [Show full text]
  • <I> Lecanoromycetes</I> of Lichenicolous Fungi Associated With
    Persoonia 39, 2017: 91–117 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2017.39.05 Phylogenetic placement within Lecanoromycetes of lichenicolous fungi associated with Cladonia and some other genera R. Pino-Bodas1,2, M.P. Zhurbenko3, S. Stenroos1 Key words Abstract Though most of the lichenicolous fungi belong to the Ascomycetes, their phylogenetic placement based on molecular data is lacking for numerous species. In this study the phylogenetic placement of 19 species of cladoniicolous species lichenicolous fungi was determined using four loci (LSU rDNA, SSU rDNA, ITS rDNA and mtSSU). The phylogenetic Pilocarpaceae analyses revealed that the studied lichenicolous fungi are widespread across the phylogeny of Lecanoromycetes. Protothelenellaceae One species is placed in Acarosporales, Sarcogyne sphaerospora; five species in Dactylosporaceae, Dactylo­ Scutula cladoniicola spora ahtii, D. deminuta, D. glaucoides, D. parasitica and Dactylospora sp.; four species belong to Lecanorales, Stictidaceae Lichenosticta alcicorniaria, Epicladonia simplex, E. stenospora and Scutula epiblastematica. The genus Epicladonia Stictis cladoniae is polyphyletic and the type E. sandstedei belongs to Leotiomycetes. Phaeopyxis punctum and Bachmanniomyces uncialicola form a well supported clade in the Ostropomycetidae. Epigloea soleiformis is related to Arthrorhaphis and Anzina. Four species are placed in Ostropales, Corticifraga peltigerae, Cryptodiscus epicladonia, C. galaninae and C. cladoniicola
    [Show full text]