Supplementary Tables Table S1 Sample Identifying Information And

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Tables Table S1 Sample Identifying Information And Supplementary tables Table S1 Sample identifying information and read statistics accession sample #raw #clean Sample MID FwdPrimer RvPrimer run number ID site reads reads 20100831.P4S.1 ACACGAGA ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 1 SRR1023739 P4S.910 Palsa 3831 2893 20100831.P4M.1 ACATAGCA ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 1 SRR1023739 P4M.910 Palsa 2047 1729 20100831.P4D.1 ACGATACA ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 1 SRR1023739 P4D.910 Palsa 3221 2543 20100831.B4S.1 ACTGCTCA ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 1 SRR1023739 B4S.910 Bog 1971 1366 20100831.B4M.1 AGCAGCGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 1 SRR1023739 B4M.910 Bog 5530 5251 20100831.B4D.1 AGCGTGCA ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 1 SRR1023739 B4D.910 Bog 4296 4143 20100831.F4S.1 AGTCTAGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 1 SRR1023739 F4S.910 Fen* 2716 1890 20100831.F4M.1 ATGACTGA ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 1 SRR1023739 F4M.910 Fen* 5005 3987 20100831.F4D.1 ATGCACGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 1 SRR1023739 F4D.910 Fen* 2870 2384 20100901.P1S.2 ACTGAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 P1S.910 Palsa 1170 662 20100901.P2S.2 ATGTGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 P2S.910 Palsa 1320 923 20100901.P3S.2 CACAGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 P3S.910 Palsa 857 656 20100901.P2M.2 CACTAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 P2M.910 Palsa 1077 881 20100901.P3M.2 CAGCAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 P3M.910 Palsa 2032 1474 20100901.P1D.2 CTAGAGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 P1D.910 Palsa 1267 1028 20100901.P2D.2 CAGAGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 P2D.910 Palsa 1565 1309 20100901.P3D.2 CTGCGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 P3D.910 Palsa 896 709 20100901.B1S.2 CACGAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 B1S.910 Bog 1069 739 20100901.B2S.2 TAGCGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 B2S.910 Bog 1259 917 20100901.B3S.2 TATGAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 B3S.910 Bog 1105 796 20100901.B1M.2 CTGTAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 B1M.910 Bog 1421 1219 20100901.B2M.2 TAGTAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 B2M.910 Bog 1128 1007 20100901.B3M.2 TCATAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 B3M.910 Bog 1492 1143 20100901.B1D.2 TACTGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 B1D.910 Bog 1576 1395 20100901.B2D.2 TATAGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 B2D.910 Bog 1133 1020 20100901.B3D.2 ACACTGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 B3D.910 Bog 1071 943 20100901.F1S.2 ACATAGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 F1S.910 Fen 3021 2221 20100901.F2S.2 ATCACGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 F2S.910 Fen 1503 1261 20100901.F3S.2 ATGCAGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 F3S.910 Fen 1124 869 20100901.F1M.2 ACATGAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 F1M.910 Fen 2919 2492 20100901.F2M.2 ATCGAGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 F2M.910 Fen 2808 1786 20100901.F3M.2 CGACTAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 F3M.910 Fen 1166 980 20100901.F1D.2 AGTGTAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 F1D.910 Fen 1344 1235 20100901.F2D.2 ATGATAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 2 SRR1023740 F2D.910 Fen 1956 1632 20100901.P1M.3 AGTATGAGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 3 SRR1023741 P1M.910 Palsa 3415 2437 20100901.P1D.3 AGTCGTCAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 3 SRR1023741 P1D.910 Palsa 2774 2119 20100901.B1S.3 AGACGATAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 3 SRR1023741 B1S.910 Bog 3262 2180 20100901.B2S.3 AGAGAGAGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 3 SRR1023741 B2S.910 Bog 1746 1271 20100901.B3S.3 AGAGATGAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 3 SRR1023741 B3S.910 Bog 2441 1867 20100901.B1M.3 AGATCGTAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 3 SRR1023741 B1M.910 Bog 3101 2355 20100901.B2M.3 AGATGACGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 3 SRR1023741 B2M.910 Bog 2612 2076 20100901.B3M.3 AGCAGAGAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 3 SRR1023741 B3M.910 Bog 3159 2360 20100901.B1D.3 AGCAGCAGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 3 SRR1023741 B1D.910 Bog 2539 2073 20100901.B2D.3 AGCATGTAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 3 SRR1023741 B2D.910 Bog 2534 2234 20100901.B3D.3 AGCTATCAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 3 SRR1023741 B3D.910 Bog 2533 1985 20100901.F1D.3 AGTGTCTGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 3 SRR1023741 F1D.910 Fen 1530 1339 20110615.B1S.4 ACAGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 4 SRR1023742 B1S.611 Bog 1518 1210 20110615.B2S.4 ACGAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 4 SRR1023742 B2S.611 Bog 2084 1642 20110712.B2S.4 CTAGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 4 SRR1023742 B2S.711 Bog 2605 1992 20110712.B3S.4 CTGAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 4 SRR1023742 B3S.711 Bog 2485 1944 20110615.B1M.4 AGAGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 4 SRR1023742 B1M.611 Bog 2674 2266 20110615.B2M.4 AGTGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 4 SRR1023742 B2M.611 Bog 2176 1844 20110615.B3M.4 ATCAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 4 SRR1023742 B3M.611 Bog 2133 1929 20110615.B1D.4 ATCGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 4 SRR1023742 B1D.611 Bog 1743 1620 20110615.B2D.4 CACGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 4 SRR1023742 B2D.611 Bog 10249 9334 20110615.B3D.4 CAGAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 4 SRR1023742 B3D.611 Bog 2527 2260 20110615.F2S.4 CATGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 4 SRR1023742 F2S.611 Fen 1512 1054 20110615.F2M.4 CGAGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 4 SRR1023742 F2M.611 Fen 645 562 20110615.F1D.4 CGCAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 4 SRR1023742 F1D.611 Fen 2254 1894 20110615.F2D.4 CGTAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 4 SRR1023742 F2D.611 Fen 2316 2110 20110615.F3D.4 CGTGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 4 SRR1023742 F3D.611 Fen 4269 3573 20111016.P2S.5 ATGCAGTAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P2S.1011 Palsa 6267 4752 20111016.P3S.5 ATGTGCGAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P3S.1011 Palsa 2086 1583 20110816.P1S.5 ACGCAGCGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P1S.811 Palsa 2677 2079 20110816.P2S.5 ACGCGATGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P2S.811 Palsa 2112 1644 20110816.P3S.5 ACGTCTCAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P3S.811 Palsa 1220 879 20110712.P2M.5 CACTGTGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P2M.711 Palsa 8967 7346 20110712.P3M.5 CAGACTAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P3M.711 Palsa 2093 1589 20110816.P3M.5 ACTGAGCAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P3M.811 Palsa 1218 912 20110615.P1D.5 AGCAGTAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P1D.611 Palsa 1036 869 20111016.P1M.5 ACACAGAGAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P1M.1011 Palsa 1714 1403 20111016.P3M.5 ACAGTACTAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P3M.1011 Palsa 4249 3362 20111016.P2M.5 ACACTCATGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P2M.1011 Palsa 4995 4125 20110712.P1D.5 CAGCTAGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P1D.711 Palsa 1735 1554 20110712.P2D.5 CAGTACGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P2D.711 Palsa 6306 5525 20110816.P1D.5 ACTGCATAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P1D.811 Palsa 2384 1878 20110816.P2D.5 AGACACTGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P2D.811 Palsa 4583 3678 20110712.P3D.5 CATAGCAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P3D.711 Palsa 2245 1803 20110816.P3D.5 AGACGATAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P3D.811 