Ribosome Biogenesis in Replicating Cells: Integration of Experiment and Theory

Total Page:16

File Type:pdf, Size:1020Kb

Ribosome Biogenesis in Replicating Cells: Integration of Experiment and Theory Ribosome Biogenesis in Replicating Cells: Integration of Experiment and Theory Tyler M. Earnest,1,2 John A. Cole,2 Joseph R. Peterson,3 Michael J. Hallock,4 Thomas E. Kuhlman,1,2 Zaida Luthey-Schulten1,2,3 1 Center for the Physics of Living Cells, University of Illinois, Urbana, IL 2 Department of Physics, University of Illinois, Urbana, IL 3 Department of Chemistry, University of Illinois, Urbana, IL 4 School of Chemical Sciences, University of Illinois, Urbana, IL Received 26 March 2016; revised 3 June 2016; accepted 8 June 2016 Published online 13 June 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/bip.22892 ABSTRACT: simulation software. In order to determine the replication parameters, we construct and analyze a series of Esche- Ribosomes—the primary macromolecular machines richia coli strains with fluorescently labeled genes distrib- responsible for translating the genetic code into proteins— uted evenly throughout their chromosomes. By measuring are complexes of precisely folded RNA and proteins. The these cells’ lengths and number of gene copies at the single- ways in which their production and assembly are managed cell level, we could fit a statistical model of the initiation by the living cell is of deep biological importance. Here we and duration of chromosome replication. We found that for extend a recent spatially resolved whole-cell model of ribo- our slow-growing (120 min doubling time) E. coli cells, some biogenesis in a fixed volume [Earnest et al., Biophys J replication was initiated 42 min into the cell cycle and com- 2015, 109, 1117–1135] to include the effects of growth, pleted after an additional 42 min. While simulations of the DNA replication, and cell division. All biological processes biogenesis model produce the correct ribosome and mRNA are described in terms of reaction-diffusion master equa- counts over the cell cycle, the kinetic parameters for tran- tions and solved stochastically using the Lattice Microbes scription and degradation are lower than anticipated from Additional Supporting Information may be found in the online version of this article. a recent analytical time dependent model of in vivo mRNA Correspondence to: Zaida Luthey-Schulten, Department of Chemistry, University production. Describing expression in terms of a simple of Illinois at Urbana-Champaign, A544 Chemical and Life Sciences Lab, 600 South Mathews Avenue, Urbana, IL 61801; e-mail: [email protected] chemical master equation, we show that the discrepancies Tyler M. Earnest, John A. Cole, and Joseph R. Peterson contributed equally to this work. are due to the lack of nonribosomal genes in the extended Contract grant sponsor: National Science Foundation (NSF) Contract grant number: MCB-1244570 biogenesis model which effects the competition of mRNA Contract grant sponsor: NSF Center for the Physics of Living Cells for ribosome binding, and suggest corrections to parameters Contract grant number: PHY-1430124 Contract grant sponsor: NSF Graduate Research Fellowship to be used in the whole-cell model when modeling expres- Contract grant number: DGE-1144245 Contract grant sponsor: U.S. Department of Energy, Office of Science, Biological sion of the entire transcriptome. VC 2016 Wiley Periodicals, and Environmental Research, Adaptive Biosystems Imaging Scientific Focus Area Contract grant sponsor: Alfred P. Sloan Foundation Research Fellowship in Inc. Biopolymers 105: 735–751, 2016. Physics Contract grant number: FG-2015-65532 Keywords: stochastic gene expression; ribosome biogene- Contract grant sponsor: National Science Foundation sis; bacterial cell division Contract grant numbers: OCI-0725070, ACI-1238993 Contract grant sponsor: National Institutes of Health Contract grant numbers: 9 P41 GM104601-23, GM112659 VC 2016 Wiley Periodicals, Inc. Biopolymers Volume 105 / Number 10 735 736 Earnest et al. This article was originally published online as an accepted species. The use of a stochastic simulation methodology was preprint. The “Published Online” date corresponds to the pre- print version. You can request a copy of any preprints from important