Unit 10) Aquifers

Total Page:16

File Type:pdf, Size:1020Kb

Unit 10) Aquifers Aquifers Dakota aquifer Unit 10) Aquifers Water is necessary for all life, yet many people take it for granted, especially when it is conveniently available for drinking water and Water Words other purposes. Water is often unappreciated until it is unavailable Aquifer – a natural underground storage area for groundwater. or in short supply. In Kansas, many of the water resources are hidden from view–stored in natural underground areas called aquifers. Groundwater– water that is stored underground. "Water is the basis of life and the blue arteries of the earth!" Sandra Postel, American environmentalist Porosity – the capacity of a rock formation to absorb and store groundwater. Groundwater, water that can be pumped from a well, is stored underground in a body of rock or other materials called an Permeability –the ability of a material to allow liquid to pass aquifer. The area included in an aquifer is often determined by through it. underground geologic formations. The storage capacity of an aquifer is determined by its area and qualities of the rock or sediments Water table – the top elevation of water in an aquifer. in the aquifer, including the ability of water to flow through the materials. Aquifer materials may be consolidated, such as rock, or Introduction made of unconsolidated materials, such as sand or gravel that are not cemented together. In the rock layers, the rocks are filled with pores Types of Aquifers or holes that allow the rocks to absorb and store water. – Unconfined Aquifers Porosity, the capacity of a rock formation to absorb and store – Confined Aquifers groundwater, is determined by the number and size of the pores. Kansas Aquifers Pores can be microscopic or as large as caverns. Permeability is a – Identifying Aquifers description of the ability of fluids to move through porous rock or – Alluvial Aquifers sediment, directly related to a combination of the size of the pores – Bedrock Aquifers and the degree to which the pores are interconnected. Materials that – Glacial Drift Aquifers allow water to pass through them easily are said to be permeable; Water Quality those that permit water to pass through only with difficulty or not at – Groundwater Quality in Kansas all are impermeable. – Protecting Aquifers Water Management Types of Aquifers "The work an unknown good man has done is like a vein of water flowing – Recharge of Aquifer Water – Streamflow Relationship hidden underground, secretly making the ground green." – Conservation of Water Resources ThomasCarlyle, Scottish essayist and historian Water for the Future There are two major types of aquifers beneath most of the land surface of the United States: unconfined and confined. Career Profiles – Mahbub Alam, Irrigation and Water Unconfined Aquifers Management Specialist Unconfined aquifers are the most common. These aquifers do not – Lou Hines, CEO, Western Sprinklers, Inc. have rock layers over the top of them that trap or confine the water. Unconsolidated materials, such as sand, gravel, and sediment, cover Showcase – Ogallala Aquifer unconfined aquifers. Water in unconfined aquifers is often considered very young, in geologic time, because it may have arrived recently References by percolating through the soil and aquifer layers. The discharge and Teacher's Resources recharge rates of an unconfined aquifer depend on the hydrologic conditions on the earth’s surface above the aquifer, such as rainfall Exploring Kansas Natural Resources 159 Aquifers Aquifers in the United States Kansas Aquifers Unconfined– most common; water percolates down into the aquifer Alluvial aquifers– largest and most productive aquifers in Kansas; through the materials covering it; affected by conditions at the earth's formed during recent geologic time; found in clay, silt, sand, or surface, such as rainfall and temperature; water flows freely so gravity gravel deposited by running water in the bed of a stream or on its and atmospheric pressure establishes the water table. floodplain. Confined– also known as artesian aquifers; water is trapped beneath Bedrock aquifers– water trapped in layers of solid rock; most serve as impermeable materials under pressure; when an opening is created local sources of water; water quality may vary. in the aquifer, pressure causes the water to rise above the top of the aquifer. Glacial drift aquifers– found in glacial debris that traps and holds water or in ancient river valleys buried by debris left behind when the continental glaciers melted and receded from northeastern Kansas; do and temperature. Water in an unconfined aquifer is free to flow and not cover large areas. establish an equilibrium level affected by gravity and atmospheric pressure. The top elevation of water in an aquifer is called the water table. It Kansas Aquifers may rise or fall depending on precipitation trends. The water table "Look deep, deep into nature, and then you understand is somewhat parallel to the land surface above the aquifer but it is everything better." not always a consistently straight line. When a well is drilled