Anticonvulsant Drug by J

Total Page:16

File Type:pdf, Size:1020Kb

Anticonvulsant Drug by J Brit. J. Pharmacol. (1953), 8, 230. THE EVALUATION OF " MYSOLINE "-A NEW ANTICONVULSANT DRUG BY J. YULE BOGUE AND H. C. CARRINGTON From Imperial Chemical Industries Limited, Research and Biological Laboratories, Blackley, Manchester, 9 (RECEIVED JANUARY 27, 1953) Mysoline* is a new anticonvulsant which was vative of phenobarbitone, formula I, in which the first prepared and evaluated by us and subse- oxygen in the urea grouping of the barbituric acid quently subjected to clinical trial (Handley and is replaced by two atoms of hydrogen. Indeed, Stewart, 1952). This paper describes some of the among the methods by which it may be prepared methods by which the drug was evaluated. (B.P.666,027, W. R. Boon, H. C. Carrington, C. H. The drugs commonly used for the treatment of Vasey, and I.C.I., 6.2.52) are the electrolytic reduc- epilepsy generally belong to the same chemical tion of phenobarbitone itself, and the catalytic classes as the hypnotics and sedatives, but the desulphurization of the corresponding 2-thio- hypnotic and anticonvulsant activities do not barbituric acid. necessarily go together. In the barbiturate series, Ph CO.NH Ph CO.NH phenobarbitone is both a hypnotic and an anti- convulsant, but many other powerful hypnotic C\ CO \ H2 barbiturates are almost devoid of anticonvulsant Et CO.NH Et CO.NH action. The hydantoins, too, have both types of (I) (1I) activity, but they are weaker hypnotics than the barbiturates, and in recent years several members Mysoline is a colourless, remarkably stable, of the series with little or no hypnotic action have crystalline substance which melts at 281-282° C. been introduced as anticonvulsants. These include It is sparingly soluble in water (60 mg./100 ml. 5: 5-diphenylhydantoin (phenytoin) and 5-ethyl-3- at 370 C.) and in most organic solvents, and, un- methyl-5-phenylhydantoin (mesantoin, methoin). like the parent barbiturate, it has no acidic pro- It is unfortunate that the hydantoins in general perties. are rather toxic substances. 5-Ethyl-5-phenyl- METHODS hydantoin (nirvanol), which was introduced many Seizures Induced by Electrical Shock.-A standard years ago for the treatment of chorea, fell out of convulsion was produced in rats by electrical stimula- use after a short time because of its toxicity. Com- tion, and the effects of drugs on the inhibition of these have also been made of convulsions were measured. plaints of toxic side-effects The method chosen was a modification of that de- both phenytoin and methoin. With the latter scribed by Kozelka, Hine, and Grieber (1942) and this is not surprising in view of recent evidence Alles, Ellis, Feigen, and Redman (1947) in that time that in the animal body it is metabolized to nir- rather than current was the variable. The electrical vanol (Butler, 1952). circuit was similar to that used by Tainter, Tainter, The barbiturates are less liable to produce Lawrence, Neuru, Lackey, Luduena, Kirtland, and chronic toxic effects than the hydantoins. It is Gonzales (1943). Seizures were induced by passing therefore rather surprising that more effort has a 7.5-mA. 50-cycle sinusoidal waveform current by not been made to obtain non-hypnotic anti- means of padded ear clips. A timing switch was convulsants in this series. The only analogue of incorporated in the circuit and set so that the maxi- wide use in mal duration of the shock did not exceed 10 seconds. phenobarbitone which has found Within a period of 2-7 seconds the normal rat epilepsy is phemitone (5-ethyl-l-methyl-5-phenyl- exhibited the characteristic tonic extension of the hind barbituric acid), which has somewhat less