Assessment of Actual Irrigation Management in the Irrigated Area Of

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of Actual Irrigation Management in the Irrigated Area Of AGRICULTURE AND BIOLOGY JOURNAL OF NORTH AMERICA ISSN Print: 2151-7517, ISSN Online: 2151-7525, doi:10.5251/abjna.2012.3.3.105.116 © 2012, ScienceHuβ, http://www.scihub.org/ABJNA Estimation of root-zone salinity using SaltMod in the irrigated area of Kalaât El Andalous (Tunisia) 1*Ferjani Noura, 2Dhagari Hedi and 3Morri Mabrouka 1Faculty of Sciences of Bizerte, 7021 Zarzouna Bizerte, Tunisia, University of Carthage 2Resources Management and Conservation Research Unit, National Agronomic Institute of Tunisia (INAT), 43 avenue Charles Nicolle, Cité Mahragène -Tunis 1002-Tunisia, University of Carthage 3Resources Management and Conservation Research Unit, National Agronomic Institute of Tunisia (INAT), 43 avenue Charles Nicolle, Cité Mahragène -Tunis 1002-Tunisia, University of Carthage *Corresponding author. E-mail adress: [email protected] ABSTRACT The objective of this study was to predict the root zone salinity in the irrigated area of Kalaât El Andalous using the SaltMod simulation model over 10 years. En general, the model predicts more or less similar values of electrical conductivity in the root zone. Highest electrical conductivity values equal to 7.7 dS m-1 would be reached during the irrigation season. Following the rains fall particularly during the winter season there would be a decrease of the soil salinity when the average minimum value of electrical conductivity would reach 3.1 dS m-1. This seasonal variation of root zone salinity was confirmed from the measured values. Investigations were made also to study the impact of varying drain spacing and drain depth on root zone salinity and water table depth and drain discharge. The simulation show that the decrease in the depth of the drain does not change significantly the root zone salinity which reaches 6.21 dS m-1 during the irrigation season and 3.67 dS m-1 during the non irrigated season. The depth of the drain can be reduced to 1.6 m without any damage to crops. A water table depth (Dw= 1.8 m) appears to be excessive and would increase the cost of system installation. We can see a slight reduction in drainage flow when the depth of the drain goes from 1.8 m to 1.2 m. A decrease of the drain depth decreases the water table level. Although there was no variation in root zone salinities due to change in drain spacing. The predicted drainage flows have registered an evolution related to the occurrence of irrigation and rainfall. This evolution was confirmed by observed values. In this study, calibration of SaltMod for water-salt balance parameters shows the reliable validity of the model for the local conditions. Key words: Root zone salinity; subsurface drainage; SaltMod; water table; drain discharge. INTRODUCTION mainly chloride, carbonates and sulphates of sodium, calcium and magnesium. There are various factors High soil salinity is a serious problem often that cause salinization which include natural or encountered in the arid and semi-arid regions of the inherent and human induced factors and these are world where there is insufficient rainfall to leach generally categorized into primary and secondary accumulated salts from the crop root zone, especially salinization respectively (Shrestha, 2006). Primary in irrigated areas. Other factors contributing to the salinization results from natural weathering of parent problem are high evaporative demand and shallow material (e.i rock and minerals) and is influenced by ground water which cause accumulation of salts at factors related to climatic, topographic, hydrologic, the soil surface. Since soil salinity imposes a stress and geologic and soil condition. Secondary on the crop, it results in decreased yields, and in salinization develops from mobilization of the stored some cases, complete crop failure (Bresler et al., salts in the soil profile and/or groundwater due to 1982). Soil salinization results from accumulation of human activities (Greiner, 1997) and practices which water soluble salts in the soil surface and sub-surface include cultivation of marginal lands, inappropriate Agric. Biol. J. N. Am., 2012, 3(3): 105-116 irrigation practices, deforestation and mining may reach values up to 8-10 dS m-1 near to the activities. south-east sebkha. The hydraulic conductivity varied between 0,2 cm/h and 3,6 cm/h. Soil pH ranged from In order to control and monitor the process of 7.3 to 8.9. The average bulk density of the soil is salinization for the purpose of recovering damaged 3 about 1.5 g/cm . Shallow water tables of about 1.4 m land and preventing further expansion, information on depth are present in the lower parts of the district, its spatial distribution, its trends of expansion and with very high salinity values that make them severity levels is essential (Metternicht, 2001). A unsuitable for irrigation or other municipal and number of computer models have been