Palsa 4773 4049 20111016.P1D.5 ACATACTCGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P1D.1011 Palsa 2022 1668 20111016.P3D.5 ACGAGACAGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P3D.1011 Palsa 5581 4458 20111016.P2D.5 ACATCTGAGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 P2D.1011 Palsa 2324 2018 20111016.B1S.5 ATAGCTAGAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 B1S.1011 Bog 26551 20448 20111016.B2S.5 ACGCTGTAGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 B2S.1011 Bog 4731 3473 20111016.B3S.5 ACGTAGCTAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 B3S.1011 Bog 2212 1643 20110712.B1S.5 CGAGATGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 B1S.711 Bog 4949 3607 20110816.B1S.5 AGAGAGAGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 B1S.811 Bog 4352 3361 20110816.B3S.5 AGATCGTAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 B3S.811 Bog 3168 2465 20111016.B1M.5 ACGTCATGAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 B1M.1011 Bog 2561 2053 20111016.B3M.5 ACTGCATCGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 B3M.1011 Bog 2704 2195 20111016.B1D.5 AGACATCAGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 B1D.1011 Bog 2425 2036 20111016.B2M.5 ACTACGATGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 B2M.1011 Bog 2061 1788 20110712.B2M.5 CTATGAGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 B2M.711 Bog 5338 4627 20111016.B3D.5 AGAGAGACGT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 B3D.1011 Bog 2655 2294 20111016.B2D.5 AGACGATGAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 B2D.1011 Bog 4477 3776 20110712.B1D.5 TAGCTCAT ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 B1D.711 Bog 1711 1444 20110712.B3D.5 TCAGCTAC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 B3D.711 Bog 2310 2035 20110816.B3M.5 AGCAGCAGC ACGGGCGGTGWGTRC CCGYCAATTCMTTTRAGTTT 5 SRR1023743 B3M.811
Recommended publications
  • Novel Bacterial Lineages Associated with Boreal Moss Species Hannah
    bioRxiv preprint doi: https://doi.org/10.1101/219659; this version posted November 16, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Novel bacterial lineages associated with boreal moss species 2 Hannah Holland-Moritz1,2*, Julia Stuart3, Lily R. Lewis4, Samantha Miller3, Michelle C. Mack3, Stuart 3 F. McDaniel4, Noah Fierer1,2* 4 Affiliations: 5 1Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, 6 Boulder, CO, USA 7 2Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, 8 USA 9 3Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ USA 10 4Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA 11 *Corresponding Author 12 13 Abstract 14 Mosses are critical components of boreal ecosystems where they typically account for a large 15 proportion of net primary productivity and harbor diverse bacterial communities that can be the major 16 source of biologically-fixed nitrogen in these ecosystems. Despite their ecological importance, we have 17 limited understanding of how microbial communities vary across boreal moss species and the extent to 18 which local environmental conditions may influence the composition of these bacterial communities. 19 We used marker gene sequencing to analyze bacterial communities associated with eight boreal moss 20 species collected near Fairbanks, AK USA. We found that host identity was more important than site in 21 determining bacterial community composition and that mosses harbor diverse lineages of potential N2- 22 fixers as well as an abundance of novel taxa assigned to understudied bacterial phyla (including 23 candidate phylum WPS-2).
    [Show full text]
  • Table S1. Bacterial Otus from 16S Rrna