for a number of reasons. First and foremost, gene the past two calendar years by emailing the Biopolymers edi- expression has been shown to be highly variable from cell-to- torial office at [email protected]. cell; this is especially pronounced when the molecules involved are in low copy numbers.20–22 Ribosomal RNA is transcribed from seven operons interspersed throughout the E. coli genome, and many of the intermediate structures along the assembly pathways can exist in very few copies due to the rapid binding of INTRODUCTION 19 n Escherichia coli, ribosomes account for approximately additional proteins. Accurately modeling the random diffusive one fourth of the cellular dry mass and the majority of motions and reactions of the individual substrates allowed Ear- the total RNA.1 It can be tempting, then, to think of the nest et al. not only to investigate the mean behavior of the assem- bly network, but also the inherent variability in it. bacterial cell as a finely tuned machine for building ribo- Although unprecedentedly complete, the model did not somes. Their ubiquity and high sequence conservation I account for some of the most basic functions of the cell— has made them an invaluable window into the process of namely, replication of the genome, cell division, and metabo- evolution at the molecular level,2–5 and their role in protein lism. Using mRNA distributions obtained from super- synthesis involves them (either directly or indirectly) in resolution imaging experiments, recent articles by Peterson et al. essentially every process within the cell. and Jones et al. showed that mRNA copy numbers exhibit a sig- Ribosome production has evolved to be tightly regulated by nificant amount of variability simply by virtue of the fact that the cell. This is no small feat, considering that each 70S ribo- the genes that encode them are duplicated at some point during some involves the coordinated transcription, translation, fold- the cell cycle (which, in turn, depends on the genes’ positions ing, and hierarchical assembly of three strands of rRNA and on the chromosome).23,24 To quantitatively describe the replica- over four dozen proteins, all within the heterogeneous, tive dynamics of the chromosome, we have generated a series of crowded intracellular space. Starting as early as 1966, pioneer- E. coli strains with gene loci labeled by a fluorescent repressor- ing in vitro studies began to unravel some of the mechanistic operator system (FROS) distributed evenly around the chromo- details of this process.6 Work on the 30S small subunit (SSU), some. High-throughput imaging of these strains and identifica- which is largely responsible for recognizing and decoding tion and quantification of the gene copy number in each cell mRNA, showed that assembly nucleates with the folding of the allows us to fit simple models of cell growth and genome repli- so called five-way junction in the 16S rRNA of the SSU (resi- cation to extract estimates for the timing of replication of each dues 27–45 and 394–554 in E. coli), and then proceeds through gene as a function of its position on the chromosome. We use the hierarchical association of sets of ribosomal proteins, each these results to extend the ribosome biogenesis model to explic- progressively folding and stabilizing the rRNA’s growing terti- itly include cell growth, gene duplication, and division (hence- 7–12 ary structure. Interestingly, a number of in vitro studies forthreferredtoastheRBM,forribosomebiogenesismodel). have observed this process proceeding over timescales on the Although single-cell rRNA and ribosomal protein mRNA distri- 7–9 order of the cell cycle or longer, while in vivo it can take just butions are not available for direct comparison, a number of 13 a few minutes. Moreover, single cell-imaging studies on both theoretical models of mRNA statistics—including some that slow- and fast-growing cells have also shown that complete account for gene duplication—have been proposed,23,24 ribosomes are not uniformly dispersed throughout the cyto- although, importantly, they do not explicitly account for 14–18 plasm, but rather they tend to aggregate to the cell poles. mRNA–ribosome interactions. The transcription and mRNA Understanding these phenomena requires a model with both a degradation rates