developed industrial uses. which are useful in making predictions of soil salinity accumulation. The SALTMOD program was Properties of SaltMod: In order to estimate the root developed to predict the long-term effects of varying zone salinity, the SaltMod simulation model was water management options on desalinisation or salt used. The hydro-salinity model "SALTMOD" accumulation in the soil of irrigated agricultural lands. developed by Oosterbaan and Pedrose de Lima The water management options include irrigation, (1989), computes the salt and water balance for the drainage, and the reuse of surface drainage water or root zone, transition zone and aquifer zone. It is a subsurface drainage water from pipe drains, ditches computer-based model for simulating the salinity of or wells for the irrigation. In addition, predictions are soil and drainage waters, water table depth, and made on the depth to water table, the salt drain discharge in irrigated agricultural lands under concentration of the groundwater and of the drain or different hydrological and geo-hydrological well water. In Tunisia, Kalâat El Andalous irrigated conditions, varying water management options, and district is one of the most affected area by salinization several crop rotation schedules. due to shallow groundwater level. The objective of The model was developed to make long-term the present study was to predict the root zone salinity predictions of the impact of water management using the SaltMod simulation model. In addition, programs (including drainage) on the level of the investigations were made to study the impact of water table, and on the salt content of the soil, varying drain spacing and drain depth on root zone ground water, and drainage effluent. It can also salinity and water table depth and drain discharge. assess the impact of re-used drainage water. It MATERIALS AND METHODS includes area frequency distributions of salinity. SaltMod can also simulate farmers’ agricultural and Site description: The irrigated area of Kalâat El water-management responses to changes in water Andalous (latitude: 36° 37’ and 37°2’ N; longitude: table depth and soil salinity, which, in turn, can 10°5’ and 10° 10’ E) is located on the end part of the influence the salt and water balance (Oosterbaan, Medjerda watershed (Figure 1), with an average 1998). The program aims at using input data that are annual ETP of 1400 mm and an average annual generally available, or that can be estimated with rainfall of 490 mm. Irrigation area of Kalâat El reasonable accuracy, or that can be measured with Andalous was launched since 1992 on a flood area. It relative ease. covers an area of 2905 ha and the effectively irrigated area changes from season to season and In order to use SaltMod some factors should be the maximum was observed in the summer (about determined first. Determination of the data required 1000 ha). The irrigated area was divided into plots of could be done by entering different values for 5 ha supplied by a flow rate of 3 l/s. All the irrigated leaching efficiency (Flr), and natural drainage (Gn) area was equipped by a pressurized irrigation into SaltMod until values that match the actual network and a subsurface drainage system with a measured soil salinity and water table depths are length of 180 m and a depth of 1.8 m and spaced at obtained. Some of the data used as input parameters intervals of 40 m. The irrigation water is taken from in SaltMod were estimated or determined with in situ, the Mejreda River. Irrigation water salinity ranges laboratory, while the others were calculated by the between 3.1 g/l and 2.5 g/l in winter and between 2.3 model. g/l and 2.4 g/l in summer. The drainage outlet is Measurements: This study was carried out from Jun below sea level, and the drainage waters are 2008 to May 2010 in a farm plot of 2.38 ha (170 m x discharged to the Mediterranean Sea through a 140 m) equipped by three subsurface drainage pipes pumping station (SP4). The soils have a fine texture, D1, D2 and D3 and by drip irrigation system. There ranging from silty-clay to clayey-silt. Most soils have -1 are two cropping seasons per year i.e. winter electrical conductivity values above 2 dS m , and 106 Agric. Biol. J. N. Am., 2012, 3(3): 105-116 Water shed of Mejerda Irrigated areas Wadi of Mejerda Governorate of Alegria Bizerte Tunisia Douar Amar Ben Hamda Bizerte Kalâat El Governorate of of Governorate Andalous Legends Watershed Douar boundary Khchim Sea Mediterranean Irrigated area Bridge of Bizerte Douar Gbar Ejjahli Ennahli Régional road Highway Delegation National Highway Délégation Sidi of Raoued THABET Linear hydrography Perennial stream Temporary stream Irrigated area Public Echelle: 1/120 000 Private Used water treated Urban area Garaat Ben Ammar Wetland Fig. 1. Irrigated area of Kalâat El Andalous (December to May) and summer (June to (Cucumis mela) (1 ha) and squash (Cucurbuta September) with a fallow season in between (October maxima) (0, 38 ha) and rain fed wheat occupy the to November).