    Table S1. Bacterial OTUs from 16S rRNA sequencing analysis including only taxa which were identified to genus level (those OTUs identified as Ambiguous taxa, uncultured bacteria or without genus-level identifications were omitted). OTUs with only a single representative across all samples were also omitted. Taxa are listed from most to least abundant. Pitcher Plant Sample Class Order Family Genus CB1p1 CB1p2 CB1p3 CB1p4 CB5p234 Sp3p2 Sp3p4 Sp3p5 Sp5p23 Sp9p234 sum Gammaproteobacteria Legionellales Coxiellaceae Rickettsiella 1 2 0 1 2 3 60194 497 1038 2 61740 Alphaproteobacteria Rhodospirillales Rhodospirillaceae Azospirillum 686 527 10513 485 11 3 2 7 16494 8201 36929 Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Pedobacter 455 302 873 103 16 19242 279 55 760 1077 23162 Betaproteobacteria Burkholderiales Oxalobacteraceae Duganella 9060 5734 2660 40 1357 280 117 29 129 35 19441 Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 3336 1991 3475 1309 2819 233 1335 1666 3046 218 19428 Betaproteobacteria Burkholderiales Burkholderiaceae Paraburkholderia 0 1 0 1 16051 98 41 140 23 17 16372 Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Mucilaginibacter 77 39 3123 20 2006 324 982 5764 408 21 12764 Gammaproteobacteria Pseudomonadales Moraxellaceae Alkanindiges 9 10 14 7 9632 6 79 518 1183 65 11523 Betaproteobacteria Neisseriales Neisseriaceae Aquitalea 0 0 0 0 1 1577 5715 1471 2141 177 11082 Flavobacteriia Flavobacteriales Flavobacteriaceae Flavobacterium 324 219 8432 533 24 123 7 15 111 324 10112 Alphaproteobacteria
    [Show full text]
  • Genomic Analysis of Family UBA6911 (Group 18 Acidobacteria)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 Genomic analysis of family UBA6911 (Group 18 3 Acidobacteria) expands the metabolic capacities of the 4 phylum and highlights adaptations to terrestrial habitats. 5 6 Archana Yadav1, Jenna C. Borrelli1, Mostafa S. Elshahed1, and Noha H. Youssef1* 7 8 1Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, 9 OK 10 *Correspondence: Noha H. Youssef: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 11 Abstract 12 Approaches for recovering and analyzing genomes belonging to novel, hitherto unexplored 13 bacterial lineages have provided invaluable insights into the metabolic capabilities and 14 ecological roles of yet-uncultured taxa. The phylum Acidobacteria is one of the most prevalent 15 and ecologically successful lineages on earth yet, currently, multiple lineages within this phylum 16 remain unexplored. Here, we utilize genomes recovered from Zodletone spring, an anaerobic 17 sulfide and sulfur-rich spring in southwestern Oklahoma, as well as from multiple disparate soil 18 and non-soil habitats, to examine the metabolic capabilities and ecological role of members of 19 the family UBA6911 (group18) Acidobacteria.
    [Show full text]
  • Actinomycetes Isolated from Wetland and Hill Paddy During the Warm and Cool Seasons in Sarawak, East Malaysia
    ACTINOMYCETES ISOLATED FROM WETLAND AND HILL PADDY DURING THE WARM AND COOL SEASONS IN SARAWAK, EAST MALAYSIA Ann Anni Basik*, Holed Juboi, Sunita Sara Gill Shamsul, Jean-Jacques Sanglier and Tiong Chia Yeo Address(es): Ann Anni Basik 1 Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, 93250 Kuching, Sarawak, Malaysia. *Corresponding author: [email protected] doi: 10.15414/jmbfs.2020.9.4.774-780 ARTICLE INFO ABSTRACT Received 12. 3. 2018 As part of the Natural Product Discovery programme at Sarawak Biodiversity Centre (SBC), our study targeted isolation and evaluation Revised 4. 9. 2019 of actinomycetes diversity from paddy rice fields. Samples from two types of paddy farming system practiced in Sarawak, wet land and Accepted 11. 9. 2019 hill paddy, were collected and processed leading to the selection of 578 strains distributed among 24 genera and 10 families. Analysis Published 3. 2. 2020 using phylogenetic clustering indicated a total of 159 taxonomic units (TU). The taxonomic position and the ranking of the TU allowed their classification in 4 novel species, 61 putative novel species and 94 known species or species of uncertain position. The high genus diversity and percentage of novel or putative novel species demonstrate the biodiversity potential of Sarawak ecosystems, even in man- Regular article managed ecosystems. Keywords: paddy field, actinomycetes, ranking, taxonomic unit INTRODUCTION sequence identity (Gevers et al., 2005). However, species can be differentiated at a level of 98.2 – 99 % 16S rRNA similarity (Kim et al., 2014). Isolation of rare actinomycetes from paddy rice (Oryza sativa L.) field in the Apart from the commonly collected soil samples, rhizospheric soil and roots were Kuching Division, Sarawak were made to evaluate their diversity and also included for the isolation of actinomycetes in this project.