in the RBM differ from those generated by the complete (or nearly complete) kinetic description of the theoretical model in fitting the simulated mRNA distributions. assembly process and fine spatial resolution. We ultimately attribute this discrepancy to the fact that the 19 Recently, Earnest et al. reported the first spatially resolved RBM does not account for competition from nonribosomal stochastic simulations of ribosome biogenesis for slow-growing gene expression (e.g., genes involved in metabolism, regulation, E. coli. In that work, a model involving 251 different species etc.) We derive a simple statistical model that accounts for mes- (including the SSU, LSU, rRNA, 18 proteins that bind to it, the senger production, degradation, and interactions with the ribo- genes and mRNA that code for them, and over 140 possible somes (henceforth referred to as the SAM, for semi-analytical intermediates in the SSU assembly) and 1300 reactions for model) which we use to investigate the dependence of mRNA transcription, translation, and ribosome assembly were devel- statistics on chromosome duplication as well as the expression oped and parameterized
Recommended publications
  • The DEAD-Box RNA Helicase-Like Utp25 Is an SSU Processome Component
    Downloaded from rnajournal.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press The DEAD-box RNA helicase-like Utp25 is an SSU processome component J. MICHAEL CHARETTE1,2 and SUSAN J. BASERGA1,2,3 1Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA 2Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA 3Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA ABSTRACT The SSU processome is a large ribonucleoprotein complex consisting of the U3 snoRNA and at least 43 proteins. A database search, initiated in an effort to discover additional SSU processome components, identified the uncharacterized, conserved and essential yeast nucleolar protein YIL091C/UTP25 as one such candidate. The C-terminal DUF1253 motif, a domain of unknown function, displays limited sequence similarity to DEAD-box RNA helicases. In the absence of the conserved DEAD-box sequence, motif Ia is the only clearly identifiable helicase element. Since the yeast homolog is nucleolar and interacts with components of the SSU processome, we examined its role in pre-rRNA processing. Genetic depletion of Utp25 resulted in slowed growth. Northern analysis of pre-rRNA revealed an 18S rRNA maturation defect at sites A0,A1, and A2. Coimmunoprecipitation confirmed association with U3 snoRNA and with Mpp10, and with components of the t-Utp/UtpA, UtpB, and U3 snoRNP subcomplexes. Mutation of the conserved motif Ia residues resulted in no discernable temperature- sensitive or cold-sensitive growth defects, implying that this motif is dispensable for Utp25 function.
    [Show full text]
  • Proteotoxicity from Aberrant Ribosome Biogenesis Compromises Cell Fitness
    Proteotoxicity From Aberrant Ribosome Biogenesis Compromises Cell Fitness The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Tye, Blake Wells. 2019. Proteotoxicity From Aberrant Ribosome Biogenesis Compromises Cell Fitness. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42013104 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Proteotoxicity from Aberrant Ribosome Biogenesis Compromises Cell Fitness A dissertation presented by Blake Wells Tye to The Committee on Higher Degrees in Chemical Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemical Biology Harvard University Cambridge, Massachusetts May 2019 © 2019 Blake Wells Tye All rights reserved. Dissertation Advisor: Author: L. Stirling Churchman, PhD Blake Wells Tye Proteotoxicity from Aberrant Ribosome Biogenesis Compromises Cell Fitness Abstract Proteins are the workhorses of the cell, carrying out much of the structural and enzymatic work of life. Many proteins function as part of greater assemblies, or complexes, with other proteins and/or biomolecules. As the cell grows and divides, it must double its proteome, which requires synthesis and folding of individual proteins, assembly into complexes, and proper subcellular localization. This is repeated for millions of proteins molecules compromising thousands of potential assemblies, making up a rather tricky set of tasks for cells to carry out simultaneously.