hypnotic legs. When this was attained the current was switched and anticonvulsant activity. off and the elapsed time recorded. Mysoline (5-ethyl-5-phenylhexahydropyrimidine- Albino rats of both sexes within a weight range of 4: 6-dione), formula II, may be considered as a deri- 85-105 g. were used. The initial threshold in terms of the energy required to produce the tonic extensor * " Mysoline " is the registered trade-mark of Imperial Chemical (Pharmaceuticals) Ltd. component of the electrically induced seizure was " MYSOLINE"-A NEW ANTICONVULSANT 231 determined for each animal, which then served as its TABLE I own control. Only those which exhibited the tonic THE ACTIVITY OF MYSOLINE AND OTHER ANTICONVUL- extensor component a of 23-34 SANTS AGAINST ELECTRICALLY INDUCED SEIZURES IN after shock intensity RATS milliampere seconds or 600-800 mW. sec. (shock dura- tion 3-4.5 seconds) were selected for anticonvulsant No. of Rats in a Group of 10 in assay. Each assay of a drug at the chosen dose level which the Tonic Extensor Com- Oral ponent was Abolished was carried out on a group of 10 rats. Anticonvulsant Dose On the day after the initial threshold determina- mg./kg. Hours After Dosing tion the drug was administered orally. The maximum 1 3 6 24 48 72 dose never exceeded 500 mg. /kg.; all doses were Mysoline 500 6 10 10 10 10 1 10/ 10 given in a volume of 0.5 ml./ 100 g. body weight. 200 7 10 10 9 1 _ 10/10 A control group of 10 rats was included in each 100 5 10 10 5 0 - 10/10 50 3 9 10 4 - - 10/10 experiment and was given the same volume of 20 1 9 10 I 0 - 10/10 diluent or dispersing agent as was used for the drug 10 1 8 10 0 - - 10/10 10 2 7 8 1 - - 9/10 under test. Unless otherwise stated, mysoline and 5 1 6 5 0 - - 7/10 other insoluble drugs were administered as an aqueous Phenobarbitone 20 5 10 10 1 - - 10/10 dispersion in Dispersol OG and LN. This dispersing sodium 10 3 5 8 1 - - 8/10 agent was a mixture of polyglyceryl ricinoleate (OG) 10 1 6 3 0 - - 6/10 and the disodium salt of a disulphonate of dinaphthyl 5 0 0 2 0 - - 2/10 methane (LN). 5: 5-Diphenyl- 200 9 10 10 2 10/10 hydantoin 100 9 10 10 0 - - 10/10 Seizures were induced at intervals of 1, 3, 6, and 50 4 5 4 1 - - 7/10 24 hours after dosing and thereafter at 24-hour inter- Methoin (Mesan- 50 9 10 10 0 - - 10/10 vals until the rats returned to within the normal toin; 5-ethyl-3- 20 3 9 8 0 - - 9/10 threshold range. The maximum shock intensity de- methyl-5-phenyl- 10 1 2 0 0 - - 2/10 livered to a protected animal was 75 mA. sec. or 2,000 mW. sec. (a 10-second shock). Troxidone (Trid- 500 2 6 2 0 - - 6/10 ione; 3: 5: 5-tri- 100 0 0 0 0 - - 0/10 Anticonvulsant activity was assessed in terms of methyloxazoli- the dose of drug required to abolish the tonic extensor dine-2: 4-dione component of the seizure at this maximal intensity. Phenylacetylurea 100 10 10 10 1 - - 10/10 Toman, Swinyard, and Goodman (1946), Tomnan (Phenurone) 50 8 8 5 0 - - 9/10 and Goodman (1948), and Toman, and 20 0 4 0 0 - - 4/10 Goodman, 10 0 1 0 0 - - 1/10 Swinyard (1949) have criticized the use of currents of relatively long duration. One of their assay * The last column includes all rats which did not exhibit the tonic methods is based on the ability of anticonvulsant extensor component at one or more of the test times. agents to modify the different phases of the seizure pattern elicited by supramaximal shocks of very short RESULTS duration (150 mA. for 0.2 sec.). They were able to study these phases independently of the effects of Electrical Seizures.