Final Report Coordinated Development of the Australian Tree Nut Industry

Total Page:16

File Type:pdf, Size:1020Kb

Final Report Coordinated Development of the Australian Tree Nut Industry Final Report Coordinated Development of the Australian Tree Nut Industry Chaseley Ross Australian Nut Industry Council Project Number: NT12001 NT12001 This project has been funded by Hort Innovation with co-investment from the Australian Nut Industry Council on behalf of the Australian tree nut industry and funds from the Australian Government. Hort Innovation makes no representations and expressly disclaims all warranties (to the extent permitted by law) about the accuracy, completeness, or currency of information in Coordinated Development of the Australian Tree Nut Industry. Reliance on any information provided by Hort Innovation is entirely at your own risk. Hort Innovation is not responsible for, and will not be liable for, any loss, damage, claim, expense, cost (including legal costs) or other liability arising in any way (including from Hort Innovation or any other person’s negligence or otherwise) from your use or non-use of Coordinated Development of the Australian Tree Nut Industry, or from reliance on information contained in the material or that Hort Innovation provides to you by any other means. ISBN 978 0 7341 4351 8 Published and distributed by: Hort Innovation Level 8, 1 Chifley Square Sydney NSW 2000 Tel: (02) 8295 2300 Fax: (02) 8295 2399 © Copyright 2017 Contents Summary .......................................................................................................................................... 3 Introduction ...................................................................................................................................... 4 Methodology ..................................................................................................................................... 6 Outputs ............................................................................................................................................ 7 Outcomes ......................................................................................................................................... 9 Whole of industry Biosecurity Plan .................................................................................................... 11 Evaluation and Discussion ................................................................................................................ 12 Recommendations ........................................................................................................................... 14 Intellectual Property/Commercialisation ............................................................................................ 14 Acknowledgements .......................................................................................................................... 14 Appendices ..................................................................................................................................... 15 2 Summary The Australian tree nut industry has experienced a 50% increase in production in the last five years. This has largely been a result of orchards planted in the late 1990s/early 2000s coming into bearing. Projected growth is a further 43% by 2025, with this next expansion being driven by improved productivity and further new plantings. ANIC members recognise that the industry needs to support this expansion and development at an industry-wide level to ensure information is made available to all of industry in a timely, consistent and comprehensive manner to aid better decision making. This is particularly the case for the smaller industries who lack the resources and coordination to conduct many of these activities themselves in the short-medium term. As the Australian nut industry continues to grow, additional capacity is required to undertake industry development planning and implementation. The needs of the industry are broad and complex. The allocation of resources to provide industry development services will accelerate existing planning and bring new information to the industry collectively. The Coordinated development of the Australian tree nut industry project provided for a part- time (0.2 FTE) Industry Development Manager (IDM). Through this project the IDM was engaged in an education and communication role so that across nut industry activities were coordinated and information shared across the industries collectively. Fundamental to this role is the coordination of these activities across all seven tree nut industries of almonds, macadamias, walnuts, pecans, pistachios, chestnuts and hazelnuts. The IDM has had the capacity to provide vital information to empower the individual nut industries and support the investments each of them are making in industry development and importantly to avoid duplication of effort where possible. The project worked across the key activity areas of: 1. Coordination, collection and collation of industry production statistics 2. Provision of general market access information 3. Communication and dissemination of information on food safety issues 4. Communication and dissemination of information on nut industry biosecurity issues and practices 5. Coordination of multi-industry chemical registrations and minor use permits 6. Review and update the Australian Nut Industry Strategic Plan. A range of outputs were produced over the life of the project and they are detailed in this report. ANIC believes the intended project outcomes were achieved. These include: • A more empowered nut industry, • Greater consistency of information provided to all nut industries to incorporate into their extension and delivery capacity, • Greater awareness of the individual nut industries as to the issues of commonality between them, and areas they might collaborate on, and • Improved efficiency and effectiveness of the wide range of private and public funded R&D that many ANIC member already undertake. This project has involved the Australian tree nut industries of almonds, macadamias, walnuts, pecans, pistachios, chestnuts and hazelnuts collaborating through the Australian Nut Industry Council (ANIC). The Australian Nut Industry Council (ANIC) is the federation representing the seven commercial tree nut industries in Australia. 