into an Albert Einstein, physicist unconfined aquifer, the driller will encounter water when the well reaches the water table, which is the approximate level at which water Identifying Aquifers will stand in the well. There are hundreds of aquifers in Kansas, depending on how the specific aquifers are identified and described. When names of water- Confined Aquifers bearing rock formations are used in the names of aquifers, it can Confined aquifers, sometimes called artesian aquifers, exist where become confusing. Geologists often define rock layers according to the groundwater is trapped beneath layers of impermeable materials. their nature and origin. The smallest possible layer of rock that can Water in confined aquifers may be very old, having arrived millions of be mapped and described over a wide area is called a formation. For years ago. Water in a confined aquifer may be under pressure. example, the Dakota Formation is a layer of sandstone and shale that A well in a confined aquifer is called an artesian well. When a well lies beneath the western two-thirds of Kansas. However, hydrologists is drilled into the aquifer, pressure forces the water upwards. The use the term "Dakota aquifer" to describe several geologic formations, water in these wells rises above the top of the aquifer because of the including the Dakota Formation. pressure; the level to which it rises is called the static water level. If the Hydrologists view aquifers according to function and interaction. water level rises above the land surface, a flowing artesian well occurs. In a single aquifer, hydrologists may include several geologic Southwestern and central Kansas were once home to numerous formations that were deposited at about the same time in geologic flowing artesian wells. The artesian valley of Meade County had history and have water deposits that are interconnected. The High a number of flowing wells, and water in one Meade County well Plains aquifer in western and central Kansas is a hydrologic feature rose as high as 17 feet above the land surface. Because of lowered that includes geologically defined units, such as the Ogallala groundwater levels, most of those wells no longer flow at the surface. Formation, and various other units that can be defined either However, a flowing artesian well still exists at Meade County State geographically or geologically, such as the Equus Beds aquifer and the Lake. There are also flowing artesian wells in other parts of the state, Great Bend Prairie aquifer. such as northeastern Stafford County and western Marion County. Aquifers in which wells can produce a few gallons per minute (gpm) may be adequate for domestic or livestock water supplies, but they would be inadequate for irrigation or municipal supply use Confined and Unconfined Aquifers where well yields of thousands of gallons per minute may be required. Likewise, aquifers that discharge water over significantly long periods Dakota Aquifer Dakota aquifer Source: KGS Source: KGS 160 Kansas Foundation for Agriculture in the Classroom Aquifers Kansas Aquifers Source: KGS General Availability of Groundwater in Kansas Source: KGS Exploring Kansas Natural Resources 161 Aquifers High Plains Aquifer in Kansas The High Plains Aquifer The High Plains aquifer is a major regional hydrologic unit that under- lies parts of eight states, including Kansas. The High Plains aquifer can be broken down into different geologic aquifer units formed at different times in various locations. The Kansas portion of the High Plains aquifer includes the Ogallala aquifer, Great Bend Prairie aquifer, Equus Beds aquifer, and various alluvial and sand dune aquifers. Streams flow- ing within, into, or through the state were the main sources of the water trapped in these alluvial aquifers. The High Plains aquifer is the main source of groundwater for a region that supplies a major portion of the food supply for the United States and the world. The economy of the region depends on the successful Source: KGS production of crops and livestock. Although there was some irrigation beginning in the 1880s, dryland farming (dependent on natural of time may see the water table fall so that some wells stop producing precipitation) was common until after the extreme droughts during the water for a short time period. In both cases, the water-bearing 1930s. Groundwater irrigation intensified in the 1940s and again formations may still be called aquifers. following a severe drought in the 1950s. The development of center In addition, like mountain peaks, underground features tend to be pivot irrigation systems in the 1960s increased the number of wells that named by the person who first discovers them. The names of aquifers were drilled for irrigation purposes. and rock formations may reflect the background of the person who In a center pivot irrigation system, defined and named the feature. water is pumped from a well through a line of water-distribution pipes Alluvial Aquifers mounted on wheels, which rotate or Alluvial aquifers are the largest and most productive aquifers in pivot in a circle around the center of Irrigation Circle Kansas.