-Table I summarizes the drugs on the energy threshold required to produce results obtained with mysoline and compares them maximal seizures. They found that long periods of with those found with phenobarbitone, 5:5- stimulation concealed the occurrence of drug-modified diphenylhydantoin, methoin (mesantoin), troxidone seizures. Nevertheless, the method as used by us (tridione), and phenylacetylurea (phenurone). has never failed to show the anticonvulsant activity At 5 mg./kg. mysoline was found to be more of clinically recognized anti-epileptic agents or of active than phenobarbitone at the same dose level. other compounds reported in the literature. We were The tonic extensor component was abolished in not, of course, able to follow the five components of the supramaximal induced seizure described by not less than 6 out of 10 animals as compared with Toman, Swinyard, and Goodman (1946). 2 out of 10 with phenobarbitone. At 10 mg./kg. mysoline protected 9 or 10 out of 10 as compared Leptazol (Metrazol) Seizures.-A standard dose of with 6 to 8 with phenobarbitone. This activity 90 mg. /kg. made from a crystalline preparation of was not approached by the other anticonvulsants leptazol was given intraperitoneally to our own strain until 50 or 100 mg./kg. was given. At doses from of albino rats at 160-180 g. At this dose all un- 50 mg. /kg. upwards mysoline showed a pro- treated rats exhibited maximal seizures followed by longation of the duration of activity. Mysoline collapse, with not less than four deaths out of a appeared to be slowly absorbed and reached its group of six. Comparative anticonvulsant activity maximum at 3-6 hours after adminis- was assessed in terms of the dose required to prevent activity maximal seizures and death. Treatment varied from tration at low or moderate dosage. At high 1-6 hours before leptazol injection. Two groups of dosage (500 mg./kg.) the duration of protection 6 treated and 6 control animals were used at each exceeded 48 hours, but there was marked ataxia dose level.
Recommended publications
  • What's the Best First Line Anticonvulsant?
    What’s the best first line anticonvulsant? Stephen Hanson, DVM, MS, Dip. ACVIM (Neurology) Recurring seizure activity is a relatively common problem in canine patients. Nowadays, there are several good options for medical treatment, which makes the choice of which drug to use a little more complicated. All anticonvulsant drugs have advantages and disadvantages, so the selection of a first-line drug should be tailored for the individual patient and client. Phenobarbital: This has been the standard first choice drug for decades. The nice thing about Phenobarbital is that it works fairly well, controlling seizures in about 70% of dogs with epilepsy. Also, it is inexpensive and readily available. The biggest down-sides are its induction of hepatic metabolism and the need for frequent upward dose adjustments, as well as its potential to cause hepatotoxicity. The potential for liver disease increases with time, so a 2 year old dog placed on this medication is more likely to develop hepatotoxicity in his life-time than a 10 year old dog. Phenobarbital can also cause sedation and ataxia. While this is usually mild/transient, it can be a real problem in dogs with other pre- existing signs of intracranial disease. Polyuria, polydipsia and polyphagia are other common side effects. These signs vary widely in severity between patients. Pros: cheap, available at any corner pharmacy, works well Cons: higher doses required with time, possible serious liver side-effects Good first-line choice for middle-aged to older dogs without any pre-existing liver issues Poor choice for dogs with liver disease, dogs with other intracranial signs Questionable choice for young epileptic dogs Potassium/sodium bromide: This was the most commonly-used add on anticonvulsant drug for a long time.