    [Show full text]
  • 1 Title 1 Discovery of a Small Molecule That Inhibits Bacterial Ribosome Biogenesis 2 3 Authors and Affiliations 4 Jonathan M. S
    1 Title 2 Discovery of a small molecule that inhibits bacterial ribosome biogenesis 3 4 Authors and Affiliations 5 Jonathan M. Stokes1, Joseph H. Davis2, Chand S. Mangat1, James R. Williamson2, and Eric D. Brown1* 6 7 1Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and 8 Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5 9 2Department of Integrative Structural and Computational Biology, Department of Chemistry and The Skaggs 10 Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA 11 12 Contact 13 *Correspondence: [email protected] 14 15 Competing Interests Statement 16 All authors declare no competing interests. 17 18 Impact Statement 19 We report the discovery of a small molecule inhibitor of bacterial ribosome biogenesis. The first probe of its 20 kind, this compound revealed an unexplored role for IF2 in ribosome assembly. 21 22 Major Subject Areas 23 Biochemistry; Microbiology and infectious disease 24 25 Keywords 26 Cold sensitivity; ribosome biogenesis; lamotrigine; translation initiation factor IF2 27 28 1 29 Abstract 30 While small molecule inhibitors of the bacterial ribosome have been instrumental in understanding protein 31 translation, no such probes exist to study ribosome biogenesis. We screened a diverse chemical collection 32 that included previously approved drugs for compounds that induced cold sensitive growth inhibition in the 33 model bacterium Escherichia coli. Among the most cold sensitive was lamotrigine, an anticonvulsant drug. 34 Lamotrigine treatment resulted in the rapid accumulation of immature 30S and 50S ribosomal subunits at 35 15°C. Importantly, this was not the result of translation inhibition, as lamotrigine was incapable of perturbing 36 protein synthesis in vivo or in vitro.
    [Show full text]
  • Nucleolin and Its Role in Ribosomal Biogenesis
    NUCLEOLIN: A NUCLEOLAR RNA-BINDING PROTEIN INVOLVED IN RIBOSOME BIOGENESIS Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Julia Fremerey aus Hamburg Düsseldorf, April 2016 2 Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: Prof. Dr. A. Borkhardt Korreferent: Prof. Dr. H. Schwender Tag der mündlichen Prüfung: 20.07.2016 3 Die vorgelegte Arbeit wurde von Juli 2012 bis März 2016 in der Klinik für Kinder- Onkologie, -Hämatologie und Klinische Immunologie des Universitätsklinikums Düsseldorf unter Anleitung von Prof. Dr. A. Borkhardt und in Kooperation mit dem ‚Laboratory of RNA Molecular Biology‘ an der Rockefeller Universität unter Anleitung von Prof. Dr. T. Tuschl angefertigt. 4 Dedicated to my family TABLE OF CONTENTS 5 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................... 5 LIST OF FIGURES ......................................................................................................10 LIST OF TABLES .......................................................................................................12 ABBREVIATION .........................................................................................................13 ABSTRACT ................................................................................................................19 ZUSAMMENFASSUNG
    [Show full text]
  • Translation Factors and Ribosomal Proteins Control Tumor Onset and Progression: How?
    Oncogene (2014) 33, 2145–2156 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW Translation factors and ribosomal proteins control tumor onset and progression: how? F Loreni1, M Mancino2,3 and S Biffo2,3 Gene expression is shaped by translational control. The modalities and the extent by which translation factors modify gene expression have revealed therapeutic scenarios. For instance, eukaryotic initiation factor (eIF)4E activity is controlled by the signaling cascade of growth factors, and drives tumorigenesis by favoring the translation of specific mRNAs. Highly specific drugs target the activity of eIF4E. Indeed, the antitumor action of mTOR complex 1 (mTORc1) blockers like rapamycin relies on their capability to inhibit eIF4E assembly into functional eIF4F complexes. eIF4E biology, from its inception to recent pharmacological targeting, is proof-of-principle that translational control is druggable. The case for eIF4E is not isolated. The translational machinery is involved in the biology of cancer through many other mechanisms. First, untranslated sequences on mRNAs as well as noncoding RNAs regulate the translational efficiency of mRNAs that are central for tumor progression. Second, other initiation factors like eIF6 show a tumorigenic potential by acting downstream of oncogenic pathways. Third, genetic alterations in components of the translational apparatus underlie an entire class of inherited syndromes known as ‘ribosomopathies’ that are associated with increased cancer risk. Taken together, data suggest that in spite of their evolutionary conservation and ubiquitous nature, variations in the activity and levels of ribosomal proteins and translation factors generate highly specific effects. Beside, as the structures and biochemical activities of several noncoding RNAs and initiation factors are known, these factors may be amenable to rational pharmacological targeting.