Recommended publications
  • Root Zone Salinity Modeling Within Kalaat El Andalous Irrigated District (Tunisia) Using Saltmod Model
    Root zone salinity modeling within Kalaat El Andalous irrigated district (Tunisia) using SaltMod model Ahmed Saidi 1*, Moncef Hammami 2, Hedi Daghari 3, Hedi Ben Ali4, Amor Boughdiri 5 1,3 Carthage University, National Agronomic Institute of Tunis, 43 Charles Nicolle Street, Mahrajene City, 1082 Tunis, Tunisia 2,5 Carthage University, Higher Agronomic School of Mateur, Road of Tabarka, 7030 Mateur, Tunisia 4Agency of agricultural investment promotion, 6000 Gabes, Tunisia Abstract—SaltMod simulations indicate a slight change of root zone salinity remaining between 3 and 6 dS/m and do not causes risks to forage and cereal crops. However, such salinity is causing a yield decrease of 10 to 20% for tomato crop. During the next 10 years, groundwater water table depth will range between 1.33 and 1.76 m. and remains lower than that of the root zone (0.6 m). Therefore, groundwater table will not pose problems as long as we keep the same management conditions during this period. Moreover, the simulation of drainage system depth variation impacts on root zone salinity indicates that a decrease of drainage lines depth does not affect root zone salinity which remains constant (4.94 dS/m and 3.68 dS/m respectively during the first season and the second season). Regarding groundwater table depth, it is noted that there is a variation for each drainage lines depth variation and groundwater level is ranging from 1.26 to 0.26 m and 1.76 to 0.76 m during the first season and the second season respectively. Thus, optimum drainage lines depth corresponds to that for which salinity and groundwater level have acceptable values not threatening crops and generating minimum drainage flow.
    [Show full text]
  • Surface Water and Groundwater Interactions in Traditionally Irrigated Fields in Northern New Mexico, U.S.A
    water Article Surface Water and Groundwater Interactions in Traditionally Irrigated Fields in Northern New Mexico, U.S.A. Karina Y. Gutiérrez-Jurado 1, Alexander G. Fernald 2, Steven J. Guldan 3 and Carlos G. Ochoa 4,* 1 School of the Environment, Flinders University, Bedford Park, SA 5042, Australia; karina.gutierrez@flinders.edu.au 2 Water Resources Research Institute, New Mexico State University, Las Cruces, NM 88003, USA; [email protected] 3 Sustainable Agriculture Science Center, New Mexico State University, Alcalde, NM 87511, USA; [email protected] 4 Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA * Correspondence: [email protected]; Tel.: +1-541-737-0933 Academic Editor: Ashok K. Chapagain Received: 18 December 2016; Accepted: 3 February 2017; Published: 10 February 2017 Abstract: Better understanding of surface water (SW) and groundwater (GW) interactions and water balances has become indispensable for water management decisions. This study sought to characterize SW-GW interactions in three crop fields located in three different irrigated valleys in northern New Mexico by (1) estimating deep percolation (DP) below the root zone in flood-irrigated crop fields; and (2) characterizing shallow aquifer response to inputs from DP associated with irrigation. Detailed measurements of irrigation water application, soil water content fluctuations, crop field runoff, and weather data were used in the water budget calculations for each field. Shallow wells were used to monitor groundwater level response to DP inputs. The amount of DP was positively and significantly related to the total amount of irrigation water applied for the Rio Hondo and Alcalde sites, but not for the El Rito site.