    [Show full text]
  • Basic and Clinical Pharmacology 12/E
    Dr. Murtadha Alshareifi e-Library SECTION V DRUGS THAT ACT IN THE CENTRAL NERVOUS SYSTEM CHAPTER Introduction to the 21 Pharmacology of CNS Drugs Roger A. Nicoll, MD Drugs acting in the central nervous system (CNS) were among the are extremely useful in such studies. The Box, Natural Toxins: first to be discovered by primitive humans and are still the most Tools for Characterizing Ion Channels, describes a few of these widely used group of pharmacologic agents. In addition to their substances. use in therapy, many drugs acting on the CNS are used without Third, unraveling the actions of drugs with known clinical prescription to increase the sense of well-being. efficacy has led to some of the most fruitful hypotheses regarding The mechanisms by which various drugs act in the CNS have the mechanisms of disease. For example, information about the not always been clearly understood. In recent decades, however, action of antipsychotic drugs on dopamine receptors has provided dramatic advances have been made in the methodology of CNS the basis for important hypotheses regarding the pathophysiology pharmacology. It is now possible to study the action of a drug on of schizophrenia. Studies of the effects of a variety of agonists and individual cells and even single ion channels within synapses. The antagonists on γ-aminobutyric acid (GABA) receptors have information obtained from such studies is the basis for several resulted in new concepts pertaining to the pathophysiology of major developments in studies of the CNS. several diseases, including anxiety and epilepsy. First, it is clear that nearly all drugs with CNS effects act on This chapter provides an introduction to the functional orga- specific receptors that modulate synaptic transmission.
    [Show full text]
  • Chapter 25 Mechanisms of Action of Antiepileptic Drugs
    Chapter 25 Mechanisms of action of antiepileptic drugs GRAEME J. SILLS Department of Molecular and Clinical Pharmacology, University of Liverpool _________________________________________________________________________ Introduction The serendipitous discovery of the anticonvulsant properties of phenobarbital in 1912 marked the foundation of the modern pharmacotherapy of epilepsy. The subsequent 70 years saw the introduction of phenytoin, ethosuximide, carbamazepine, sodium valproate and a range of benzodiazepines. Collectively, these compounds have come to be regarded as the ‘established’ antiepileptic drugs (AEDs). A concerted period of development of drugs for epilepsy throughout the 1980s and 1990s has resulted (to date) in 16 new agents being licensed as add-on treatment for difficult-to-control adult and/or paediatric epilepsy, with some becoming available as monotherapy for newly diagnosed patients. Together, these have become known as the ‘modern’ AEDs. Throughout this period of unprecedented drug development, there have also been considerable advances in our understanding of how antiepileptic agents exert their effects at the cellular level. AEDs are neither preventive nor curative and are employed solely as a means of controlling symptoms (i.e. suppression of seizures). Recurrent seizure activity is the manifestation of an intermittent and excessive hyperexcitability of the nervous system and, while the pharmacological minutiae of currently marketed AEDs remain to be completely unravelled, these agents essentially redress the balance between neuronal excitation and inhibition. Three major classes of mechanism are recognised: modulation of voltage-gated ion channels; enhancement of gamma-aminobutyric acid (GABA)-mediated inhibitory neurotransmission; and attenuation of glutamate-mediated excitatory neurotransmission. The principal pharmacological targets of currently available AEDs are highlighted in Table 1 and discussed further below.
    [Show full text]
  • DEMAND REDUCTION a Glossary of Terms
    UNITED NATIONS PUBLICATION Sales No. E.00.XI.9 ISBN: 92-1-148129-5 ACKNOWLEDGEMENTS This document was prepared by the: United Nations International Drug Control Programme (UNDCP), Vienna, Austria, in consultation with the Commonwealth of Health and Aged Care, Australia, and the informal international reference group. ii Contents Page Foreword . xi Demand reduction: A glossary of terms . 1 Abstinence . 1 Abuse . 1 Abuse liability . 2 Action research . 2 Addiction, addict . 2 Administration (method of) . 3 Adverse drug reaction . 4 Advice services . 4 Advocacy . 4 Agonist . 4 AIDS . 5 Al-Anon . 5 Alcohol . 5 Alcoholics Anonymous (AA) . 6 Alternatives to drug use . 6 Amfetamine . 6 Amotivational syndrome . 6 Amphetamine . 6 Amyl nitrate . 8 Analgesic . 8 iii Page Antagonist . 8 Anti-anxiety drug . 8 Antidepressant . 8 Backloading . 9 Bad trip . 9 Barbiturate . 9 Benzodiazepine . 10 Blood-borne virus . 10 Brief intervention . 11 Buprenorphine . 11 Caffeine . 12 Cannabis . 12 Chasing . 13 Cocaine . 13 Coca leaves . 14 Coca paste . 14 Cold turkey . 14 Community empowerment . 15 Co-morbidity . 15 Comprehensive Multidisciplinary Outline of Future Activities in Drug Abuse Control (CMO) . 15 Controlled substance . 15 Counselling and psychotherapy . 16 Court diversion . 16 Crash . 16 Cross-dependence . 17 Cross-tolerance . 17 Custody diversion . 17 Dance drug . 18 Decriminalization or depenalization . 18 Demand . 18 iv Page Demand reduction . 19 Dependence, dependence syndrome . 19 Dependence liability . 20 Depressant . 20 Designer drug . 20 Detoxification . 20 Diacetylmorphine/Diamorphine . 21 Diuretic . 21 Drug . 21 Drug abuse . 22 Drug abuse-related harm . 22 Drug abuse-related problem . 22 Drug policy . 23 Drug seeking . 23 Drug substitution . 23 Drug testing . 24 Drug use .
