Assessment of Water Mimosa (Neptunia Oleracea Lour.) Morphological, Physiological, and Removal Efficiency for Phytoremediation of Arsenic-Polluted Water

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of Water Mimosa (Neptunia Oleracea Lour.) Morphological, Physiological, and Removal Efficiency for Phytoremediation of Arsenic-Polluted Water plants Article Assessment of Water Mimosa (Neptunia oleracea Lour.) Morphological, Physiological, and Removal Efficiency for Phytoremediation of Arsenic-Polluted Water Narges Atabaki 1, Noor Azmi Shaharuddin 1,2,*, Siti Aqlima Ahmad 1 , Rosimah Nulit 3 and Rambod Abiri 4 1 Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; [email protected] (N.A.); [email protected] (S.A.A.) 2 Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia 3 Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; [email protected] 4 Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +60-397696724 Received: 16 September 2020; Accepted: 16 October 2020; Published: 6 November 2020 Abstract: Arsenic is considered to be a toxic and heavy metal that exists in drinking water and can lead to acute biotoxicity. Water mimosa (Neptunia oleracea) has been widely identified as a feasible phytoremediator to clean up aquatic systems. In the current study, the phytoremediation potential of water mimosa exposed to different concentrations of sodium heptahydrate arsenate (Na HAsO 7H O) 2 4· 2 was tested. A number of plant physiological and growth responses such as height of frond, existence of green leaves, relative growth rate, relative water content, tolerance index, decrease in ratio of biomass and ratio of dry weight, chlorophyll content, photosynthesis rate, intercellular CO2 concentrations, stomatal conductance, air pressure deficit, transpiration rate, proline and lipid peroxidation, as well as arsenic accumulation and removal efficacy were analyzed. The micromorphological analysis results confirmed water mimosa’s tolerance of up to 30 ppm of arsenic treatment. The results obtained from the chlorophyll and gas exchange content also showed severe damage by arsenic at doses higher than 30 ppm. In addition, the highest arsenic accumulation and arsenic removal efficacy were observed at the range of 30–60 ppm. An analysis of proline and lipid peroxidation content confirmed water mimosa’s tolerance of up to 30 ppm of arsenic. The scanning electron microscopy (SEM) and X-ray spectroscopy (EDX) and analysis also confirmed the accumulation of arsenic as shown by the deformation of water mimosa tissues. The results showed that water mimosa is a reliable bioremediator for removing arsenic from aquatic systems. Keywords: phytoremediation; arsenic; Neptunia oleracea; removal efficiency; arsenic accumulation 1. Introduction Environmental pollution is a phenomenon where air, water, and land become unsuitable or unsafe due to the existence of materials harmful towards living organisms [1,2]. Heavy metals including lead (Pb), thallium (Tl), arsenic (As), chromium (Cr), cadmium (Cd), and mercury (Hg) have been categorized as significant contaminants in the environment [3,4]. A toxic environment happens as a consequence of the release of heavy metal ions (even in small amounts) from mining, metallurgy, chemical manufacturing, and nuclear energy activities, thus, bringing extreme threats to the Earth’s crust [5]. Plants 2020, 9, 1500; doi:10.3390/plants9111500 www.mdpi.com/journal/plants Plants 2020, 9, 1500 2 of 24 Arsenic is an extremely toxic metalloid that is carcinogenic predominantly to humans’ liver, lungs, kidney, and bladder. It can also cause nerve damage and skin diseases [6]. This heavy metal is ubiquitous in the Earth’s crust with the potential effect of dietetic intake on human health in developed countries. It is also present through atypical groundwater exposure in developing countries and can contaminate the entire water source. These exposures are associated with human diseases, and toxicological concerning doses are comparable to typical dietary intake assessments [7]. The groundwater in the arsenic’s presence has affected the water supply to rural areas in over 70 countries. The estimations indicate that