    [Show full text]
  • Expression of Distinct Maternal and Somatic 5.8S, 18S, and 28S Rrna Types During Zebrafish Development
    Downloaded from rnajournal.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press REPORT Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish development MAURO D. LOCATI,1,3 JOHANNA F.B. PAGANO,1,3 GENEVIÈVE GIRARD,1 WIM A. ENSINK,1 MARINA VAN OLST,1 SELINA VAN LEEUWEN,1 ULRIKE NEHRDICH,2 HERMAN P. SPAINK,2 HAN RAUWERDA,1 MARTIJS J. JONKER,1 ROB J. DEKKER,1 and TIMO M. BREIT1 1RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands 2Department of Molecular Cell Biology, Institute of Biology, Leiden University, Gorlaeus Laboratories–Cell Observatorium, Leiden 2333 CE, the Netherlands ABSTRACT There is mounting evidence that the ribosome is not a static translation machinery, but a cell-specific, adaptive system. Ribosomal variations have mostly been studied at the protein level, even though the essential transcriptional functions are primarily performed by rRNAs. At the RNA level, oocyte-specific 5S rRNAs are long known for Xenopus. Recently, we described for zebrafish a similar system in which the sole maternal-type 5S rRNA present in eggs is replaced completely during embryonic development by a somatic-type. Here, we report the discovery of an analogous system for the 45S rDNA elements: 5.8S, 18S, and 28S. The maternal-type 5.8S, 18S, and 28S rRNA sequences differ substantially from those of the somatic-type, plus the maternal-type rRNAs are also replaced by the somatic-type rRNAs during embryogenesis. We discuss the structural and functional implications of the observed sequence differences with respect to the translational functions of the 5.8S, 18S, and 28S rRNA elements.
    [Show full text]
  • 1 RNA Helicase, DDX27 Regulates Proliferation And
    bioRxiv preprint doi: https://doi.org/10.1101/125484; this version posted April 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. RNA helicase, DDX27 regulates proliferation and myogenic commitment of muscle stem cells Short Title: Translational Regulation of Myogenesis by DDX27 Alexis H Bennett1, Marie-Francoise O’Donohue2, Stacey R. Gundry3, Aye T. Chan4, JeFFery Widrick3, Isabelle Draper5, Anirban Chakraborty2, Yi Zhou4, Leonard I. Zon4,6, Pierre-Emmanuel Gleizes2, Alan H. Beggs3, Vandana A Gupta1,3* 1. Division oF Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston MA 02115, USA 2. Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, UPS, CNRS, France 3. Division oF Genetics and Genomics, The Manton Center For Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA. 4.Stem Cell Program and Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA. 5. Molecular Cardiology Research Institute, TuFts Medical Center, Boston, MA 02111, USA 6. Howard Hughes Medical Institute. *Corresponding Author Vandana A Gupta Division oF Genetics, Department oF Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115. Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/125484; this version posted April 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Rrp15p, a Novel Component of Pre-Ribosomal Particles Required for 60S Ribosome Subunit Maturation
    Downloaded from rnajournal.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Rrp15p, a novel component of pre-ribosomal particles required for 60S ribosome subunit maturation MARIA LAURA DE MARCHIS,1 ALESSANDRA GIORGI,2 MARIA EUGENIA SCHININÀ,2 IRENE BOZZONI,1 and ALESSANDRO FATICA1 1Dipartimento di Genetica e Biologia Molecolare, and 2Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” Centro di Eccellenza di Biologia e Medicina Molecolare (BEMM), Lab. di Genomica e Proteomica Funzionale degli Organismi Modello, Universita’ di Roma “la Sapienza,” 00185, Rome, Italy ABSTRACT In eukaryotes ribosome biogenesis required that rRNAs primary transcripts are assembled in pre-ribosomal particles and processed. Protein factors and pre-ribosomal complexes involved in this complex pathway are not completely depicted. The essential ORF YPR143W encodes in yeast for an uncharacterized protein product, named here Rrp15p. Cellular function of Rrp15p has not so far defined even if nucleolar location was referred. With the aim to define the