    [Show full text]
  • Neurosteroid Metabolism in the Human Brain
    European Journal of Endocrinology (2001) 145 669±679 ISSN 0804-4643 REVIEW Neurosteroid metabolism in the human brain Birgit Stoffel-Wagner Department of Clinical Biochemistry, University of Bonn, 53127 Bonn, Germany (Correspondence should be addressed to Birgit Stoffel-Wagner, Institut fuÈr Klinische Biochemie, Universitaet Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany; Email: [email protected]) Abstract This review summarizes the current knowledge of the biosynthesis of neurosteroids in the human brain, the enzymes mediating these reactions, their localization and the putative effects of neurosteroids. Molecular biological and biochemical studies have now ®rmly established the presence of the steroidogenic enzymes cytochrome P450 cholesterol side-chain cleavage (P450SCC), aromatase, 5a-reductase, 3a-hydroxysteroid dehydrogenase and 17b-hydroxysteroid dehydrogenase in human brain. The functions attributed to speci®c neurosteroids include modulation of g-aminobutyric acid A (GABAA), N-methyl-d-aspartate (NMDA), nicotinic, muscarinic, serotonin (5-HT3), kainate, glycine and sigma receptors, neuroprotection and induction of neurite outgrowth, dendritic spines and synaptogenesis. The ®rst clinical investigations in humans produced evidence for an involvement of neuroactive steroids in conditions such as fatigue during pregnancy, premenstrual syndrome, post partum depression, catamenial epilepsy, depressive disorders and dementia disorders. Better knowledge of the biochemical pathways of neurosteroidogenesis and
    [Show full text]
  • Back Matter (PDF)
    INDEX Abstracts, New Haven meeting, 1 Arterenol, derivatives of, as bronchodi- Acetate, iodo-, action of, on auricle, 166 lators, 304 Acetyicholine, see Quaternary ammonium effect of, on hepatic blood flow, 398 compounds inhibiting effect of, on histamine induced Acetylmethadols, and acetylisomethadols, gastric secretion, 447 as analgesic agents, 135, fate of, 260 see Levarterenol Adrenergic blockade, effect on, of denerva- vascular responses to, effect on, of de- tion of vascular areas, 93 nervation, 93 Adrenergic blocking drug, effect of Ilidar Atropine, comparison of, to Centrine, 55 on renal function, 277 Aureomycin, absorption of, enhancement series of B-chloroethylamines, 463 by citric acid, 327 Ahlquist, R. P., Taylor, J. P., Rawson, effect of, on formation of adaptive enzyme C. W., Jr., and Sydow, V. L. Compara- in Pseudomonas, 115 tive effects of epinephrine and levar- Autonomic blocking action, of piperazines, terenol in the intact anesthetized dog, 157 352 Axeirod, J. Studies on sympathomimetic Aminopentamide, actions of, 55 amines. II. Biotransformation and Amphetamine, p-hydroxy, transformation physiological disposition of d-amphet- and disposition of, 315 amine, d-p-hydroxyamphetamine and transformation and disposition of, 315 d-methamphetamine, 315 Analgesic agents, see Methadols, Isometh- adols Bain, J. A., see Brody, T. M., 148 Andromedotoxin, actions of, 415 Barbiturates, effect of, on oxidative phos- Anectine, see Succinyldicholine phorylation, 148 Anesthetics, general, xenon, concentration ejaculation produced by, 271 in tissues after inhalation, 458 see Pentobarbital general, see Xenon, Nitrous Oxide Beck, R., see Robinson, E. M., 385 Antibiotics, effect of, on formation of adap- Belford, J., see Woske, H., 215 tive enzyme in Pseudomonas, 115 Bender, C.