3 Keywords nuts; almonds; macadamias; pecans; walnuts; pistachios; industry; development; collaboration Introduction The Australian Nut Industry Council (ANIC) is the federation representing the seven commercial tree nut industries in Australia. Its members are the peak industry representative bodies - the Almond Board of Australia, Australian Macadamia Society, Australian Walnut Industry Association, Pistachio Growers Association, Hazelnut Growers of Australia, Australian Pecan Growers Association and Chestnuts Australia Inc. ANIC’s scope is to provide efficiency of service and value in activities where benefit exists of collective action, rather than several times over. ANIC’s engagement in activities such as this are at the request of its members. The Australian tree nut industry has experienced a 50% increase in production in the last five years. This has largely been a result of orchards planted in the late 1990s/early 2000s coming into bearing. Projected growth is a further 43% by 2025, with this next expansion being driven by improved productivity and further new plantings. The Australian tree nut industry has been the leading horticultural exporter for several years now. In calendar year 2016 the value of tree nut exports exceeded $1 billion for the first time. Several of the industries (almonds, macadamias, walnuts and pecans) have been developed in Australia with the export market as a focus. The other smaller sectors are also now starting to look outside the domestic arena as their production begins to increase to levels where continuity of supply can be maintained year on year. The interest in the industry, both from existing growers wishing to expand and new investment continues to grow – almonds are predicting a further five million trees to be planted in the next three years – is strong as both demand and consumption of nuts globally continues to rise. New markets need to be identified and secured for our increasing production, and existing relationships that have been developed through hard work and investment for several years nurtured and grown (competition from northern hemisphere producing nations is strong and much older than in Australia). ANIC members have recognised that the industry needs to support this expansion and development. This is particularly the case for the smaller industries that lack the resources and coordination to conduct many of the activities outlined in this project themselves in the short- medium term. This project was established to align with several of the objectives of the 2009-2014 Australian Nut Industry Council’s Strategic Plan: Objective 1. To support and foster nut growing in Australia 1.2. Industry planning, research and communication on issues of common interest 1.4. Foster information exchange and goodwill between member nut industries and relationships between executives in these industries 1.5. Support the Australian nut growing, processing, packing and marketing industries Objective 3. To facilitate export market growth for Australian-grown nuts 3.3. Inform industry bodies of opportunities and threats to export market growth 3.4. Encourage cooperation in export markets 4 Areas identified as requiring development and management include the: • Coordination, collection and collation of industry production statistics, • Provision of general market access information, •
Recommended publications
  • Biology and Management of the Dutch Elm Disease Vector, Hylurgopinus Rufipes Eichhoff (Coleoptera: Curculionidae) in Manitoba By
    Biology and Management of the Dutch Elm Disease Vector, Hylurgopinus rufipes Eichhoff (Coleoptera: Curculionidae) in Manitoba by Sunday Oghiakhe A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of Doctor of Philosophy Department of Entomology University of Manitoba Winnipeg Copyright © 2014 Sunday Oghiakhe Abstract Hylurgopinus rufipes, the native elm bark beetle (NEBB), is the major vector of Dutch elm disease (DED) in Manitoba. Dissections of American elms (Ulmus americana), in the same year as DED symptoms appeared in them, showed that NEBB constructed brood galleries in which a generation completed development, and adult NEBB carrying DED spores would probably leave the newly-symptomatic trees. Rapid removal of freshly diseased trees, completed by mid-August, will prevent spore-bearing NEBB emergence, and is recommended. The relationship between presence of NEBB in stained branch sections and the total number of NEEB per tree could be the basis for methods to prioritize trees for rapid removal. Numbers and densities of overwintering NEBB in elm trees decreased with increasing height, with >70% of the population overwintering above ground doing so in the basal 15 cm. Substantial numbers of NEBB overwinter below the soil surface, and could be unaffected by basal spraying. Mark-recapture studies showed that frequency of spore bearing by overwintering beetles averaged 45% for the wild population and 2% for marked NEBB released from disease-free logs. Most NEBB overwintered close to their emergence site, but some traveled ≥4.8 km before wintering. Studies comparing efficacy of insecticides showed that chlorpyrifos gave 100% control of overwintering NEBB for two years as did bifenthrin: however, permethrin and carbaryl provided transient efficacy.