the number of people that have been exposed to arsenic is more than 150 million [8]. Inorganic arsenic accumulation in plants, livestock, and contaminated water can be transferred into the food chains [9]. The damage caused by this heavy metal on humans and the environment confirms that the elimination of arsenic from contaminated water is urgently essential. Removing arsenic from the environment through water and its downstream pathways is reportedly a complicated procedure [10]. Novel sustainable and innovative techniques can provide stable and efficient removal procedures of the metal from a water environment [11]. The rapid increase in human population, urbanization, industrial activities, deforestation, exploration, and exploitation of ecosystems has caused heavy metal and metalloid pollutions in Malaysia’s environment [12]. It has been detailed that the arsenic concentration is between 2.00 to 54.00 µg/L in rivers across Malaysia [13–17]. This is a concern as it exceeds the international environment guideline which is below 10 µg/L for drinking water samples [18]. To date, several treatment technologies have been announced for the arsenic removal from water bodies [19]. However, it is worth mentioning that the use of the most effective technology depends on plenty of factors such as environmental impact, operational cost and capital investment, the initial metal concentration, and plant reliability and flexibility [20]. Environmental contaminate removal from polluted water, sludge, soil, and sediments using plants is known as phytoremediation [21]. For the past two decades, phytoremediation has been developed as a green, non-invasive, and economic alternative to different conventional civil engineering-based strategies for the remediation of water, soil, and even residences contaminated with heavy metals [22,23]. Strategies employed under phytoremediation have included phytodegradation (employing plants or microorganisms to degrade contaminants) [24–26], phytoaccumulation (employing algae or plants to accumulate contaminants in their areal parts) [27], phytostabilization (employing plants to reduce the heavy metal mobility in soil) [28], phytofiltration (employing plants’ biomass and their associated rhizospheric microorganisms to refine contaminants) [27], phytovolatilization (employing plants to absorb contaminants and transpire them into the atmosphere in the volatile shape) [29], and rhizodegradation (employing plants to degrade contaminants using rhizosphere microbes’ mediation [30–32] (Figure1). Plants 2020, 9, 1500 3 of 24 Plants 2020, 9, x FOR PEER REVIEW 3 of 25 FigureFigure 1. 1.PhytoremediationPhytoremediation strategies. strategies. TheThe keystonekeystone in phytoremediationin phytoremediation technologies technologies is contaminants’ is contaminants’interactions interactions with plants’ with rhizosphere. plants’ rhizosphere. Plants absorb Plants metals absorb from m theetals rhizosphere. from the Rootsrhizosphere. take up heavy Rootsmetals take through up heavy mobilization. metals through Subsequently, mobiliz theation. accumulated Subsequently, metals the are accumulated translocated metals to the plants’are aerial translocatedtissues followed to the plants by sequestration’ aerial tissues in the followed tissues by according sequestration to the plants’in the tissues tolerance, according adapted to from the [31,33]. plants’ tolerance, adapted from [31,33]. Aquatic plants are natural candidates for treating contaminated soil and water by accumulating heavyAquatic metals plants in are their natural tissues candidates [34]. In thefor lasttreating five contaminated decades, the soil pantropical and water mimosoid by accumulat legumeing genus heavyNeptunia metals has in their awaken tissues considerable [34]. In the interest last five mainly decades, due the to thepantropical aquatichabitat mimosoid of some legume ofits genus species [35]. NeptuniaThe water has mimosaawaken considerable (Neptunia oleracea interestLour.) mainly is due an invasiveto the aquatic and aggressivehabitat of some aquatic of its plant species specific to [35]. The water mimosa (Neptunia oleracea Lour.) is an invasive