possible role of this orphan gene, we performed TAP-tagging of Rrp15p and investigated its molecular association with known pre-ribosomal complexes. Comparative sucrose gradient sedimentation analyses of yeast lysates expressing the TAP-tagged Rrp15p, strongly indicated that this protein is a component of the pre-60S particles. Northern hybridization, primer extension and functional proteomics on TAP-affinity isolated complexes proved that Rrp15p predominately associated with pre-rRNAs and proteins previously char- acterized as components of early pre-60S ribosomal particles. Finally, depletion of Rrp15p inhibited the accumulation of 27S and 7S pre-rRNAs and 5.8S and 25S mature rRNA. These results provide the first indication that Rrp15p is a novel factor involved in the early maturation steps of the 60S subunits.
    [Show full text]
  • Translation Stress Regulates Ribosome Synthesis and Cell Proliferation International Journal of Molecular Sciences, 19(12): 3757
    http://www.diva-portal.org This is the published version of a paper published in International Journal of Molecular Sciences. Citation for the original published paper (version of record): Gnanasundram, S V., Fåhraeus, R. (2018) Translation Stress Regulates Ribosome Synthesis and Cell Proliferation International Journal of Molecular Sciences, 19(12): 3757 https://doi.org/10.3390/ijms19123757 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-155978 International Journal of Molecular Sciences Review Translation Stress Regulates Ribosome Synthesis and Cell Proliferation Sivakumar Vadivel Gnanasundram 1,* and Robin Fåhraeus 1,2,3,4 1 Inserm UMRS1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France; [email protected] 2 RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic 3 Department of Medical Biosciences, Building 6M, Umeå University, 901 85 Umeå, Sweden 4 ICCVS, University of Gda´nsk,Science, ul. Wita Stwosza 63, 80-308 Gda´nsk,Poland * Correspondence: [email protected]; Tel.: +33-142-499-269 Received: 2 November 2018; Accepted: 24 November 2018; Published: 27 November 2018 Abstract: Ribosome and protein synthesis are major metabolic events that control cellular growth and proliferation. Impairment in ribosome biogenesis pathways and mRNA translation is associated with pathologies such as cancer and developmental disorders. Processes that control global protein synthesis are tightly regulated at different levels by numerous factors and linked with multiple cellular signaling pathways. Several of these merge on the growth promoting factor c-Myc, which induces ribosome biogenesis by stimulating Pol I, Pol II, and Pol III transcription.
    [Show full text]
  • Novel Ribosome Biogenesis in the Lyme Disease Spirochete Borrelia Burgdorferi
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2013 Novel Ribosome Biogenesis in the Lyme Disease Spirochete Borrelia burgdorferi Melissa Lynn Hargreaves The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Hargreaves, Melissa Lynn, "Novel Ribosome Biogenesis in the Lyme Disease Spirochete Borrelia burgdorferi" (2013). Graduate Student Theses, Dissertations, & Professional Papers. 711. https://scholarworks.umt.edu/etd/711 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. NOVEL RIBOSOME BIOGENESIS IN THE LYME DISEASE SPIROCHETE BORRELIA BURGDORFERI By MELISSA LYNN HARGREAVES B. S. Montana State University, Bozeman, Montana, 2006 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy Integrative Microbiology and Biochemistry The University of Montana Missoula, MT June 2013 Approved by: Sandy Ross, Dean of The Graduate School Graduate School D. Scott Samuels, Chair Division of Biological Sciences Mike Minnick Division of Biological Sciences Stephen Lodmell Division of Biological Sciences Michele McGuirl Division of Biological Sciences Kent Sugden Chemistry and Biochemistry Hargreaves, Melissa, Ph.D., Spring 2013 Integrative Microbiology/Biochemistry Novel ribosome biogenesis in the Lyme disease spirochete Borrelia burgdorferi Chairperson: D. Scott Samuels Here we demonstrate the first characterization of an RNase III enzyme from a spirochete and its role in processing rRNA transcripts from the unusual rRNA gene operons of Borrelia burgdorferi.