Recommended publications
  • Root Zone Salinity Modeling Within Kalaat El Andalous Irrigated District (Tunisia) Using Saltmod Model
    Root zone salinity modeling within Kalaat El Andalous irrigated district (Tunisia) using SaltMod model Ahmed Saidi 1*, Moncef Hammami 2, Hedi Daghari 3, Hedi Ben Ali4, Amor Boughdiri 5 1,3 Carthage University, National Agronomic Institute of Tunis, 43 Charles Nicolle Street, Mahrajene City, 1082 Tunis, Tunisia 2,5 Carthage University, Higher Agronomic School of Mateur, Road of Tabarka, 7030 Mateur, Tunisia 4Agency of agricultural investment promotion, 6000 Gabes, Tunisia Abstract—SaltMod simulations indicate a slight change of root zone salinity remaining between 3 and 6 dS/m and do not causes risks to forage and cereal crops. However, such salinity is causing a yield decrease of 10 to 20% for tomato crop. During the next 10 years, groundwater water table depth will range between 1.33 and 1.76 m. and remains lower than that of the root zone (0.6 m). Therefore, groundwater table will not pose problems as long as we keep the same management conditions during this period. Moreover, the simulation of drainage system depth variation impacts on root zone salinity indicates that a decrease of drainage lines depth does not affect root zone salinity which remains constant (4.94 dS/m and 3.68 dS/m respectively during the first season and the second season). Regarding groundwater table depth, it is noted that there is a variation for each drainage lines depth variation and groundwater level is ranging from 1.26 to 0.26 m and 1.76 to 0.76 m during the first season and the second season respectively. Thus, optimum drainage lines depth corresponds to that for which salinity and groundwater level have acceptable values not threatening crops and generating minimum drainage flow.
    [Show full text]
  • Outlettingdrainagesystems
    MINNESOTA WETLAND RESTORATION GUIDE OUTLETTING DRAINAGE SYSTEMS TECHNICAL GUIDANCE DOCUMENT Document No.: WRG 4A-3 Publication Date: 10/14/2015 Table of Contents Introduction Application Design Considerations Construction Requirements Other Considerations Cost Maintenance Additional References INTRODUCTION be possible. However, strategies to address incoming drainage systems as part of restoration In Minnesota, wetlands planned for restoration are do exist and should be considered, when feasible. commonly drained by surface drainage ditches and These strategies include rerouting incoming subsurface drainage tile. These drainage systems drainage systems away from or around planned often extend upstream from planned restoration wetland restorations or when possible, outletting sites and provide drainage to neighboring lands them directly into planned wetlands or other not part of a restoration project. suitable areas within the restoration site. The restoration of wetlands in these types of APPLICATION drainage scenarios provides a number of design and construction challenges and may not always This Technical Guidance Document focuses on strategies to design effective and functional outlets within restoration sites for neighboring upstream drainage systems. The design of drainage system outlets will primarily be dependent on the type, location, elevation and grade of the drainage system as it approaches and enters the restoration site. If the approaching drainage system is steep enough in grade, then it may be possible to modify it and construct an effective and functional outlet directly onto the restoration site. The design will also be influenced by the general landscape of the planned outlet’s location and, if part of a wetland restoration, the type of wetland being restored. Figure 1.