and aggressive aquatic plant specific Southeastern Asia, tropical Africa, and India [36]. Reportedly, N. oleracea has been broadly applied to Southeastern Asia, tropical Africa, and India [36]. Reportedly, N. oleracea has been broadly applied for the decontamination or reduction in contaminants in waters surrounding some Asian countries for the decontamination or reduction in contaminants in waters surrounding some Asian countries including Malaysia, Thailand, Indonesia, Philippines, and Vietnam [37]. N. oleracea is suitable for including Malaysia, Thailand, Indonesia, Philippines, and Vietnam [37]. N. oleracea is suitable for phytoremediation based on its short life cycle and growth ease, making it appropriate for planting in phytoremediation based on its short life cycle and growth ease, making it appropriate for planting in contamincontaminatedated water water areas areas [38 [38]. ].A Acompar comparisonison with with aboveground aboveground tissues tissues has has shown shown that that heavy heavy metals metalscan accumulatecan accumulate in the in rootthe root of N. of oleracea N. oleracea[39]. [3 The9]. The higher higher accumulation accumulation of heavyof heavy metals metals indicated
Recommended publications
  • An Updated Checklist of Aquatic Plants of Myanmar and Thailand
    Biodiversity Data Journal 2: e1019 doi: 10.3897/BDJ.2.e1019 Taxonomic paper An updated checklist of aquatic plants of Myanmar and Thailand Yu Ito†, Anders S. Barfod‡ † University of Canterbury, Christchurch, New Zealand ‡ Aarhus University, Aarhus, Denmark Corresponding author: Yu Ito ([email protected]) Academic editor: Quentin Groom Received: 04 Nov 2013 | Accepted: 29 Dec 2013 | Published: 06 Jan 2014 Citation: Ito Y, Barfod A (2014) An updated checklist of aquatic plants of Myanmar and Thailand. Biodiversity Data Journal 2: e1019. doi: 10.3897/BDJ.2.e1019 Abstract The flora of Tropical Asia is among the richest in the world, yet the actual diversity is estimated to be much higher than previously reported. Myanmar and Thailand are adjacent countries that together occupy more than the half the area of continental Tropical Asia. This geographic area is diverse ecologically, ranging from cool-temperate to tropical climates, and includes from coast, rainforests and high mountain elevations. An updated checklist of aquatic plants, which includes 78 species in 44 genera from 24 families, are presented based on floristic works. This number includes seven species, that have never been listed in the previous floras and checklists. The species (excluding non-indigenous taxa) were categorized by five geographic groups with the exception of to reflect the rich diversity of the countries' floras. Keywords Aquatic plants, flora, Myanmar, Thailand © Ito Y, Barfod A. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Water Mimosa (Neptunia Oleracea)
    Invasive plant risk assessment Biosecurity Queensland Agriculture Fisheries and Department of Water mimosa NeNeptunia oleracea Dead and awake Neptunia plena Steve Csurhes First published 2008 Updated 2016 PR08–3686 © State of Queensland, 2016. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence visit http://creativecommons.org/licenses/ by/3.0/au/deed.en" http://creativecommons.org/licenses/by/3.0/au/deed.en Contents Identity and taxonomy 2 Neptunia oleracea Lour. 2 Neptunia plena (L.) Benth. 2 Taxonomy and genetics 2 Descriptions (from Windler 1966) 3 Neptunia oleracea 3 Neptunia plena 4 Reproduction and dispersal 5 Seed longevity 5 Origin 5 History of introduction 5 Worldwide distribution 6 Neptunia oleracea 6 Neptunia plena 7 Distribution in Australia 8 Preferred habitat and climate 9 History as a weed overseas and interstate 9 Impact 10 N2 fixation 10 Effect on water resources 10 Economic benefits 10 Ponded pasture 10 Horticultural crop 11 Herbal medicine 11 Pest potential in Queensland 12 Biological control 12 References 13 Invasive plant risk assessment: Water mimosa Neptunia oleracea Dead and awake Neptunia plena 1 Identity and taxonomy Neptunia oleracea Lour. Synonyms: Acacia lacustris Desf., Desmanthus lacustris Willd., D. natans Willd., D. stolonifer DC, Mimosa aquatica Pers., M.