    [Show full text]
  • Epigenetic Control of Ribosome Biogenesis Homeostasis Jerôme Deraze
    Epigenetic control of ribosome biogenesis homeostasis Jerôme Deraze To cite this version: Jerôme Deraze. Epigenetic control of ribosome biogenesis homeostasis. Cellular Biology. Université Pierre et Marie Curie - Paris VI, 2017. English. NNT : 2017PA066342. tel-01878354 HAL Id: tel-01878354 https://tel.archives-ouvertes.fr/tel-01878354 Submitted on 21 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie Ecole doctorale : Complexité du Vivant IBPS – UMR7622 Laboratoire de Biologie du Développement UPMC CNRS Epigenetic control of developmental homeostasis and plasticity Epigenetic Control of Ribosome Biogenesis Homeostasis Par Jérôme Deraze Thèse de doctorat de Biologie Moléculaire et Cellulaire Dirigée par Frédérique Peronnet et Sébastien Bloyer Présentée et soutenue publiquement le 19 Septembre 2017 Devant un jury composé de : Pr Anne-Marie MARTINEZ Professeur Rapporteur Dr Jacques MONTAGNE Directeur de Recherche Rapporteur Dr Olivier JEAN-JEAN Directeur de Recherche Examinateur Dr Michel COHEN-TANNOUDJI Directeur de Recherche Examinateur Dr Françoise JAMEN Maître de Conférences Examinateur Dr Nicolas NEGRE Maître de Conférences Examinateur Dr Frédérique PERONNET Directrice de Recherche Directrice de thèse Pr Sébastien BLOYER Professeur Co-directeur de thèse Table of contents Table of contents ....................................................................................................................................
    [Show full text]
  • Small Non-Coding Rnas Derived from Eukaryotic Ribosomal RNA
    non-coding RNA Review Small Non-Coding RNAs Derived from Eukaryotic Ribosomal RNA Marine Lambert , Abderrahim Benmoussa and Patrick Provost * CHU de Québec Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec City, QC, G1V 4G2 and Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; [email protected] (M.L.); [email protected] (A.B.) * Correspondence: [email protected]; Tel.: +1-418-525-4444 (ext. 48842); Fax: +1-418-654-2765 Received: 25 October 2018; Accepted: 27 January 2019; Published: 4 February 2019 Abstract: The advent of RNA-sequencing (RNA-Seq) technologies has markedly improved our knowledge and expanded the compendium of small non-coding RNAs, most of which derive from the processing of longer RNA precursors. In this review article, we will present a nonexhaustive list of referenced small non-coding RNAs (ncRNAs) derived from eukaryotic ribosomal RNA (rRNA), called rRNA fragments (rRFs). We will focus on the rRFs that are experimentally verified, and discuss their origin, length, structure, biogenesis, association with known regulatory proteins, and potential role(s) as regulator of gene expression. This relatively new class of ncRNAs remained poorly investigated and underappreciated until recently, due mainly to the a priori exclusion of rRNA sequences—because of their overabundance—from RNA-Seq datasets. The situation surrounding rRFs resembles that of microRNAs (miRNAs), which used to be readily discarded from further analyses, for more than five decades, because no one could believe that RNA of such a short length could bear biological significance.
    [Show full text]