    [Show full text]
  • Zootaxa, Trissolcus Radjabii N.Sp
    Zootaxa 2515: 65–68 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) Trissolcus radjabii n.sp. (Hymenoptera: Platygastridae), an egg parasitoid of the shield bug, Apodiphus amygdali (Heteroptera: Pentatomidae) and the sunn pest, Eurygaster integriceps (Heteroptera: Scutelleridae) SHAHZAD IRANIPOUR1 & NORMAN F. JOHNSON2 1Department of Plant Protection, College of Agriculture, University of Tabriz, Tabriz, Iran. E-mail: [email protected]; urn:lsid:zoobank.org:author:18724A0E-59D0-4109-BB04-B09D9E4A9BC0 2Department of Entomology, The Ohio State University, 1315 Kinnear Road, Columbus, OH 43212, U.S.A. E-mail: [email protected]; urn:lsid:zoobank.org:author:3508C4FF-F027-445F-8417-90AB4AB8FE0D urn:lsid:zoobank.org:pub:0114DE6E-C85F-4D97-8C7E-3B2B701D2FCD Kozlov and Kononova (1983) classified 53 Palearctic species of the genus Trissolcus Ashmead into five groups. The presence of the hyperoccipital carina, convex frons, absence of notauli, and elongate postmarginal vein (longer than the stigmal vein) in the fore wing are characteristics delimiting the gonopsidis-group. These species differ from the flavipes- group only in the lack of notauli. Kozlov and Kononova placed three species in the gonopsidis-group: T. mentha Kozlov and Lê, T. gonopsidis (Watanabe), and T. elasmuchae (Watanabe). In a taxonomic study of the Trissolcus species of Korea and Japan, Ryu and Hirashima (1984) reported three other species with characteristics of the gonopsidis-group: T. nigripedius (Nakagawa), T. itoi Ryu and T. yamagishi Ryu. Most of these species are known only from Japan or Korea. Trissolcus elasmuchae has been observed in Ukraine and Russia as well as Japan, and T.
    [Show full text]
  • The Pentatomidae, Or Stink Bugs, of Kansas with a Key to Species (Hemiptera: Heteroptera) Richard J
    Fort Hays State University FHSU Scholars Repository Biology Faculty Papers Biology 2012 The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas Fort Hays State University, [email protected] Follow this and additional works at: http://scholars.fhsu.edu/biology_facpubs Part of the Biology Commons, and the Entomology Commons Recommended Citation Packauskas, Richard J., "The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera)" (2012). Biology Faculty Papers. 2. http://scholars.fhsu.edu/biology_facpubs/2 This Article is brought to you for free and open access by the Biology at FHSU Scholars Repository. It has been accepted for inclusion in Biology Faculty Papers by an authorized administrator of FHSU Scholars Repository. 210 THE GREAT LAKES ENTOMOLOGIST Vol. 45, Nos. 3 - 4 The Pentatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas1 Abstract Forty eight species of Pentatomidae are listed as occurring in the state of Kansas, nine of these are new state records. A key to all species known from the state of Kansas is given, along with some notes on new state records. ____________________ The family Pentatomidae, comprised of mainly phytophagous and a few predaceous species, is one of the largest families of Heteroptera. Some of the phytophagous species have a wide host range and this ability may make them the most economically important family among the Heteroptera (Panizzi et al. 2000). As a group, they have been found feeding on cotton, nuts, fruits, veg- etables, legumes, and grain crops (McPherson 1982, McPherson and McPherson 2000, Panizzi et al 2000).