    [Show full text]
  • Drug Class Review on Skeletal Muscle Relaxants
    Drug Class Review on Skeletal Muscle Relaxants Final Report Update 2 May 2005 Original Report Date: April 2003 Update 1 Report Date: January 2004 A literature scan of this topic is done periodically The purpose of this report is to make available information regarding the comparative effectiveness and safety profiles of different drugs within pharmaceutical classes. Reports are not usage guidelines, nor should they be read as an endorsement of, or recommendation for, any particular drug, use or approach. Oregon Health & Science University does not recommend or endorse any guideline or recommendation developed by users of these reports. Roger Chou, MD Kim Peterson, MS Oregon Evidence-based Practice Center Oregon Health & Science University Mark Helfand, MD, MPH, Director Copyright © 2005 by Oregon Health & Science University Portland, Oregon 97201. All rights reserved. Note: A scan of the medical literature relating to the topic is done periodically (see http://www.ohsu.edu/ohsuedu/research/policycenter/DERP/about/methods.cfm for scanning process description). Upon review of the last scan, the Drug Effectiveness Review Project governance group elected not to proceed with another full update of this report. Some portions of the report may not be up to date. Prior versions of this report can be accessed at the DERP website. Final Report Update 2 Drug Effectiveness Review Project TABLE OF CONTENTS Introduction........................................................................................................................4 Scope and
    [Show full text]
  • Comparative Safety Study of Tramadol and Codeine Users: a Population-Based 1 Cohort Study
    1 “Comparative safety study of tramadol and codeine users: a population-based 2 cohort study.” 3 4 PRINCIPAL INVESTIGATOR: 5 Carlen Reyes 6 [email protected] 7 IDIAP Jordi Gol Research Institute 8 9 CO-INVESTIGATORS: J Xie, D Martinez-Laguna, C Carbonell-Abella, A Diez- 10 Perez, X Nogues, A Turkiewicz, M Englund, and D Prieto-Alhambra 11 12 ABSTRACT 13 Background: Despite the growing awareness of the harms produced by chronic opioid 14 use, tramadol is still favourably recommended by remarkable clinical guidelines even 15 as a first line therapy in certain subgroup of patients such as those with high 16 cardiovascular risk. Objectives To assess the incidence of adverse events among 17 incident users of tramadol compared to codeine users among subjects ≥ 18 years old in 18 Catalonia, Spain. 19 Methods: population-based cohort study (SIDIAP database). Inclusion criteria: all 20 incident users of study drugs (tramadol/codeine) (2007-2017) with no use in the 21 previous year and ≥18 years old, ≥1 year of valid data. Exclusions: Combined 22 dispensation of tramadol and codeine in the same day. Subjects with any of the outcome 23 events of interest (ICD-10 in annex) at the index date. Follow-up: (latest of) start of the 24 study period or 1-year of valid data until (earliest of) end of enrolment, date of last 25 capturing data, event of interest or end of follow-up. 26 Exposures: Incident tramadol or codeine (active comparator). Outcomes: Composite 27 cardiovascular events (cardiac arrythmia, heart failure, myocardial infarction, stroke), 28 delirium, fractures (hip, pelvis, wrist, humerus), falls, sleep disorders (sleep apnoea, 29 somnolence), constipation, opioid dependence/abuse, all-cause mortality.
