Genome Informatics 2016 Davide Chicco1 and Michael M

Total Page:16

File Type:pdf, Size:1020Kb

Genome Informatics 2016 Davide Chicco1 and Michael M Chicco and Hoffman Genome Biology (2017) 18:5 DOI 10.1186/s13059-016-1135-5 MEETINGREPORT Open Access Genome Informatics 2016 Davide Chicco1 and Michael M. Hoffman1,2,3* Abstract of sequence variants. Konrad Karczewski (Massachusetts General Hospital, USA) presented the Loss Of Func- A report on the Genome Informatics conference, held tion Transcript Effect Estimator (LOFTEE, https://github. at the Wellcome Genome Campus Conference Centre, com/konradjk/loftee). LOFTEE uses a support vector Hinxton, United Kingdom, 19–22 September 2016. machine to identify sequence variants that significantly disrupt a gene and potentially affect biological processes. We report a sampling of the advances in computational Martin Kircher (University of Washington, USA) dis- genomics presented at the most recent Genome Informat- cussed a massively parallel reporter assay (MPRA) that ics conference. As in Genome Informatics 2014 [1], speak- uses a lentivirus for genomic integration, called lentiM- ers presented research on personal and medical genomics, PRA [3]. He used lentiMPRA to predict enhancer activity, transcriptomics, epigenomics, and metagenomics, new and to more generally measure the functional effect of sequencing techniques, and new computational algo- non-coding variants. William McLaren (European Bioin- rithms to crunch ever-larger genomic datasets. Two formatics Institute, UK) presented Haplosaurus, a variant changes were notable. First, there was a marked increase effect predictor that uses haplotype-phased data (https:// in the number of projects involving single-cell analy- github.com/willmclaren/ensembl-vep). ses, especially single-cell RNA-seq (scRNA-seq). Second, Two presenters discussed genome informatics while participants continued the practice of present- approaches to the analysis of cancer immunotherapy ing unpublished results, a large number of the presen- response. Meromit Singer (Broad Institute, USA) per- + ters had previously posted preprints on their work on formed single-cell RNA profiling in dysfunctional CD8 bioRxiv (http://www.bioRxiv.org) or elsewhere. Although T cells. She identified metallothioneins as drivers of T earlier in 2016, Berg et al. [2] wrote that “preprints are cur- cell dysfunction and revealed novel sub-populations of rently used minimally in biology”,this conference showed dysfunctional T cells [4]. Christopher Miller (Wash- that in genome informatics, at least, they are already used ington University, St Louis, USA) tracked the quite widely. response to cancer immunotherapy in the genome of patients [5]. Personal and medical genomics In a keynote lecture, Elaine Mardis (Washington Several talks covered systems and new technologies that University, St Louis, USA), described computational tools clinicians, patients, and researchers can use to understand and databases created to collect and process cancer- human genomic variation. Jessica Chong (University of specific mutation datasets. A substantive increase in Washington, USA) described MyGene2 (http://mygene2. the amount of clinical sequencing performed as part of org), a website that allows families to share their de- cancer diagnosis and treatment necessitated the devel- identified personal data and find other families with simi- opment of these tools. She emphasized the shift in lar traits. Jennifer Harrow (Illumina, UK) discussed using categorization of cancers—previously oncologists clas- BaseSpace (https://basespace.illumina.com/) for the anal- sified cancers by tissue, but increasingly they classify ysis of clinical sequencing data. Deanna Church (10x cancers by which genes are mutated. Mardis suggested Genomics, USA) presented Linked-Reads, a technology that we should instead describe cancers by the affected that makes it easier to find variants in less accessible metabolic and regulatory pathways, which can provide genomic regions such as the HLA locus. Several presen- insight even for previously unseen disruption. This dis- ters showed new methods to identify the functional effects ruption can be genetic mutations, but it can also man- ifest as other changes to cellular state, which must be *Correspondence: [email protected] measured with other techniques, such as RNA-seq. The 1Princess Margaret Cancer Centre, Toronto, Canada tools Mardis described help interpret the mutations iden- 2Department of Medical Biophysics, University of Toronto, Toronto, Canada Full list of author information is available