    [Show full text]
  • Tree-Aggregated Predictive Modeling of Microbiome Data
    www.nature.com/scientificreports OPEN Tree‑aggregated predictive modeling of microbiome data Jacob Bien1, Xiaohan Yan2, Léo Simpson3,4 & Christian L. Müller4,5,6* Modern high‑throughput sequencing technologies provide low‑cost microbiome survey data across all habitats of life at unprecedented scale. At the most granular level, the primary data consist of sparse counts of amplicon sequence variants or operational taxonomic units that are associated with taxonomic and phylogenetic group information. In this contribution, we leverage the hierarchical structure of amplicon data and propose a data‑driven and scalable tree‑guided aggregation framework to associate microbial subcompositions with response variables of interest. The excess number of zero or low count measurements at the read level forces traditional microbiome data analysis workfows to remove rare sequencing variants or group them by a fxed taxonomic rank, such as genus or phylum, or by phylogenetic similarity. By contrast, our framework, which we call trac (tree‑aggregation of compositional data), learns data‑adaptive taxon aggregation levels for predictive modeling, greatly reducing the need for user‑defned aggregation in preprocessing while simultaneously integrating seamlessly into the compositional data analysis framework. We illustrate the versatility of our framework in the context of large‑scale regression problems in human gut, soil, and marine microbial ecosystems. We posit that the inferred aggregation levels provide highly interpretable taxon groupings that can help microbiome researchers gain insights into the structure and functioning of the underlying ecosystem of interest. Microbial communities populate all major environments on earth and signifcantly contribute to the total plan- etary biomass. Current estimates suggest that a typical human-associated microbiome consists of ∼ 1013 bacteria1 and that marine bacteria and protists contribute to as much as 70% of the total marine biomass2.
    [Show full text]
  • Inter-Domain Horizontal Gene Transfer of Nickel-Binding Superoxide Dismutase 2 Kevin M
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426412; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Inter-domain Horizontal Gene Transfer of Nickel-binding Superoxide Dismutase 2 Kevin M. Sutherland1,*, Lewis M. Ward1, Chloé-Rose Colombero1, David T. Johnston1 3 4 1Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 5 *Correspondence to KMS: [email protected] 6 7 Abstract 8 The ability of aerobic microorganisms to regulate internal and external concentrations of the 9 reactive oxygen species (ROS) superoxide directly influences the health and viability of cells. 10 Superoxide dismutases (SODs) are the primary regulatory enzymes that are used by 11 microorganisms to degrade superoxide. SOD is not one, but three separate, non-homologous 12 enzymes that perform the same function. Thus, the evolutionary history of genes encoding for 13 different SOD enzymes is one of convergent evolution, which reflects environmental selection 14 brought about by an oxygenated atmosphere, changes in metal availability, and opportunistic 15 horizontal gene transfer (HGT). In this study we examine the phylogenetic history of the protein 16 sequence encoding for the nickel-binding metalloform of the SOD enzyme (SodN). A comparison 17 of organismal and SodN protein phylogenetic trees reveals several instances of HGT, including 18 multiple inter-domain transfers of the sodN gene from the bacterial domain to the archaeal domain.
    [Show full text]
  • Microbial Communities of Polymetallic Deposits' Acidic
    Microbial Communities of Polymetallic Deposits’ Acidic Ecosystems of ANGOR UNIVERSITY Continental Climatic Zone With High Temperature Contrasts Gavrilov, Sergei N.; Korzhenkov, Aleksei A.; Kublanov, Ilya V.; Bargiela, Rafael; Zamana, Leonid V.; Toshchakov, Stepan V.; Golyshin, Peter; Golyshina, Olga Frontiers in Microbiology PRIFYSGOL BANGOR / B Published: 17/07/2019 Publisher's PDF, also known as Version of record Cyswllt i'r cyhoeddiad / Link to publication Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Gavrilov, S. N., Korzhenkov, A. A., Kublanov, I. V., Bargiela, R., Zamana, L. V., Toshchakov, S. V., Golyshin, P., & Golyshina, O. (2019). Microbial Communities of Polymetallic Deposits’ Acidic Ecosystems of Continental Climatic Zone With High Temperature Contrasts. Frontiers in Microbiology. Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 01. Oct. 2021 ORIGINAL RESEARCH published: 17 July 2019 doi: 10.3389/fmicb.2019.01573 Microbial Communities of Polymetallic Deposits’ Acidic Ecosystems of Continental Climatic Zone With High Temperature Contrasts Sergey N.