    [Show full text]
  • Landscape Irrigation Best Management Practices
    IRRIGATION ASSOCIATION & AMERICAN SOCIETY OF IRRIGATION CONSULTANTS Landscape Irrigation Best Management Practices May 2014 Prepared by the Irrigation Association and American Society of Irrigation Consultants Chairman: John W. Ossa, CID, CLIA, Irrigation Essentials, Mill Valley, California Editor: Melissa Baum‐Haley, PhD, Municipal Water District of Orange County, Fountain Valley, California Committee Contributors (in alphabetical order): James Barrett, FASIC, CID, CLIA, James Barrett Associates LLC, Roseland, New Jersey Melissa Baum‐Haley, PhD, Municipal Water District of Orange County, Fountain Valley, California Carol Colein, American Society of Irrigation Consultants, East Lansing, Michigan David D. Davis, FASIC, David D. Davis and Associates, Crestline, California Brent Q. Mecham, CAIS, CGIA, CIC, CID, CLIA, CLWM, Irrigation Association, Falls Church, Virginia John W. Ossa, CID, CLIA, Irrigation Essentials, Mill Valley, California Dennis Pittenger, Cooperative Extension, U.C. Riverside, Riverside, California Corbin Schneider, ASIC, RLA, CLIA, Verde Design, Inc., Santa Clara, California The Irrigation Association and the American Society of Irrigation Consultants have developed the Landscape Irrigation Best Management Practices for landscape and irrigation professionals and policy makers who must preserve and extend the water supply while protecting water quality. The BMPs will aid key stakeholders (policy makers, water purveyors, designers, installation and maintenance contractors, and consumers) to develop and implement appropriate
    [Show full text]
  • Tile Drainage and Phosphorus Losses from Agricultural Land
    TECHNICALTECHNICAL REPORTREPORT NO.NO. 8377 Literature Review: Tile Drainage and Phosphorus Losses from Agricultural Land November 2016 Final Report Prepared by: Julie Moore Stone Environmental, Inc. For: The Lake Champlain Basin Program and New England Interstate Water Pollution Control Commission This report was funded and prepared under the authority of the Lake Champlain Special Designation Act of 1990, P.L. 101-596 and subsequent reauthorization in 2002 as the Daniel Patrick Moynihan Lake Champlain Basin Program Act, H. R. 1070, through the United States Environmental Protection Agency (US EPA grant #EPA LC- 96133701-0). Publication of this report does not signify that the contents necessarily reflect the views of the states of New York and Vermont, the Lake Champlain Basin Program, or the US EPA. The Lake Champlain Basin Program has funded more than 80 technical reports and research studies since 1991. For complete list of LCBP Reports please visit: http://www.lcbp.org/media-center/publications-library/publication-database/ NEIWPCC Job Code: 0100-310-002 Project Code: L-2016-060 Literature Review: Tile Drainage and Phosphorus Losses from Agricultural Land PROJECT NO. PREPARED FOR: SUBMITTED BY: 15-309 Eric Howe / Basin Program Manager Julie Moore, P.E. / Senior Engineer Lake Champlain Basin Program Stone Environmental, Inc. 54 West Shore Road 535 Stone Cutters Way Grand Isle, VT 05458 Montpelier, VT 05602 [email protected] 802.229.1881 Executive Summary Tile drainage works by providing an open pathway for soil water to drain away, lowering the water table and allowing the upper soil layers to dry out. For farmers, tile drainage has multiple benefits: better growing conditions, improved soil structure, enhanced trafficability, more timely planting and harvest, and improved yields.