    [Show full text]
  • United States National Museum Bulletin 276
    ,*f»W*»"*^W»i;|. SMITHSONIAN INSTITUTION MUSEUM O F NATURAL HISTORY UNITED STATES NATIONAL MUSEUM BULLETIN 276 A Revision of the Genus Malacosoma Hlibner in North America (Lepidoptera: Lasiocampidae): Systematics, Biology, Immatures, and Parasites FREDERICK W. STEHR and EDWIN F. COOK SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1968 PUBLICATIONS OF THE UNITED STATES NATIONAL MUSEUM The scientific publications of the United States National Museum include two series. Proceedings of the United States National Museum and United States National Museum Bulletin. In these series are published original articles and monographs dealing with the collections and work of the Museum and setting forth newly acquired facts in the field of anthropology, biology, geology, history, and technology. Copies of each publication are distributed to libraries and scientific organizations and to specialists and others interested in the various subjects. The Proceedings, begun in 1878, are intended for the publication, in separate form, of shorter papers. These are gathered in volumes, octavo in size, with the publication date of each paper recorded in the table of contents of the volume. In the Bulletin series, the first of which was issued in 1875, appear longer, separate publications consisting of monographs (occasionally in several parts) and volumes in which are collected works on related subjects. Bulletins are either octavo or quarto in size, depending on the needs of the presentation. Since 1902, papers relating to the botanical collections of the Museum have been published in the Bulletin series under the heading Contributions from the United States National Herbarium. This work forms number 276 of the Bulletin series.
    [Show full text]
  • Hymenoptera, Braconidae, Miracinae) from India and Saudi Arabia
    A peer-reviewed open-access journal ZooKeys 889: 37–47 (2019) Three new species of the genusCentistidea 37 doi: 10.3897/zookeys.889.34942 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Three new species of the genus Centistidea Rohwer, 1914 (Hymenoptera, Braconidae, Miracinae) from India and Saudi Arabia Hamed A. Ghramh1,2,3, Zubair Ahmad1,2,4, Kavita Pandey5 1 Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia 2 Unit of Bee Research and Honey Production, Faculty of Science, King Khalid Uni- versity, P.O. Box 9004, Abha 61413, Saudi Arabia 3 Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia 4 Biology Department, Faculty of Sciences and Arts, Dhahran Al Jounub, King Khalid University, Saudi Arabia 5 Department of Zoology, Aligarh Muslim Uni- versity, Aligarh, 202002, UP India Corresponding author: Zubair Ahmad ([email protected]) Academic editor: J. Fernandez-Triana | Received 28 March 2019 | Accepted 26 August 2019 | Published 14 November 2019 http://zoobank.org/B29D952D-7108-449C-9DBE-AFB4FE04CA89 Citation: Ghramh HA, Ahmad Z, Pandey K (2019) Three new species of the genusCentistidea Rohwer, 1914 (Hymenoptera, Braconidae, Miracinae) from India and Saudi Arabia. ZooKeys 889: 37–47. https://doi.org/10.3897/ zookeys.889.34942 Abstract Centistidea acrocercopsi Ahmad & Pandey, sp. nov., C. cosmopteryxi Ahmad & Pandey, sp. nov., and C. tihamica Ghramh & Ahmad, sp. nov. are described as new to science. The genus Centistidea Rohwer (Hymenoptera: Braconidae: Miracinae) is recorded for the first time from Saudi Arabia.