    [Show full text]
  • Pyrosequencing Investigation Into the Bacterial Community in Permafrost Soils Along the China-Russia Crude Oil Pipeline (CRCOP)
    Pyrosequencing Investigation into the Bacterial Community in Permafrost Soils along the China-Russia Crude Oil Pipeline (CRCOP) Sizhong Yang1*, Xi Wen2, Huijun Jin1, Qingbai Wu1 1 State Key Laboratory of Frozen Soil Engineering (SKLFSE), Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences, Lanzhou, China, 2 College of Electrical Engineering, Northwest University for Nationalities, Lanzhou, China Abstract The China-Russia Crude Oil Pipeline (CRCOP) goes through 441 km permafrost soils in northeastern China. The bioremediation in case of oil spills is a major concern. So far, little is known about the indigenous bacteria inhabiting in the permafrost soils along the pipeline. A pilot 454 pyrosequencing analysis on the communities from four selected sites which possess high environment risk along the CRCOP is herein presented. The results reveal an immense bacterial diversity than previously anticipated. A total of 14448 OTUs with 84834 reads are identified, which could be assigned into 39 different phyla, and 223 families or 386 genera. Only five phyla sustain a mean OTU abundance more than 5% in all the samples, but they altogether account for 85.08% of total reads. Proteobacteria accounts for 41.65% of the total OTUs or 45% of the reads across all samples, and its proportion generally increases with soil depth, but OTUs numerically decline. Among Proteobacteria, the abundance of Beta-, Alpha-, Delta- and Gamma- subdivisions average to 38.7% (2331 OTUs), 37.5% (2257 OTUs), 10.35% (616 OTUs), and 6.21% (374 OTUs), respectively. Acidobacteria (esp. Acidobacteriaceae), Actinobacteria (esp. Intrasporangiaceae), Bacteroidetes (esp. Sphingobacteria and Flavobacteria) and Chloroflexi (esp.
    [Show full text]
  • Of Bergey's Manual
    BERGEY’S MANUAL® OF Systematic Bacteriology Second Edition Volume Five The Actinobacteria, Part A and B BERGEY’S MANUAL® OF Systematic Bacteriology Second Edition Volume Five The Actinobacteria, Part A and B Michael Goodfellow, Peter Kämpfer, Hans-Jürgen Busse, Martha E. Trujillo, Ken-ichiro Suzuki, Wolfgang Ludwig and William B. Whitman EDITORS, VOLUME FIVE William B. Whitman DIRECTOR OF THE EDITORIAL OFFICE Aidan C. Parte MANAGING EDITOR EDITORIAL BOARD Fred A. Rainey, Chairman, Peter Kämpfer, Vice Chairman, Paul De Vos, Jongsik Chun, Martha E. Trujillo and William B. Whitman WITH CONTRIBUTIONS FROM 116 COLLEAGUES William B. Whitman Bergey’s Manual Trust Department of Microbiology 527 Biological Sciences Building University of Georgia Athens, GA 30602-2605 USA ISBN 978-0-387-95043-3 ISBN 978-0-387-68233-4 (eBook) DOI 10.1007/978-0-387-68233-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2012930836 © 2012, 1984–1989 Bergey’s Manual Trust Bergey’s Manual is a registered trademark of Bergey’s Manual Trust. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
    [Show full text]
  • The Effect of Tillage System and Crop Rotation on Soil Microbial Diversity and Composition in a Subtropical Acrisol
    Diversity 2012, 4, 375-395; doi:10.3390/d4040375 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Article The Effect of Tillage System and Crop Rotation on Soil Microbial Diversity and Composition in a Subtropical Acrisol Patricia Dorr de Quadros 1,2,*, Kateryna Zhalnina 2, Austin Davis-Richardson 2, Jennie R. Fagen 2, Jennifer Drew 2, Cimelio Bayer 1, Flavio A.O. Camargo 1 and Eric W. Triplett 2 1 Department of Soil Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; E-Mails: [email protected] (C.B.); [email protected] (F.A.O.C.) 2 Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA; E-Mails: [email protected] (K.Z.), [email protected] (A.C.R.), [email protected] (J.D.), [email protected] (E.W.T.) *Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: (352)-575-5731. Received: 29 August 2012; in revised form: 11 October 2012 / Accepted: 19 October 2012 / Published: 31 October 2012 Abstract: Agricultural management alters physical and chemical soil properties, which directly affects microbial life strategies and community composition. The microbial community drives important nutrient cycling processes that can influence soil quality, cropping productivity and environmental sustainability. In this research, a long-term agricultural experiment in a subtropical Acrisol was studied in south Brazil. The plots at this site represent two tillage systems, two nitrogen fertilization regimes and three crop rotation systems. Using Illumina high-throughput sequencing of the 16S rRNA gene, the archaeal and bacterial composition was determined from phylum to species level in the different plot treatments.