    [Show full text]
  • Constant Shallow Water Table Depth with Saline Ground Water
    Scientific Research and Essays Vol. 6(29), pp. 6068-6074, 30 November, 2011 Available online at http://www.academicjournals.org/SRE DOI: 10.5897/SRE11.509 ISSN 1992-2248 © 2011 Academic Journals Full Length Research Paper Assessment of evaporation and salt accumulation in bare soil: Constant shallow water table depth with saline ground water Jalili, S.*, Moazed, H., Boroomand Nasab, S and Naseri, A. A. Faculty of Water Sciences, Shahid Chamran University, Ahvaz, I. R. Iran. Accepted 9 May, 2011 Salinization of soil is a major problem in arid and semi-arid regions with saline shallow water table. This is influenced by climate, soil type, crop, irrigation water quality and management practice, depth of water table and salinity of the water table. The objective of this study was the assessment of evaporation and salinization of bare soil profile with various water table depths including 300, 500 and 800 mm by saline groundwater (3 g NaCl/L + 3.5 g CaCl2/l). In this research we were monitoring amount of evaporation from bare soil, and observing profiles of soil water and salinity over periods of up to 80 days. The experiments started on April, 10th, 2010. Results showed that, salts mainly accumulated in the soil surface and volume of evaporation from bare soil in lower water table depth (D = 300 mm) is greater than other lysimeters (D = 500 and 800 mm), and salt accumulation in this lysimeter was higher than others. After 80 days, amount of salinity (ECe) in soil surface was 83.84, 65.76 and 24.05 dS/m, for D = 300, 500 and 800 mm, respectively.
    [Show full text]
  • Saltmod Estimation of Root-Zone Salinity Varadarajan and Purandara
    79 Original scientific paper Received: October 04, 2017 Accepted: December 14, 2017 DOI: 10.2478/rmzmag-2018-0008 SaltMod estimation of root-zone salinity Varadarajan and Purandara Application of SaltMod to estimate root-zone salinity in a command area Uporaba modela SaltMod za oceno slanosti koreninske cone na namakalnih površinah Varadarajan, N.*, Purandara, B.K. National Institute of Hydrology, Visvesvarayanagar, Belgaum 590019, Karnataka, India * [email protected] Abstract Povzetek Waterlogging and salinity are the common features - associated with many of the irrigation commands of - Poplavljanje in slanost tal sta običajna pojava v mno surface water projects. This study aims to estimate the vljanju slanosti v koreninski coni na levem in desnem gih namakalnih projektih. V študiji poročamo o ugota root zone salinity of the left and right bank canal com- mands of Ghataprabha irrigation command, Karnataka, - obrežju kanala namakalnega območja Ghataprabhaza India. The hydro-salinity model SaltMod was applied delom SaltMod so uporabili na izbranih kmetijskih v Karnataki, v Indiji. Postopek določanja slanosti z mo to selected agriculture plots at Gokak, Mudhol, Bili- parcelah v okrajih Gokak, Mudhol, Biligi in Bagalkot gi and Bagalkot taluks for the prediction of root-zone - salinity and leaching efficiency. The model simulated vodnjavanja tal. V raziskavi so modelirali slanost v tal- za oceno slanosti koreninske cone in učinkovitosti od the soil-profile salinity for 20 years with and without nem profilu v razdobju 20 let ob prisotnosti podpovr- subsurface drainage. The salinity level shows a decline šinskega odvodnjavanja in brez njega. Slanost upada with an increase of leaching efficiency. The leaching efficiency of 0.2 shows the best match with the actu- vzporedno z naraščanjem učinkovitosti odvodnjavanja.