    [Show full text]
  • Single Centre 20 Year Survey of Antiepileptic Drug-Induced
    Pharmacological Reports Copyright © 2013 2013, 65, 399409 by Institute of Pharmacology ISSN 1734-1140 Polish Academy of Sciences Singlecentre20yearsurveyofantiepileptic drug-inducedhypersensitivityreactions BarbaraB³aszczyk1,2,MonikaSzpringer3,Stanis³awJ.Czuczwar4,5, W³adys³awLasoñ6,7 1Faculty of Health Sciences, High School of Economics and Law, Jagielloñska 109 A, PL 25-734 Kielce, Poland 2Private Neurological Practice, Ró¿ana 8, PL 25-729 Kielce, Poland 3Faculty of Health Sciences, Jan Kochanowski University, IX Wieków Kielc 19, PL 25-517 Kielce, Poland 4Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland 5Department of Physiopathology, Institute of Rural Health, Jaczewskiego 2, PL 20-950 Lublin, Poland 6Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Smêtna 12, PL 31-343 Kraków, Poland 7Department of Drug Management, Institute of Public Health, Jagiellonian University Medical College, Grzegórzecka 20, PL 31-351 Kraków, Poland Correspondence: Barbara B³aszczyk, e-mail: [email protected] Abstract: Background: Epilepsy is a chronic neurological disease which affects about 1% of the human population. There are 50 million pa- tients in the world suffering from this disease and 2 million new cases per year are observed. The necessary treatment with antiepi- leptic drugs (AEDs) increases the risk of adverse reactions. In case of 15% of people receiving AEDs, cutaneous reactions, like maculopapularorerythematouspruriticrash,mayappearwithinfourweeksofinitiatingtherapywithAEDs. Methods: This study involved 300 epileptic patients in the period between September 1989 and September 2009. A cutaneous adverse reaction was defined as a diffuse rash, which had no other obvious reason than a drug effect, and resulted in contacting aphysician. Results: Among 300 epileptic patients of Neurological Practice in Kielce (132 males and 168 females), a skin reaction to at least one AED was found in 30 patients.
    [Show full text]
  • Treatment of Experimental Status Epilepticus in Immature Rats: Dissociation Between Anticonvulsant and Antiepileptogenic Effects
    0031-3998/06/5902-0237 PEDIATRIC RESEARCH Vol. 59, No. 2, 2006 Copyright © 2006 International Pediatric Research Foundation, Inc. Printed in U.S.A. Treatment of Experimental Status Epilepticus in Immature Rats: Dissociation Between Anticonvulsant and Antiepileptogenic Effects LUCIE SUCHOMELOVA, ROGER A. BALDWIN, HANA KUBOVA, KERRY W. THOMPSON, RAMAN SANKAR, AND CLAUDE G. WASTERLAIN Departments of Neurology [L.S., K.W.T., R.S., C.G.W.], and Pediatrics [R.S.], David Geffen School of Medicine, University of California, Los Angeles, CA 90095; Veteran’s Administration Greater Los Angeles Healthcare System [L.S., R.A.B., K.W.T., C.G.W.], Los Angeles, CA 90073; Institute of Physiology [L.S., H.K.], Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic ABSTRACT: We studied the effects of treating status epilepticus SE-induced epileptogenesis is common in adult animals, (SE) induced by lithium and pilocarpine at postnatal day 15 (P15) or and there is considerable experimental evidence for its occur- 28 (P28), on the severity of acute SE and of SE-induced epilepto- rence in the immature brain(5–9). genesis. Rats received topiramate (10 or 50 mg/kg, IP) or diazepam Clinical selection of anticonvulsants has traditionally been (5 mg/kg, IP) 20, 40 or 70 min after pilocarpine, and three months based on their ability to block the expression of seizures, but after SE 24-h video/EEG recordings were obtained for one (P28) or the recent availability of antiepileptic drugs (AEDs) that target two weeks (P15) continuously. In P15 rats, topiramate did not modify the course of SE, yet many novel molecular targets (10) has generated interest in treatment at 20 or 40 min completely prevented the development of studying their potential to be antiepileptogenic (e.g., reduce spontaneous recurrent seizures (SRS) while later treatment (70 min) the incidence of epilepsy) or disease-modifying (e.g., reduce was partially effective in reducing the severity and frequency of SRS.