    [Show full text]
  • Ornamental Garden Plants of the Guianas Pt. 2
    Surinam (Pulle, 1906). 8. Gliricidia Kunth & Endlicher Unarmed, deciduous trees and shrubs. Leaves alternate, petiolate, odd-pinnate, 1- pinnate. Inflorescence an axillary, many-flowered raceme. Flowers papilionaceous; sepals united in a cupuliform, weakly 5-toothed tube; standard petal reflexed; keel incurved, the petals united. Stamens 10; 9 united by the filaments in a tube, 1 free. Fruit dehiscent, flat, narrow; seeds numerous. 1. Gliricidia sepium (Jacquin) Kunth ex Grisebach, Abhandlungen der Akademie der Wissenschaften, Gottingen 7: 52 (1857). MADRE DE CACAO (Surinam); ACACIA DES ANTILLES (French Guiana). Tree to 9 m; branches hairy when young; poisonous. Leaves with 4-8 pairs of leaflets; leaflets elliptical, acuminate, often dark-spotted or -blotched beneath, to 7 x 3 (-4) cm. Inflorescence to 15 cm. Petals pale purplish-pink, c.1.2 cm; standard petal marked with yellow from middle to base. Fruit narrowly oblong, somewhat woody, to 15 x 1.2 cm; seeds up to 11 per fruit. Range: Mexico to South America. Grown as an ornamental in the Botanic Gardens, Georgetown, Guyana (Index Seminum, 1982) and in French Guiana (de Granville, 1985). Grown as a shade tree in Surinam (Ostendorf, 1962). In tropical America this species is often interplanted with coffee and cacao trees to shade them; it is recommended for intensified utilization as a fuelwood for the humid tropics (National Academy of Sciences, 1980; Little, 1983). 9. Pterocarpus Jacquin Unarmed, nearly evergreen trees, sometimes lianas. Leaves alternate, petiolate, odd- pinnate, 1-pinnate; leaflets alternate. Inflorescence an axillary or terminal panicle or raceme. Flowers papilionaceous; sepals united in an unequally 5-toothed tube; standard and wing petals crisped (wavy); keel petals free or nearly so.
    [Show full text]
  • Assessing the Risk to Neptunia Oleracea Lour. by the Moth, Neurostrota Gunniella (Busck), a Biological Control Agent for Mimosa Pigra L
    Proceedings of the X International Symposium on Biological Control of Weeds 449 4-14 July 1999, Montana State University, Bozeman, Montana, USA Neal R. Spencer [ed.]. pp. 449-457 (2000) Assessing the Risk to Neptunia oleracea Lour. by the Moth, Neurostrota gunniella (Busck), a Biological Control Agent for Mimosa pigra L. I. W. FORNO1, J. FICHERA1, and S. PRIOR2 1CSIRO Entomology, PMB 3, Indooroopilly Q4069, Australia 2Present Address: Department of Natural Resources, Magazine Street, Sherwood Q4075, Australia Abstract Mimosa pigra L. is native to tropical America and is an aggressive, invasive weed on the flood plains of the Northern Territory of Australia and in several countries in Southeast Asia. Neurostrota gunniella (Busck) (Gracillariidae) was introduced into Australia from Mexico in 1986 for biological control of mimosa. It was released in 1989 following com- pletion of extensive host range studies which determined that the moth bred readily on M. pigra and to a much lesser extent on Neptunia dimorphantha Domin, N. gracilis Benth., N. major (Benth.) Windler, N. monosperma F. Muell. and M. pudica L. Damage to these non-target species was assessed as insignificant. Subsequently, this moth was introduced to Thailand where quarantine studies showed substantial attack on an important vegetable, N. oleracea Lour., which is a perennial, aquatic herb which either grows prostrate near the water’s edge or floats by forming spongy aerenchyma around the stems. N. gunniella was not released in Southeast Asia. Further studies showed that N. gunniella oviposits and breeds similarly on potted M. pigra and the terrestrial form of N. oleracea but fewer eggs are laid and larval mortality is much greater on N.
    [Show full text]
  • TPG Index Volumes 1-35 1986-2020
    Public Garden Index – Volumes 1-35 (1986 – 2020) #Giving Tuesday. HOW DOES YOUR GARDEN About This Issue (continued) GROW ? Swift 31 (3): 25 Dobbs, Madeline (continued) #givingTuesday fundraising 31 (3): 25 Public garden management: Read all #landscapechat about it! 26 (W): 5–6 Corona Tools 27 (W): 8 Rocket science leadership. Interview green industry 27 (W): 8 with Elachi 23 (1): 24–26 social media 27 (W): 8 Unmask your garden heroes: Taking a ValleyCrest Landscape Companies 27 (W): 8 closer look at earned revenue. #landscapechat: Fostering green industry 25 (2): 5–6 communication, one tweet at a time. Donnelly, Gerard T. Trees: Backbone of Kaufman 27 (W): 8 the garden 6 (1): 6 Dosmann, Michael S. Sustaining plant collections: Are we? 23 (3/4): 7–9 AABGA (American Association of Downie, Alex. Information management Botanical Gardens and Arboreta) See 8 (4): 6 American Public Gardens Association Eberbach, Catherine. Educators without AABGA: The first fifty years. Interview by borders 22 (1): 5–6 Sullivan. Ching, Creech, Lighty, Mathias, Eirhart, Linda. Plant collections in historic McClintock, Mulligan, Oppe, Taylor, landscapes 28 (4): 4–5 Voight, Widmoyer, and Wyman 5 (4): 8–12 Elias, Thomas S. Botany and botanical AABGA annual conference in Essential gardens 6 (3): 6 resources for garden directors. Olin Folsom, James P. Communication 19 (1): 7 17 (1): 12 Rediscovering the Ranch 23 (2): 7–9 AAM See American Association of Museums Water management 5 (3): 6 AAM accreditation is for gardens! SPECIAL Galbraith, David A. Another look at REPORT. Taylor, Hart, Williams, and Lowe invasives 17 (4): 7 15 (3): 3–11 Greenstein, Susan T.