    [Show full text]
  • Effects of Topography and Soil Properties on Recharge at Two Sites in an Agricultural Field
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2000 Effects of Topography and Soil Properties on Recharge at Two Sites in an Agricultural Field Geoffrey N. Delin U.S. Geological Survey Richard W. Healy U.S. Geological Survey Matthew K. Landon U.S. Geological Survey John Karl Böhlke U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Earth Sciences Commons Delin, Geoffrey N.; Healy, Richard W.; Landon, Matthew K.; and Böhlke, John Karl, "Effects of Topography and Soil Properties on Recharge at Two Sites in an Agricultural Field" (2000). USGS Staff -- Published Research. 224. https://digitalcommons.unl.edu/usgsstaffpub/224 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION VOL. 36, NO. 6 AMERICANWATERRESOURCES ASSOCIATION DECEMBER 2000 EFFECTS OF TOPOGRAPHY AND SOIL PROPERTIES ON RECHARGE AT TWO SITES IN AN AGRICULTURAL FIELD' Geoffrey N. Delin, Richard W. Healy, Matthew K Landon, and John Karl Bohlke2 ABSTRACT: Field experiments were conducted from 1992 to 1995 recharge rates by more than a factor of two over dis- to estimate ground water recharge rates at two sites located within tances of tens to hundreds of meters have been a 2.7-hectare agricultural field. The field lies in a sand plain setting in central Minnesota and is cropped continuously in field corn.
    [Show full text]
  • 1 Appendix G. Development of Soil Salinity 2 Thresholds
    San Joaquin River Restoration Program 1 Appendix G. Development of Soil Salinity 2 Thresholds 3 1 General Salinity Considerations 4 Implementation of the SJRRP has the potential to change soil salinity levels in surrounding 5 lands. The depth and duration that shallow groundwater saturates the soil can influence soil 6 salinity. In the presence of shallow groundwater, an inverted soil salinity profile, whereby the 7 salinity of the surface soil is higher than that of the underlying strata, can develop by way of 8 evapotranspiration (plant transpiration and evaporation). This condition can complicate 9 germination and emergence of crops and reduce crop yield. Drainage engineers typically design 10 artificial drainage systems to maintain the water table at depths below 4 feet from the land 11 surface, providing for an aerated root zone suitable for a wide range of crops and leaching of 12 salts for a favorable salt balance and profile. Other factors that could influence soil salinity 13 include: 14 • Increased pumping and use of groundwater for irrigation in some areas to help control the 15 water table could increase soil salinity because groundwater typically is more saline than 16 surface water, and 17 • Water released from Friant Dam contains less salt than water pumped from the Delta; all 18 other factors being equal, the use of Friant Dam releases would tend to lower soil salinity. 19 2 Common Crop Salt Tolerance Data 20 Table G- 1 lists salt tolerance data for crops commonly grown in the area. These data 21 generally apply to soil salinity in the active root zone (0–30 inches).
    [Show full text]
  • Appendix 3. the P-GBSD Model the Present Study
    Appendix 3. The P-GBSD model The present study demonstrates the use of a coupled Physical-Group-Built System Dynamics Model (P-GBSDM) for shock scenario simulation and data extraction. This model was selected for the present study due to 1) its capacity to accurately represent complex socio-environmental systems as a result of its dynamically coupled structure and built-in feedback networks and 2) the participatory nature of model development, including variables and system level flow networks defined by local stakeholders. The P-GBSDM, built by Inam, Adamowski, and Malard of the present paper, was created by integrating the physical Spatial Agro Hydro Salinity Model (SAHYSMOD) with a participatory, group-built system dynamics model (GBSDM) consisting of social, environmental, and economic variables. The GBSDM is a participatory model and all of its assumptions (e.g. farmer perceptions, government loan pay-back ratio, sedimentation rate, farm water storage potential, surface water /groundwater use ratio, crop rotation etc.) were refined through interviews with local stakeholders. Moreover, constants/parameters were defined through discussions with scientists with the necessary and relevant expertise (e.g., irrigation engineers, land reclamation experts, research officers, modelers etc.).The overall participatory (GBSD) model and its structure, equations, development methodology, and component details are presented in Inam et al. (2017). Socioeconomic interdependencies and feedbacks were determined through the participatory model-building process (conducted by Inam, Adamowski and Malard of the present paper) with local stakeholders in the Rechna Doab basin of northeastern Pakistan (Inam et al., 2015). The participatory model-building approach used in the initial stages of P-GBSDM development involved the application of stakeholder-built causal loop diagrams (CLD).