    [Show full text]
  • Anticonvulsant and Sedative Effect of Fufang Changniu Pills and Probable Mechanism of Action in Mice
    Zhang et al Tropical Journal of Pharmaceutical Research June 2016; 15 (6): 1251-1257 ISSN: 1596-5996 (print); 1596-9827 (electronic) © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved. Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v15i6.18 Original Research Article Anticonvulsant and sedative effect of Fufang Changniu pills and probable mechanism of action in mice Huiqin Zhang, Juanjuan Lu, Yi Zhang*, Yumei Zhao, Jia Wei and Liya Zhou Gansu Provincial Hospital, Lanzhou 730000, PR China *For correspondence: Email: [email protected]; Tel/Fax: +86-0931-8281857 Received: 8 January 2016 Revised accepted: 23 May 2016 Abstract Purpose: To investigate the anticonvulsant and sedative effects of Fufang Changniu Pills (FCP) and its probable mechanism of action in mice. Methods: The water decoction of FCP was prepared and the main constituents were determined by high performance liquid chromatography (HPLC). The anticonvulsant activities of FCP were evaluated by maximal electroshock (MES) and pentylenetetrazole (PTZ)-induced seizures in mice. Pentobarbital sodium-induced sleeping time and locomotor activity measurements were performed to evaluate the sedative effects of FCP in mice. Finally, PTZ-induced chronic seizures were established, and expressions of gamma-aminobutyric acid A receptor (GABA-A) and glutamic acid decarboxylase 65 (GAD65) in the brains of the mice were assayed by western blot in order to explore the probable mechanisms of action of the drug. Results: Gallic acid, liquiritin, cinnamyl alcohol, cinnamic acid and glycyrrhizic acid were detected in FCP decoction. FCP (50, 100 and 200 mg/kg) showed significant anticonvulsant and sedative effects on epileptic mice induced by MES (p < 0.05) and PTZ (p < 0.05).
    [Show full text]
  • QMS® Lamotrigine (LTG)
    QMS® Lamotrigine (LTG) For In Vitro Diagnostic Use Only Rx Only 0373795 This Quantitative Microsphere System (QMS) package insert must be read carefully prior to Avoid breathing mist or vapor. Contaminated work clothing should not be allowed out of the use. Package insert instructions must be followed accordingly. Reliability of assay results workplace. Wear protective gloves/eye protection/face protection. In case of inadequate cannot be guaranteed if there are any deviations from the instructions in this package insert. ventilation wear respiratory protection. If on skin: Wash with plenty of soap and water. IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position Intended Use comfortable for breathing. If skin irritation or rash occurs: Get medical advice/attention. The QMS® Lamotrigine assay is intended for the quantitative determination of lamotrigine in If experiencing respiratory symptoms: Call a POISON CENTER or doctor/physician. Wash human serum or plasma on automated clinical chemistry analyzers. contaminated clothing before reuse. Dispose of contents/container to location in accordance with local/regional/national/international regulations. Lamotrigine concentrations can be used as an aid in management of patients treated with lamotrigine. CAUTION: This product contains human sourced and/or potentially infectious components. Components sourced from human blood have been tested and found to be Summary and Explanation of the Test nonreactive for HBsAg, anti-HIV 1/2, and anti-HCV. No known test method can offer complete Lamotrigine [3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine] is an anticonvulsant drug assurance that products derived from human sources or inactivated microorganisms will approved for use in the treatment of epilepsy and is often prescribed as monotherapy or as not transmit infection.
    [Show full text]