    [Show full text]
  • Resear Research Article
    zz Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 9, Issue, 06, pp.51689-51694, June, 2017 ISSN: 0975-833X RESEARCH ARTICLE TRADITIONAL AND BIOLOGICAL USES OF NEPTUNIA OLERACEA LOUR: AN OVERVIEW *Romesh Sagolshemcha and Robindro Singh, W. ARTICLE INFO Department ABSTRACTof Biotechnology, S. K. Women’s College Nambol, Manipur Article History: The present review highlights the multifaceted prospect of aquatic legume Neptunia oleracea Lour as Received 26th March, 2017 food, medicinal plant and biofertilizer. The bibliographic data of the plant summarizes the parts used, Received in revised form its uses and country with references. The common chemical constituents of the plant responsible for 17th April, 2017 the treatment of various ailments are given. It also describes the methodology and magnitude of its Accepted 18th May, 2017 various biological activities. High nutritious value, high antioxidant an activity shown by the plant Published online 20th June, 2017 makes these plants an ideal food. The plant is also used as medicinal plant in various ailments in different countries. Pheophorbide a and its related compounds plant makes this plant a promising Key words: antitumor plant. The plant can also be used in sewage water treatment plants. The symbiotically associated bacteria efficiently fixed atmospheric nitrogen which significantly increases the N2 status Neptunia oleracea Lour, Medicinal plant, of the oligotrophic soil of wetland ecosystem. Biofertilizer, Pheophorbide a, Antitumor and N2 fixation. Copyright©2017, Romesh Sagolshemcha and Robindro Singh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Chiang Mai University Journal of Natural Sciences: 1
    Chiang Mai University Journal of Natural Sciences: https://cmuj.cmu.ac.th 1 Research article Pollen Morphology in Various Life-form of Aquatic Macrophytes Ratchaneekorn Sangsuk1 , Henrik Baslev2, and Arunothai Jampeetong1,* 1 Department of Biology, Faculty of Science, Chiang Mai University, Mueang, Chiang Mai, 50200, Thailand 2 Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C., Denmark Abstract Ability of angiosperms to produce flowers and seeds for the sexual Editor: Wasu Pathom-aree, reproduction is important also in aquatic plants. Pollination in aquatic plants is Chiang Mai University, Thailand facilitated by insects, wind, and water, however, pollen morphology related to the Article history: Received: October 7, 2020; plant’s life forms and pollen dispersal are not well described. This study Revised: December 22, 2020; Accepted: December 25, 2020; investigates pollen morphology of selected aquatic macrophytes. Plants were Published online: March 18, 2021 collected and preserved as dried specimens. Mature pollen grains of each species Corresponding author: Arunothai Jampeetong, were separated from the anthers and then placed on glass slides and mounted E-mail: [email protected] with distilled water. Pollen shape and size were observed under a light microscope (LM). Number of apertures and exine ornamentation were examined using scanning electron microscope (SEM). Closely related plant species had similar pollen morphology. Among the 28 species studied, pollen size varied from small to very large (range 10–200 µm) and their shapes were prolate-spheroidal, prolate, oblate, suboblate, and oblate-spheroidal. Some species had inaperturate pollen grains; the remainders were monoaperture, triaperture or polyaperture. Both colpate and porate apertures were found.