    [Show full text]
  • The Metathoracic Scent Gland of the Leaf-Footed Bug, Leptoglossus Zonatus
    Journal of Insect Science: Vol. 13 | Article 149 Gonzaga-Segura et al. The metathoracic scent gland of the leaf-footed bug, Leptoglossus zonatus J. Gonzaga-Segura1a, J. Valdez-Carrasco2b, V. R. Castrejón-Gómez1c* 1Becario COFAA. Laboratorio de Ecología Química de Insectos. Departamento de Interacciones Planta-Insecto. Centro de Desarrollo de Productos Bióticos del Instituto Politécnico Nacional. Carretera Yautepec, Jojutla, Km. 6 Calle CEPROBI No. 8, Col. San Isidro, Yautepec, Morelos, Mexico, C.P. 62731 2Laboratorio de Morfología de Insectos. Colegio de Posgraduados en Ciencias Agrícolas Campus Montecillo. Car- retera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, C.P. 56230 Abstract The metathoracic scent gland of 25-day-old adults of both sexes of the leaf-footed bug, Leptoglossus zonatus (Dallas) (Heteroptera: Coreidae), are described based on optical microscopy analysis. No sexual dimorphism was observed in the glandular composition of this species. The gland is located in the anteroventral corner of the metathoracic pleura between the middle and posterior coxal pits. The opening to the outside of the gland is very wide and permanently open as it lacks a protective membrane. In the internal part, there is a pair of metathoracic glands that consist of piles of intertwined and occasionally bifurcated cellular tubes or columns. These glands discharge their pheromonal contents into the reservoir through a narrow cuticular tube. The reservoir connects with the vestibule via two opposite and assembled cuticular folds that can separate muscularly in order to allow the flow of liquid away from the insect. The external part consists of an ostiole from which the pheromone is emitted.
    [Show full text]
  • Pistachio Integrated Pest Management and Why It’S So Important
    Pistachio Integrated Pest Management And why it’s so important An Overview for Australian Growers Definition of a ‘Pest’ Fungus, insect, nematode, rodent, weed, or other form of terrestrial or aquatic life form that is injurious to human or farm animal health, or interferes with economic activities i.e profit in industries such as agriculture and logging. Simple Definition of ‘Pest’ An organism in the wrong place at the wrong time. Best Method of Control for Pests? Prior to Integrated Pest Management – early to mid last century. • Spray with ‘new’ chemicals • If a little didn’t work, use more… 1939 The NEW organic chemical best friend is introduced…. And it’s used everywhere, anytime, anyhow… And it’s used everywhere, anytime, anyhow… And it’s used everywhere, anytime, anyhow… And it’s used everywhere, anytime, anyhow… And it’s used everywhere, anytime, anyhow… And it was used everywhere… Let’s sing…. Actually……..No it isn’t The Pesticide Treadmill 1. Spray, kill pest & natural controls. Pest comes back. Repeat until… 2. Resistance in primary pest. Increase application rates. Kill broader range of natural controls (Beneficial insects). 3. Induce secondary pest 4. Begin spraying for secondary pest until… 5. Resistance in secondary pest 6. Change chemicals. Repeat sequence. Other problems…Resistance 1962 Silent Spring Aftermath • 1963 – President’s Science Advisory Committee issues report calling for reducing pesticides’ effects. • 1963 – Senate calls for creation of Environmental Protection Commission • Early – mid ’60’s – Increased sensitivity in analytical equipment enables detection of parts/billion. Including other chemicals. • 1965 – First pesticide food tolerances • 1969 - The term Integrated Pest Management – IPM -was used for the first time.