    [Show full text]
  • Interaction of Ground Water and Surface Water in Different Landscapes
    Interaction of Ground Water and Surface Water in Different Landscapes Ground water is present in virtually all perspective of the interaction of ground water and landscapes. The interaction of ground water with surface water in different landscapes, a conceptual surface water depends on the physiographic and landscape (Figure 2) is used as a reference. Some climatic setting of the landscape. For example, a common features of the interaction for various stream in a wet climate might receive ground-water parts of the conceptual landscape are described inflow, but a stream in an identical physiographic below. The five general types of terrain discussed setting in an arid climate might lose water to are mountainous, riverine, coastal, glacial and ground water. To provide a broad and unified dune, and karst. MOUNTAINOUS TERRAIN downslope quickly. In addition, some rock types The hydrology of mountainous terrain underlying soils may be highly weathered or (area M of the conceptual landscape, Figure 2) is characterized by highly variable precipitation and fractured and may transmit significant additional water movement over and through steep land amounts of flow through the subsurface. In some slopes. On mountain slopes, macropores created by settings this rapid flow of water results in hillside burrowing organisms and by decay of plant roots springs. have the capacity to transmit subsurface flow A general concept of water flow in moun- tainous terrain includes several pathways by which precipitation moves through the hillside to a stream (Figure 20). Between storm and snowmelt periods, streamflow is sustained by discharge from the ground-water system (Figure 20A). During intense storms, most water reaches streams very rapidly by partially saturating and flowing through the highly conductive soils.
    [Show full text]
  • Basic Concepts of Groundwater Hydrology
    PUBLICATION 8083 FWQP REFERENCE SHEET 11.1 Reference: Basic Concepts of Groundwater Hydrology THOMAS HARTER is UC Cooperative Extension Hydrogeology Specialist, University of California, Davis, and Kearney Agricultural Center. UNIVERSITY OF Life depends on water. Our entire living world—plants, animals, and humans—is CALIFORNIA unthinkable without abundant water. Human cultures and societies have rallied around water resources for tens of thousands of years—for drinking, for food produc- Division of Agriculture tion, for transportation, and for recreation, as well as for inspiration. and Natural Resources http://anrcatalog.ucdavis.edu Worldwide, more than a third of all water used by humans comes from ground water. In rural areas the percentage is even higher: more than half of all drinking In partnership with water worldwide is supplied from ground water. In California, rural areas’ dependence on ground water is even greater. California has 8,700 public water supply systems. Of these, 7,800 rely on ground water, drawing from more than 15,000 wells. In addition, there are tens of thousands of privately owned wells used for domestic water supply within the state. Although sufficient aquifers for this sort of use underlie much of California (Figure 1), the large metro- politan areas in Southern California and the San Francisco Bay Area rely primarily on http://www.nrcs.usda.gov surface water for their drinking water supplies. Overall, ground water supplies one- third of the water used in California in a typical year, in drought years as much as Farm Water one-half. Quality Planning WHAT IS GROUND WATER? A Water Quality and Technical Assistance Program Despite our heavy reliance on ground water, its nature remains a mystery to many for California Agriculture people.