    [Show full text]
  • UNIVERSITI PUTRA MALAYSIA BIOLOGY of Limnocharis Flava (L
    UNIVERSITI PUTRA MALAYSIA BIOLOGY OF Limnocharis flava (L.) BUCHENAU AND neptunia oleracea LOUR. AND THEIR STATUS AS VEGETABLE CROPS IN SARAWAK, MALAYSIA NOORASMAH SAUPI FPSM 2014 2 BIOLOGY OF Limnocharis flava (L.) BUCHENAU AND Neptunia oleracea LOUR. AND THEIR STATUS AS VEGETABLE CROPS IN SARAWAK, MALAYSIA UPM By NOORASMAH BINTI SAUPI COPYRIGHT © Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for Degree of Doctor Philosophy of Science February 2014 TABLE OF CONTENT Page ABSTRACT ii ABSTRAK iv ACKNOWLEDGEMENTS vii APPROVAL viii DECLARATION x LIST OF TABLES xii LIST OF FIGURES xvii LIST OF PLATES xxi LIST OF ABRREVIATION AND SYMBOLS xxv CHAPTER 1 GENERAL INTRODUCTION 1 2 LITERATURE REVIEW UPM11 2.1 Distribution and environmental conditions of 11 Limnocharis flava and Neptunia oleracea 2.2 Morphological characteristic of Limnocharis flava 17 2.3 Morphological characteristic of Neptunia oleracea 17 2.4 Propagation of Limnocharis flava and Neptunia 30 oleracea 2.5 Availability and nutrient content of Limnocharis flava 30 and Neptunia oleracea in markets 2.5.1 Availability of Limnocharis flava and Neptunia 30 oleracea in markets 2.5.2 Proximate compositions and mineral contents 31 of Limnocharis flava and Neptunia oleracea 3 DISTRIBUTION, HABITAT AND 36 ENVIRONMENTAL CONDITIONS OF Limnocharis flava (L.) BUCHENAU AND Neptunia oleracea LOURERIO 3.1 Introduction 36 3.2 Materials and Methods 38 3.2.1 Distribution and habitat characteristics of 38 COPYRIGHTLimnocharis flava and
    [Show full text]
  • Download/Book of Abstracts.Pdf Dhileepan, K., Taylor, D
    Received: 6 August 2018 Accepted: 22 November 2018 DOI: 10.1111/aab.12499 RESEARCH ARTICLE Implications of the changing phylogenetic relationships of Acacia s.l. on the biological control of Vachellia nilotica ssp. indica in Australia Dianne B.J. Taylor | Kunjithapatham Dhileepan Department of Agriculture and Fisheries, Biosecurity Queensland, Brisbane, Plant relationships have implications for many fields including weed biological control. The use of Queensland, Australia DNA sequencing and new tree building algorithms since the late 1980s and early 1990s have Correspondence revolutionised plant classification and has resulted in many changes to previously accepted taxo- Dianne B. J. Taylor, Department of Agriculture nomic relationships. It is critical that biological control researchers stay abreast of changes to plant and Fisheries, Biosecurity Queensland, Ecosciences Precinct, GPO Box 267, Brisbane, phylogenies. One of the largest plant genera, Acacia, has undergone great change over the past QLD 4001, Australia. 20 years and these changes have ramifications for weed biological control projects in a number of Email: [email protected] countries. Vachellia nilotica (prickly acacia) is a major weed in Australia, originating from the Indian Funding information subcontinent and Asia, and it has been a target for biological control since 1980. Once a member Meat and Livestock Australia of Acacia, a large (>1,000 spp.) and iconic group in Australia, prickly acacia is now part of the genus Vachellia. Current knowledge suggests that Vachellia is more closely related to mimosoid genera than it is to Acacia s.s. There has also been a recent reclassification of legume subfamilies with sub- family Mimosoideae now part of subfamily Caesalpinioideae, and four new subfamilies.
    [Show full text]
  • Weed Risk Assessment for Neptunia Oleracea Lour. (Fabaceae)
    Weed Risk Assessment for Neptunia United States oleracea Lour. (Fabaceae) – Water Department of Agriculture mimosa Animal and Plant Health Inspection Service June 14, 2012 Version 1 Top left: Neptunia oleracea plants in flower; top right: Spongy, floating stem tissue of Neptunia oleracea; bottom: A colony of Neptunia oleracea plants (source: Technigro, 2011). Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Neptunia oleracea Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use weed risk assessment (WRA) —specifically, the PPQ WRA model1—to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. Because our WRA model is geographically and climatically neutral, it can be used to evaluate the baseline invasive/weed potential of any plant species for the entire United States or any area within it.