    [Show full text]
  • Surface Water and Groundwater Interactions in Traditionally Irrigated Fields in Northern New Mexico, U.S.A
    water Article Surface Water and Groundwater Interactions in Traditionally Irrigated Fields in Northern New Mexico, U.S.A. Karina Y. Gutiérrez-Jurado 1, Alexander G. Fernald 2, Steven J. Guldan 3 and Carlos G. Ochoa 4,* 1 School of the Environment, Flinders University, Bedford Park, SA 5042, Australia; karina.gutierrez@flinders.edu.au 2 Water Resources Research Institute, New Mexico State University, Las Cruces, NM 88003, USA; [email protected] 3 Sustainable Agriculture Science Center, New Mexico State University, Alcalde, NM 87511, USA; [email protected] 4 Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA * Correspondence: [email protected]; Tel.: +1-541-737-0933 Academic Editor: Ashok K. Chapagain Received: 18 December 2016; Accepted: 3 February 2017; Published: 10 February 2017 Abstract: Better understanding of surface water (SW) and groundwater (GW) interactions and water balances has become indispensable for water management decisions. This study sought to characterize SW-GW interactions in three crop fields located in three different irrigated valleys in northern New Mexico by (1) estimating deep percolation (DP) below the root zone in flood-irrigated crop fields; and (2) characterizing shallow aquifer response to inputs from DP associated with irrigation. Detailed measurements of irrigation water application, soil water content fluctuations, crop field runoff, and weather data were used in the water budget calculations for each field. Shallow wells were used to monitor groundwater level response to DP inputs. The amount of DP was positively and significantly related to the total amount of irrigation water applied for the Rio Hondo and Alcalde sites, but not for the El Rito site.
    [Show full text]
  • Monitoring and Modeling the Effect of Agricultural Drainage and Recent
    water Article Monitoring and Modeling the Effect of Agricultural Drainage and Recent Channel Incision on Adjacent Groundwater-Dependent Ecosystems Philip J. Gerla Harold Hamm School of Geology and Geological Engineering, University of North Dakota, 81 Cornell Street, Stop 8358, Grand Forks, ND 58202-8358, USA; [email protected]; Tel.: +1-701-777-3305 Received: 8 February 2019; Accepted: 20 April 2019; Published: 25 April 2019 Abstract: Channel incision isolates flood plains, disrupts sediment transport, and degrades riparian ecology. Reactivation and periodicity of incision may affect the water table and hydrological conditions far beyond the stream margin. Long-term incision and its recent acceleration along Iron Springs Creek, North Dakota, USA, has affected adjacent ecosystems. An agricultural surface drain empties directly into the original spring-fed source of the creek, which triggered channel erosion both up- and downstream. Historical maps, recent LiDAR, and field surveying were used to characterize incision since ditch excavation in 1911. Although the soils are sandy, small hydrological gradients impede natural drainage in the surrounding stabilized dunes. Incision resulting from expanded drainage and increased precipitation has been as much as 5 m. Numerical models of lateral groundwater profiles corroborated with field measurements show that the nearby water table responds quickly, becoming deeper and less variable. With 1 m of recent incision, model evapotranspiration rates are decreased 50% to 15% from the channel margin to 1 km, respectively, and the hydropattern disrupted >1 km. Species diversity is reduced and floristic quality is 25% less near the drain. A near-channel solution to erosion—fencing out cattle—failed to mitigate the problem because a broader watershed approach was necessary.
    [Show full text]
  • Chapter 14 Water Management (Drainage)
    Title 210 – National Engineering Handbook Part 650 Engineering Field Handbook National Engineering Handbook Chapter 14 Water Management (Drainage) (210-650-H, 2nd Ed., Feb 2021) Title 210 – National Engineering Handbook Issued February 2021 In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA's TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English. To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at How to File a Program Discrimination Complaint and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992.
