Technical Report
Total Page:16
File Type:pdf, Size:1020Kb
MONTEREY, CALIFORNIA TECHNICAL REPORT “SEA SWAT” A Littoral Combat Ship for Sea Base Defense by: Student Members LT Robert Echols, USN LT Wilfredo Santos, USN LT Constance Fernandez, USN LT Jarema Didoszak, USN LT Rodrigo Cabezas, Chilean Navy LT William Lunt, USN LTJG Aziz Kurultay, Turkish Navy LTJG Zafer Elcin, Turkish Navy Faculty Members Fotis Papoulias Mike Green December 2003 Approved for public release, distribution unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED December 2001 Technical Report 4. TITLE AND SUBTITLE: 5. FUNDING NUMBERS “Sea Archer” Distributed Aviation Platform 6. AUTHOR(S) LT Robert Echols, LT Wilfredo Santos, LT Constance Fernandez, LT Jarema Didoszak, LT Rodrigo Cabezas, LT William Lunt, LTjg Aziz Kurultay, LTjg Zafer Elcin 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Postgraduate School REPORT NUMBER Monterey, CA 93943-5000 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING N/A AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES. The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release, distribution unlimited 13. ABSTRACT (no more than 100 words) Unlike past conflicts which were characterized by major naval battles in the open ocean, present day threats are mostly associated with rogue nations and terrorist cells. These threats are of a different nature to past threats and may strike at unsuspected times and locations. The United States Navy may operate from a Sea Base which projects power ashore through the use of surface and air assets. These assets must transit from the Sea Base in the blue water through the littoral region in order to reach the objective area. Total ship system designs of a group of high-speed littoral combat ships (LCS) are required which are capable of operating in these regions and defending the Sea Base and the surface and air assets from an asymmetric threat. With the modular design and the ability to carry multiple helicopters and underwater vehicles (UUV), the SEA SWAT LCS concept can be quickly employed as a force multiplier capable of operating as an Air Warfare or Undersea/Mine Warfare mission platform. With the addition of the core and Surface Warfare sensors and weapons to one of these modular mission packages, the SEA SWAT LCS concept for sea base defense will ensure air, surface and subsurface superiority during conflict. An advanced electrical power system in conjunction with an integrated propulsion system and zonal power distribution provides sustained combat capability against multiple asymmetric threats. Its enclosed super-structure allows for high survivability in a CBR environment. 14. SUBJECT TERMS. Ship Design, Total Ship Systems Engineering, SEA SWAT, Littoral Combat 15. NUMBER OF Ship, LCS PAGES 250 16. PRICE CODE 17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT REPORT PAGE ABSTRACT Unclassified Unclassified Unclassified UL NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 ii THIS PAGE INTENTIONALLY LEFT BLANK iii ABSTRACT Unlike past conflicts which were characterized by major naval battles in the open ocean, present day threats are mostly associated with rogue nations and terrorist cells. These threats are of a different nature to past threats and may strike at unsuspected times and locations. The United States Navy may operate from a Sea Base which projects power ashore through the use of surface and air assets. These assets must transit from the Sea Base in the blue water through the littoral region in order to reach the objective area. Total ship system designs of a group of high-speed littoral combat ships (LCS) are required which are capable of operating in these regions and defending the Sea Base and the surface and air assets from an asymmetric threat. With the modular design and the ability to carry multiple helicopters and underwater vehicles (UUV), the SEA SWAT LCS concept can be quickly employed as a force multiplier capable of operating as an Air Warfare or Undersea/Mine Warfare mission platform. With the addition of the core and Surface Warfare sensors and weapons to one of these modular mission packages, the SEA SWAT LCS concept for sea base defense will ensure air, surface and subsurface superiority during conflict. An advanced electrical power system in conjunction with an integrated propulsion system and zonal power distribution provides sustained combat capability against multiple asymmetric threats. Its enclosed super-structure allows for high survivability in a CBR environment. iv THIS PAGE INTENTIONALLY LEFT BLANK v TABLE OF CONTENTS I. EXECUTIVE SUMMARY ...................................................................................... 1 A. CORE SYSTEMS................................................................................................... 2 B. USW/MIW MISSION PACKAGE.........................................................................2 C. AAW MISSION PACKAGE.................................................................................. 2 D. PROPULSION/ELECTRICAL SYSTEM..............................................................3 II. INTRODUCTION ................................................................................................ 5 III. DEFINING THE REQUIREMENTS ................................................................. 9 A. THREAT ANALYSIS............................................................................................ 9 B. SEA INITIAL REQUIREMENTS DOCUMENT (IRD) ANALYSIS ................ 10 IV. ANALYSIS OF ALTERNATIVES ................................................................... 11 A. NEEDS ANALYSIS............................................................................................. 11 B. FEASIBILITY STUDY........................................................................................ 11 1. TWO SHIP VARIANT ....................................................................................... 12 2. THREE SHIP VARIANT ................................................................................... 13 C. SINGLE SHIP VS TWO-SHIP DESIGN............................................................. 15 1. OPERATIONAL FLEXIBILITY ........................................................................ 16 2. OPERATIONAL CAPABILITY ......................................................................... 17 3. OPERATIONAL AVAILABILITY...................................................................... 17 4. COST............................................................................................................. 18 5. SPACE AVAILABILITY .................................................................................... 18 6. ACQUISITION.................................................................................................. 19 7. RESULTS .......................................................................................................... 19 D. COMBAT SYSTEM TRADE-OFF ANALYSIS................................................. 21 1. CORE / SURFACE WARFARE (SUW)............................................................. 22 2. AIR WARFARE (AW) MISSION PACKAGE .................................................... 26 3. UNDERSEA WARFARE (USW) / MINE WARFARE (MIW) MISSION PACKAGE................................................................................................................. 28 E. HULL DESIGN ANALYSIS............................................................................... 34 1. MONOHULL..................................................................................................... 35 2. TRIMARAN ....................................................................................................... 37 3. CATAMARAN ................................................................................................... 40 4. SURFACE EFFECT SHIP (SES)...................................................................... 41 5. RESULTS .......................................................................................................... 43 F. CONCLUSION..................................................................................................... 45 V. DESIGN PROCESS................................................................................................ 47 A. DESIGN PHILOSOPHY...................................................................................... 47 B. DESIGN OBJECTIVES......................................................................................