    [Show full text]
  • An Annotated Checklist of Weed Flora in Odisha, India 1
    Bangladesh J. Plant Taxon. 27(1): 85‒101, 2020 (June) © 2020 Bangladesh Association of Plant Taxonomists AN ANNOTATED CHECKLIST OF WEED FLORA IN ODISHA, INDIA 1 1 TARANISEN PANDA*, NIRLIPTA MISHRA , SHAIKH RAHIMUDDIN , 2 BIKRAM K. PRADHAN AND RAJ B. MOHANTY Department of Botany, Chandbali College, Chandbali, Bhadrak-756133, Odisha, India Keywords: Bhadrak district; Diversity; Ecosystem services; Traditional medicines; Weed. Abstract This study consolidated our understanding on the weeds of Bhadrak district, Odisha, India based on both bibliographic sources and field studies. A total of 277species of weed taxa belonging to 198 genera and 65 families are reported from the study area. About 95.7% of these weed taxa are distributed across six major superorders; the Lamids and Malvids constitute 43.3% with 60 species each, followed by Commenilids (56 species), Fabids (48 species), Companulids (23 species) and Monocots (18 species). Asteraceae, Poaceae, and Fabaceae are best represented. Forbs are the most represented (50.5%), followed by shrubs (15.2%), climber (11.2%), grasses (10.8%), sedges (6.5%) and legumes (5.8%). Annuals comprised about 57.5% and the remaining are perennials. As per Raunkiaer classification, the therophytes is the most dominant class with 135 plant species (48.7%).The use of weed for different purposes as indicated by local people is also discussed. This study provides a comprehensive and updated checklist of the weed speciesof Bhadrak district which will serve as a tool for conservation of the local biodiversity. Introduction India, a country with heterogeneous landforms, shows great variation from one region to another in respect of climate, altitude and vegetation.The country has 60 agroeco-subregions and each agro-eco-subregion has been divided into agro-eco-units at the district level for developing long term land use strategies (Gajbhiye and Mandal, 2006).
    [Show full text]
  • This List of Edible Legume Species Was Painstakingly Compiled by Jeanne
    Latin Name Common Name Structure Consumed Culinary Notes Growth Form Subfamily Native Region dry seed, spice or grain-like Acacia spp. wattle seed tree Mimosoideae Australia pulse Apios americana Potato bean tuber and pod perennial vine Faboideae North America Arachis hypogaea Peanut Seed Dry seed (pulse) annual Faboideae Argentina, Bolivia Arachis villosulicarpa annual peanut Seed Dry seed (pulse) perennial Faboideae Brazil Aspalathus linearis rooibos leaves tea shrub Faboideae South Africa Astragalus brachycalyx gum tragacanth sap dried sap, used as a binder perennial herb Faboideae Middle East Astragalus propinquus astragalus root perennial herb Faboideae China dried seed extract as a Caesalpinia spinosa tara seed shrub Caesalpinioideae South America gum Cajanus cajan Pigeon pea seed Dry seed (pulse) perennial herb Faboideae Indian subcontinent Canavalia ensiformis Jack bean Seed Dry seed (pulse) vine Faboideae American Canavalia gladiata sword bean Seed Dry seed (pulse) vine Faboideae East Asian Caragana arborescens Siberian peashrub Seed Dry seed (pulse) shrub Faboideae Asia ground dried pod is carob Ceratonia siliqua carob pod, seed powder; locust bean gum is tree Caesalpinioideae Mediterranean from seed chickpea, garbanzo, Bengal Dry seed (pulse), fresh Cicer arietinum Seed annual herb Faboideae Asia gram immature seed Cochliasanthus caracalla caracalla bean flower perennial vine Faboideae Cordeauxia edulis yeheb nut seed Dry seed (pulse) shrub Caesalpinioideae South Africa Crotalaria longirostrata Chipilín leaf leafy vegetable
    [Show full text]