    [Show full text]
  • Benefits of Irrigation Management and Conservation
    BENEFITS OF IRRIGATION MANAGEMENT AND CONSERVATION GARY L. HAWKINS UNIVERSITY OF GEORGIA WATER RESOURCE MANAGEMENT SPECIALIST ALL ABOUT IRRIGATION 7 MARCH 2O18 WATER CONSERVATION? • WHAT IS A DEFINITION? • USING LESS WATER? • SAVING THE WATER WE HAVE? • STORING WATER FOR LATER USE? • INCREASING WATER HOLDING CAPACITY OF SOIL? • INCREASING INFILTRATION? • REDUCING WASTING? WATER CONSERVATION BEING KNOWLEDGEABLE OF THE AVAILABLE WATER THAT WE HAVE TODAY AND TAKING ACTION TO PROTECT ALL SOURCES OF WATER IN ORDER THAT THERE IS PLENTY FOR USE BY EVERYONE, EVERYTHING AND AVAILABLE WHEN NEEDED THE MOST. HYDROLOGY PRINCIPLES • HYDROLOGY – THE GENERAL SCIENCE/STUDY OF WATER “THE SCIENCE THAT TREATS WATERS OF THE EARTH, THEIR OCCURRENCE, CIRCULATION, AND DISTRIBUTION, THEIR CHEMICAL AND PHYSICAL PROPERTIES, AND THEIR REACTION WITH THEIR ENVIRONMENT, INCLUDING THEIR RELATION TO LIVING THINGS” (PRESIDENTIAL SCIENCE AND POLICY COUNCIL, 1959). “THE SCIENCE THAT DEALS WITH THE PROCESSES GOVERNING THE DEPLETION AND REPLENISHMENT OF THE WATER RESOURCES OF THE LAND AREAS OF THE EARTH” (WISLER AND BRATER, HYDROLOGY, 1959, JOHN WILEY AND SONS) HYDROLOGIC CYCLE: Evaporation Interception Infiltration Precipitation Surface Runoff Evaporation Depression Storage Infiltration Evapotranspiration Soil moisture Maintain Infiltration storage dry-weather streamflow Ground water Return to reservoir ocean Infiltration ET Surface Streamflow Runoff generation Return to ocean Irrigation Losses INCREASING INFILTRATION? And - Thereby Reduce Runoff? VIRGINIA NRCS MOST POPULAR
    [Show full text]
  • Global Experience on Irrigation Management Under Different Scenarios
    DOI: 10.1515/jwld-2017-0011 © Polish Academy of Sciences (PAN), Committee on Agronomic Sciences JOURNAL OF WATER AND LAND DEVELOPMENT Section of Land Reclamation and Environmental Engineering in Agriculture, 2017 2017, No. 32 (I–III): 95–102 © Institute of Technology and Life Sciences (ITP), 2017 PL ISSN 1429–7426 Available (PDF): http://www.itp.edu.pl/wydawnictwo/journal; http://www.degruyter.com/view/j/jwld Received 30.10.2016 Reviewed 01.12.2016 Accepted 06.12.2016 A – study design Global experience on irrigation management B – data collection C – statistical analysis D – data interpretation under different scenarios E – manuscript preparation F – literature search Mohammad VALIPOUR ABCDEF Islamic Azad University, Kermanshah Branch, Young Researchers and Elite Club, Imam Khomeini Campus, Farhikhtegan Bld. Shahid Jafari St., Kermanshah, Iran; e-mail: [email protected] For citation: Valipour M. 2017. Global experience on irrigation management under different scenarios. Journal of Water and Land Development. No. 32 p. 95–102. DOI: 10.1515/jwld-2017-0011. Abstract This study aims to assess global experience on agricultural water management under different scenarios. The results showed that trend of permanent crops to cultivated area, human development index (HDI), irrigation wa- ter requirement, and percent of total cultivated area drained is increasing and trend of rural population to total population, total economically active population in agriculture to total economically active population, value added to gross domestic production (GDP) by agriculture, and the difference between national rainfall index (NRI) and irrigation water requirement is decreasing. The estimating of area equipped for irrigation in 2035 and 2060 were studied acc.
    [Show full text]
  • RI DEM/Agriculture Best Management Practices Irrigation
    Rhode Island Department of Environmental Management/Division of Agriculture Best Management Practices Irrigation Management Irrigation Systems Irrigation practices are widely used by fruit growers, nursery, green house and vegetable growers alike. Chemigation, the practice of applying fertilizers and or pesticides to crops through irrigation systems, is also used by some farmers. Chemigation can allow nutrients and pesticides to be timed according to crop needs rather than physical application constraints, but ease of application may lead to overuse. Plant nutrients applied through chemigation must only be used within accordance of an approved pest and pesticide management plan. This should incorporate the principles of Integrated Pest Management (IPM). With irrigation, there is a potential for movement of pollutants such as sediments, organic solids, pesticides, metals, micro organisms, salts and nutrients from the land into ground and surface water. Minimizing the discharge of pollutants while reducing water waste and improving water use efficiency are the goals of irrigation management. Setting up an irrigation management plan will help to address irrigation scheduling practices, efficient application, proper utilization of tail-water, drainage and runoff, and backflow prevention. Determining and controlling the rate, amount and timing of irrigation water in a planned and efficient manner is essential for water conservation. Careful irrigation management can minimize leaching and reduce the potential for pesticide and nutrient contamination of groundwater and decrease runoff, erosion, and transport of nutrients and pesticides to surface water. An irrigation system may be portable, or it may be established on the land to be irrigated. System components may include wells, a storage reservoir, a conveyance system, a sprinkler or trickle system, suitable pumps and a recycle storage pond to capture irrigation water down slope of the operation.