    [Show full text]
  • Chapter 12. Estimating the Host Range of the Tachinid Trichopoda Giacomellii, Introduced Into Australia for Biological Control of the Green Vegetable Bug
    __________________________________ ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS CHAPTER 12. ESTIMATING THE HOST RANGE OF THE TACHINID TRICHOPODA GIACOMELLII, INTRODUCED INTO AUSTRALIA FOR BIOLOGICAL CONTROL OF THE GREEN VEGETABLE BUG M. Coombs CSIRO Entomology, 120 Meiers Road, Indooroopilly, Queensland, Australia 4068 [email protected] BACKGROUND DESCRIPTION OF PEST INVASION AND PROBLEM Nezara viridula (L.) is a cosmopolitan pest of fruit, vegetables, and field crops (Todd, 1989). The native geographic range of N. viridula is thought to include Ethiopia, southern Europe, and the Mediterranean region (Hokkanen, 1986; Jones, 1988). Other species in the genus occur in Africa and Asia (Freeman, 1940). First recorded in Australia in 1916, N. viridula soon be- came a widespread and serious pest of most legume crops, curcubits, potatoes, tomatoes, pas- sion fruit, sorghum, sunflower, tobacco, maize, crucifers, spinach, grapes, citrus, rice, and mac- adamia nuts (Hely et al., 1982; Waterhouse and Norris, 1987). In northern Victoria, central New South Wales, and southern Queensland, N. viridula is a serious pest of soybeans and pecans (Clarke, 1992; Coombs, 2000). Immature and adult bugs feed on vegetative buds, devel- oping and mature fruits, and seeds, causing reductions in crop quality and yield. The pest status of N. viridula in Australia is assumed to be partly due to the absence of parasitoids of the nymphs and adults. No native Australian tachinids have been found to parasitize N viridula effectively, although occasional oviposition and development of some species may occur (Cantrell, 1984; Coombs and Khan, 1997). Previous introductions of biological control agents to Australia for control of N. viridula include Trichopoda pennipes (Fabricius) and Trichopoda pilipes (Fabricius) (Diptera: Tachinidae), which are important parasitoids of N.
    [Show full text]
  • And Lepidoptera Associated with Fraxinus Pennsylvanica Marshall (Oleaceae) in the Red River Valley of Eastern North Dakota
    A FAUNAL SURVEY OF COLEOPTERA, HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH FRAXINUS PENNSYLVANICA MARSHALL (OLEACEAE) IN THE RED RIVER VALLEY OF EASTERN NORTH DAKOTA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By James Samuel Walker In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Entomology March 2014 Fargo, North Dakota North Dakota State University Graduate School North DakotaTitle State University North DaGkroadtaua Stet Sacteho Uolniversity A FAUNAL SURVEYG rOFad COLEOPTERA,uate School HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH Title A FFRAXINUSAUNAL S UPENNSYLVANICARVEY OF COLEO MARSHALLPTERTAitl,e HEM (OLEACEAE)IPTERA (HET INER THEOPTE REDRA), AND LAE FPAIDUONPATLE RSUAR AVSESYO COIFA CTOEDLE WOIPTTHE RFRAA, XHIENMUISP PTENRNAS (YHLEVTAENRICOAP TMEARRAS),H AANLDL RIVER VALLEY OF EASTERN NORTH DAKOTA L(EOPLIDEAOCPTEEAREA) I ANS TSHOEC RIAETDE RDI VWEITRH V FARLALXEIYN UOSF P EEANSNTSEYRLNV ANNOICRAT HM DAARKSHOATALL (OLEACEAE) IN THE RED RIVER VAL LEY OF EASTERN NORTH DAKOTA ByB y By JAMESJAME SSAMUEL SAMUE LWALKER WALKER JAMES SAMUEL WALKER TheThe Su pSupervisoryervisory C oCommitteemmittee c ecertifiesrtifies t hthatat t hthisis ddisquisition isquisition complies complie swith wit hNorth Nor tDakotah Dako ta State State University’s regulations and meets the accepted standards for the degree of The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of University’s regulations and meetMASTERs the acce pOFted SCIENCE standards for the degree of MASTER OF SCIENCE MASTER OF SCIENCE SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: David A. Rider DCoa-­CCo-Chairvhiadi rA.