    [Show full text]
  • (ST). the Table
    1 SUPPLEMENTAL MATERIALS Growth Media Modern Condition Seawater Freshwater Light T°C Atmosphere AMCONA medium BG11 medium – Synechococcus – – Synechocystis – [C] in PAL [C] in the [C] in the Gas Nutrients Modern Nutrients (ppm) Medium Medium Ocean NaNO3 CO2 ~407.8 Na2SO4 25.0mM 29mM Nitrogen 50 Standard (17.65mM) μmol (ST) NaNO NaNO 20°C O ~209’460 Nitrogen 3 3 MgSO 0.304mM photon 2 (549µM) (13.7µM) 4 /m2s FeCl3 6.56µM 2nM Ammonium 0.6g/L ZnSO 254nM 0.5nM ferric stock N ~780’790 4 2 citrate (10ml NaMoO 105nM 105nM 4 green stock/1L) 2 Table S 1 Description of the experimental condition defined as Standard Condition (ST). The table 3 shows the concentrations of fundamental elements, such as C, N, S, and Fe used for the AMCONA 4 seawater medium (Fanesi et al., 2014) and BG11 freshwater medium (Stanier et al., 1971) flushing air 5 with using air pump (KEDSUM-310 8W pump; Xiolan, China) Growth Media Possible Proterozoic T° Condition Modified Seawater Modified Freshwater Light Atmosphere AMCONA medium BG11 medium C – Synechococcus – – Synechocystis – [C] in [C] in PPr Nutrients PPr Nutrients Medium Gas ppm Medium NH Cl Na SO 3mM Nitrogen 4 3 2 4 (0.0035mM) CO 2 10’000ppm (20%) NH Cl Possible (~ 2’450% Nitrogen 4 3 MgSO 0.035mM 50 with 20ml/ (100µM) 4 Proterozoic PAL) μmol 20° min (PPr) photon C O2 20’000ppm /m2s (in Air) (~ 10% FeCl 200nM with 5ml/ 3 PAL) Ammonium 0.6g/L stock min ferric 10ml N ZnSO 0.0nM 2 4 citrate green stock/1L (100%) Base gas with NaMoO4 10.5nM 200ml/min 6 Table S 2 Description of the experimental condition defined as Possible Proterozoic Condition (PPr).
    [Show full text]
  • The First Representative of the Globally Widespread Subdivision 6 Acidobacteria, Vicinamibacter Silvestris Gen
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 2971–2979 DOI 10.1099/ijsem.0.001131 The first representative of the globally widespread subdivision 6 Acidobacteria, Vicinamibacter silvestris gen. nov., sp. nov., isolated from subtropical savannah soil Katharina J. Huber,1 Alicia M. Geppert,1 Gerhard Wanner,2 Barbel€ U. Fösel,1 Pia K. Wüst1 and Jörg Overmann1,3 Correspondence 1Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Katharina J. Huber Collection of Microorganisms and Cell Cultures, Braunschweig, Germany [email protected] 2Department of Biology I, Biozentrum Ludwig Maximilian University of Munich, Planegg- Martinsried, Germany 3Technical University Braunschweig, Braunschweig, Germany Members of the phylum Acidobacteria are abundant in a wide variety of soil environments. Despite this, previous cultivation attempts have frequently failed to retrieve representative phylotypes of Acidobacteria, which have, therefore, been discovered by culture-independent methods (13175 acidobacterial sequences in the SILVA database version 123; NR99) and only 47 species have been described so far. Strain Ac_5_C6T represents the first isolate of the globally widespread and abundant subdivision 6 Acidobacteria and is described in the present study. Cells of strain Ac_5_C6T were Gram-stain-negative, immotile rods that divided by binary fission. They formed yellow, extremely cohesive colonies and stable aggregates even in rapidly shaken liquid cultures. Ac_5_C6T was tolerant of a wide range of temperatures (12–40 C) and pH values (4.7–9.0). It grew chemoorganoheterotrophically on a broad range of substrates including different sugars, organic acids, nucleic acids and complex proteinaceous compounds. T The major fatty acids of Ac_5_C6 were iso-C17 : 1 !9c,C18 : 1 !7c and iso-C15 : 0.
    [Show full text]