    [Show full text]
  • Irrigation Management in Colorado: Survey Data and Findings By
    Irrigation Management in Colorado: Survey Data and Findings by W. Marshall Frasier, Reagan M. Waskom, Dana L. Hoag, and Troy A. Bauder* Technical Report from the Agricultural Experiment Station, Colorado State University, April 1999. Frasier is Assistant Professor, Department of Agricultural and Resource Economics; Waskom is Extension Water Quality Specialist, Department of Soil and Crop Sciences; Hoag is Professor, Department of Agricultural and Resource Economics; and Bauder is Assistant Extension Specialist, Department of Soil and Crop Sciences; all Colorado State University, Fort Collins. Acknowledgements Funding for this study was provided by the Water Center at Colorado State University, Colorado State University Cooperative Extension, Colorado State University Agricultural Experiment Station, and the Colorado Department of Agriculture. We thank the advisory committee who helped define the scope and nature of the survey instrument. We are also indebted to the farmer review panel who helped design the survey instrument and provided useful comments on the wording and presentation of questions in the survey. Special thanks are extended to Kristy Ring for her tireless hours of entering data and generating countless tables of summary information. Thanks also to Chuck Hudson and Lance Fretwell of the Colorado Agricultural Statistics Service for their work in identifying the sample and generating the mailing list for the survey. Israel Broner, Don Lybecker, and Danny Smith provided review and editorial comments of this report. Finally, we express gratitude and appreciation to the hundreds of producers in Colorado who donated their valuable time to respond to the survey. i TABLE OF CONTENTS ACKNOWLEDGEMENTS .............................................................................................. i TABLE OF CONTENTS ................................................................................................. ii EXECUTIVE SUMMARY ............................................................................................
    [Show full text]
  • Dissertation Simulating the Fate And
    DISSERTATION SIMULATING THE FATE AND TRANSPORT OF SALINITY SPECIES IN A SEMI- ARID AGRICULTURAL GROUNDWATER SYSTEM: MODEL DEVELOPMENT AND APPLICATION Submitted by Saman Tavakoli Kivi Department of Civil and Environmental Engineering In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2018 Doctoral Committee: Advisor: Ryan T. Bailey Co-Advisor: Timothy K. Gates Michael J. Ronayne Aditi Bhaskar Copyright by Saman Tavakoli Kivi 2018 All Rights Reserved ABSTRACT SIMULATING THE FATE AND TRANSPORT OF SALINITY SPECIES IN A SEMI- ARID AGRICULTURAL GROUNDWATER SYSTEM: MODEL DEVELOPMENT AND APPLICATION Many irrigated agricultural areas worldwide suffer from salinization of soil, groundwater, and nearby river systems. Increased salinity concentrations, which can lead to decreased crop yield, are due principally to the presence of salt minerals and high rates of evapotranspiration. High groundwater salt loading to nearby river systems also affects downstream areas when saline river water is diverted for additional uses. Irrigation-induced salinity is the principal water quality problem in the semi-arid region of the western United States due to the extensive background quantities of salt in rocks and soils. Due to the importance of the problem and the complex hydro-chemical processes involved in salinity fate and transport, a physically-based spatially-distributed numerical model is needed to assess soil and groundwater salinity at the regional scale. Although several salinity transport models have been developed in recent decades, these models focus on salt species at the small scale (i.e. soil profile or field), and no attempts thus far have been made at simulating the fate, storage, and transport of individual interacting salt ions at the regional scale within a river basin.
    [Show full text]