    [Show full text]
  • Exploiting Entomopathogenic Nematode Neurobiology to Improve Bioinsecticide Formulations
    DOCTOR OF PHILOSOPHY Exploiting Entomopathogenic Nematode Neurobiology to Improve Bioinsecticide Formulations Morris, Rob Award date: 2020 Awarding institution: Queen's University Belfast Link to publication Terms of use All those accessing thesis content in Queen’s University Belfast Research Portal are subject to the following terms and conditions of use • Copyright is subject to the Copyright, Designs and Patent Act 1988, or as modified by any successor legislation • Copyright and moral rights for thesis content are retained by the author and/or other copyright owners • A copy of a thesis may be downloaded for personal non-commercial research/study without the need for permission or charge • Distribution or reproduction of thesis content in any format is not permitted without the permission of the copyright holder • When citing this work, full bibliographic details should be supplied, including the author, title, awarding institution and date of thesis Take down policy A thesis can be removed from the Research Portal if there has been a breach of copyright, or a similarly robust reason. If you believe this document breaches copyright, or there is sufficient cause to take down, please contact us, citing details. Email: [email protected] Supplementary materials Where possible, we endeavour to provide supplementary materials to theses. This may include video, audio and other types of files. We endeavour to capture all content and upload as part of the Pure record for each thesis. Note, it may not be possible in all instances to convert analogue formats to usable digital formats for some supplementary materials. We exercise best efforts on our behalf and, in such instances, encourage the individual to consult the physical thesis for further information.
    [Show full text]
  • Inventory and Review of Quantitative Models for Spread of Plant Pests for Use in Pest Risk Assessment for the EU Territory1
    EFSA supporting publication 2015:EN-795 EXTERNAL SCIENTIFIC REPORT Inventory and review of quantitative models for spread of plant pests for use in pest risk assessment for the EU territory1 NERC Centre for Ecology and Hydrology 2 Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, UK ABSTRACT This report considers the prospects for increasing the use of quantitative models for plant pest spread and dispersal in EFSA Plant Health risk assessments. The agreed major aims were to provide an overview of current modelling approaches and their strengths and weaknesses for risk assessment, and to develop and test a system for risk assessors to select appropriate models for application. First, we conducted an extensive literature review, based on protocols developed for systematic reviews. The review located 468 models for plant pest spread and dispersal and these were entered into a searchable and secure Electronic Model Inventory database. A cluster analysis on how these models were formulated allowed us to identify eight distinct major modelling strategies that were differentiated by the types of pests they were used for and the ways in which they were parameterised and analysed. These strategies varied in their strengths and weaknesses, meaning that no single approach was the most useful for all elements of risk assessment. Therefore we developed a Decision Support Scheme (DSS) to guide model selection. The DSS identifies the most appropriate strategies by weighing up the goals of risk assessment and constraints imposed by lack of data or expertise. Searching and filtering the Electronic Model Inventory then allows the assessor to locate specific models within those strategies that can be applied.
    [Show full text]
  • Tent Caterpillars
    Home > Extension > Publications > E-Publications E-218 03-06 View at the Texas AgriLife Bookstore (PDF) Tent Caterpillars Wizzie Brown and John A. Jackman* *Extension Program Specialist—IPM; Professor and Extension Entomologist, The Texas A&M University System Tent caterpillars attack several kinds of broad-leaf trees and shrubs and produce unsightly webs, or tents, which can detract from the Figure 1. Eggs of the tent caterpillar Figure 2. Tent caterpillar larvae home landscape. These caterpillars can defoliate trees, stunting their growth and making them less vigorous. They can also be very common and thus a nuisance as they move around the exterior of a home. The keys to eliminating tent caterpillar problems are early detection, proper identification, and understanding of the life cycle and the use of appropriate cultural or chemical control measures. Four species of tent caterpillars are troublesome in Texas: the eastern tent caterpillar, Malacosoma americanum; the western tent caterpillar, Malacosoma californicum; the Sonoran tent caterpillar, Malacosoma tigris; and the forest tent caterpillar, Malacosoma disstria. These species are closely related and have very similar life histories. Life Cycle In late spring or early summer, female moths deposit egg masses on tree trunks or encircling small twigs (Fig.1). These egg masses remain on the trees during most of the summer, fall and winter. The adult moth uses a sticky, frothy substance called spumaline to glue its eggs to bark or twigs. Spumaline also is used as a hard protective covering around the egg mass in all Texas species except the Sonoran tent caterpillar. Caterpillars, or larvae (Fig.
    [Show full text]