    [Show full text]
  • Groundwater Recharge from Agricultural Areas in the Flatwoods Region of South Florida1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. ABE 370 Groundwater Recharge from Agricultural Areas in the Flatwoods Region of South Florida1 Sanjay Shukla and Fouad H. Jaber2 Introduction Groundwater Recharge Groundwater provides freshwater for drinking, Groundwater recharge occurs when a portion of agricultural production, and recharge to lakes, rivers, the water falling on the ground surface percolates and streams. Groundwater is stored beneath earth's through the soil and reaches the water table. Recharge surface in aquifers that exist between saturated soil can be defined as any water that moves from the land and rock. More than 90% of Florida's population surface to the water table. Water reaching the water relies on groundwater for its drinking water supply. table can move out of the groundwater to surface Of the total water withdrawn in Florida for purposes water through a process known as discharge, that is, such as drinking and agricultural irrigation, 62% the opposite of recharge. An example of groundwater comes from groundwater. Continued supply of discharge is water produced from springs. The travel groundwater relies on a natural recharge process, time from recharge to discharge can range from less which replenishes the aquifers from the surface. than 1 day to more than 1 million years. Groundwater recharge is affected by a variety of factors, including land use. Changes in land use (e.g., Recharge is affected by factors such as weather, agricultural to urban due to continued population soil type, surface cover (e.g., vegetation, impervious growth in south Florida) can affect the extent and pavements), slope, and water table depth.
    [Show full text]
  • Part 624, Chapter 10, Water Table Control
    United States Department of Part 624 Drainage Agriculture National Engineering Handbook Natural Resources Conservation Service Chapter 10 Water Table Control (210-VI-NEH, April 2001) Chapter 10 Water Table Control Part 624 National Engineering Handbook Issued April 2001 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. (210-VI-NEH, April 2001) Acknowledgments National Engineering Handbook Part 624, Chapter 10, Water Table Control, was prepared by Ken Twitty (retired) and John Rice (retired), drainage engineers, Natural Resources Conservation Service (NRCS), Fort Worth, Texas, and Lincoln, Nebraska respectively. It was prepared using as a foundation the publication Agricultural Water Table Management “A Guide for Eastern North Carolina,” May 1986, which was a joint effort of the USDA Soil Conservation Service, USDA Agriculture Research Service (ARS), the North Carolina Agriculture Extension Service and North Caro- lina Agricultural Research Service. Leadership and coordination was provided by Ronald L. Marlow, national water management engineer, NRCS Conservation Engineering Division, Washington, DC, and Richard D.
    [Show full text]
  • Spatial Modelling and Prediction of Soil Salinization Using Saltmod in a Gis Environment
    SPATIAL MODELLING AND PREDICTION OF SOIL SALINIZATION USING SALTMOD IN A GIS ENVIRONMENT M. MADYAKA February, 2008 SPATIAL MODELLING AND PREDICTION OF SOIL SALINIZATION USING SALTMOD IN A GIS ENVIRONMENT Spatial Modelling and Prediction of Soil Salinization Using SaltMod in a GIS Environment by Mthuthuzeli Madyaka Thesis submitted to the International Institute for Geo-information Science and Earth Observation in partial fulfilment of the requirements for the degree of Master of Science in Geo-information Science and Earth Observation, Specialisation: (Natural Resource Management – Soil Information Systems for Sustainable Land Management: NRM-SISLM) Thesis Assessment Board Prof. Dr. V.G.Jetten: Chairperson Prof. Dr.Ir. A. Veldkamp: External Examiner B. (Bas) Wesselman: Internal Examiner Dr. A. (Abbas) Farshad: First Supervisor Dr. D.B. (Dhruba) Pikha Shrestha: Second Supervisor INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION ENSCHEDE, THE NETHERLANDS Disclaimer This document describes work undertaken as part of a programme of study at the International Institute for Geo-information Science and Earth Observation. All views and opinions expressed therein remain the sole responsibility of the author, and do not necessarily represent those of the institute. Abstract One of the problems commonly associated with agricultural development in semi-arid and arid lands is accumulation of soluble salts in the plant root-zone of the soil profile. The salt accumulation usually reaches toxic levels that impose growth stress to crops leading to low yields or even complete crop failure. This research utilizes integrated approach of remote sensing, modelling and geographic information systems (GIS) to monitor and track down salinization in the Nung Suang district of Nakhon Ratchasima province in Thailand.
    [Show full text]