at the end of the article tified by sequencing. These include the Database of © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Chicco and Hoffman Genome Biology (2017) 18:5 Page 2 of 4 Curated Mutations (DoCM). She also described Personal- In a keynote lecture, Richard Durbin (Wellcome ized Variant Antigens by Cancer Sequencing (pVAC-seq), Trust Sanger Institute, UK) discussed genome reference a tool for identifying tumor neoantigens from DNA-seq assemblies and the pitfalls of using a single flat refer- and RNA-seq data. She also described Clinical Inter- ence sequence. Genomicists use the reference genome pretations of Variants in Cancer (CIViC), a platform for mapping sequencing reads, as a coordinate system for crowd-sourcing data on clinical consequences of for reporting and annotation, and as a framework for genomic variants. CIViC has 1565 evidence items describ- describing known variation. While the reference genome ing the interpretation of genetic variants, and Mardis makes many analyses simpler, it biases these analyses announced a forthcoming Variant Curation Hackathon to towards what is previously seen. Durbin briefly discussed identify more. the advantages of the newest human reference assem- bly, GRCh38, which fixes many previous problems and Variant discovery and genome assembly includes alternate loci to capture complex genetic vari- Several speakers presented tools and methods about anal- ation. But to more effectively work with this variation, ysis of genome assemblies and exploration of sequence Durbin said we need to switch from a flat reference to variants. Jared Simpson (Ontario Institute for Cancer a “pan-genome” graph that includes much known vari- Research, Canada) started the second session with an ation[8].Todothis,wewillneedanewecosystemof overview of base calling for Oxford Nanopore sequenc- graph genome file formats and analysis software. Durbin ing data and his group’s contribution to this field, discussed the work of the Global Alliance for Genomics Nanocall (http://github.com/mateidavid/nanocall). Simp- and Health to evaluate proposed systems for working with son also discussed Nanopolish, which can detect 5- graph genomes. methylcytosine from Oxford Nanopore sequencing data directly, without bisulfite conversion. Kerstin Howe (Well- Epigenomics and the non-coding genome come Trust Sanger Institute, UK) presented her work Speakers described new methods for epigenomic data, with the Genome Reference Consortium on produc- such as DNase-seq (deoxyribonuclease sequencing), ing high quality assemblies for different strains of ChIP-seq (chromatin immunoprecipitation sequenc- mouse and zebrafish. Ideally, future work will integrate ing), and RNA-seq data. Christopher Probert (Stanford graph assemblies. Frank Nothaft (University of California, University, USA) presented DeepNuc, a deep learning Berkeley, USA) described ADAM (https://github.com/ technique able to determine nucleosome positioning bigdatagenomics/adam), a library for distributed com- from paired-end ATAC-seq datasets. Michael Hoffman puting on genomics data, and Toil, a workflow man- (Princess Margaret Cancer Centre, Canada) described agement system. These systems are about 3.5 times amethodtoanalyzeChIP-seqandRNA-seqdatasets faster than standard Genome Analysis Toolkit (GATK) and classify transcription factor binding sites into pipelines. four binding variability categories: static, expression- Some presenters discussed genome assembly tools independent, expression-sensitive, and low [9]. Anshul and datasets which might be utilized by the wider Kundaje (Stanford University, USA) described a deep community. Andrew Farrell (University of Utah, USA) learning approach that integrates epigenomic datasets introduced RUFUS (https://github.com/jandrewrfarrell/ (such as DNase-seq or ATAC-seq) to predict transcrip- RUFUS), a method for efficiently detecting de novo muta- tion factor binding sites across diverse cell types. Kundaje tion using k-mer counting instead of reference-guided also presented a new way to interpret the learned model alignment. Alicia Oshlack (Murdoch Childrens Research (https://github.com/kundajelab/deeplift). Institute, Australia) presented the SuperTranscript model Severalpresentersdescribedtheanalysisoftran- for enhancing transcriptome visualization (https://github. scription factor binding sites and enhancers. Katherine com/Oshlack/Lace/wiki). Jouni Sirén (Wellcome Trust Pollard (University of California, San Francisco, Sanger Institute, UK) presented a method to index
Recommended publications
  • University of Maryland Establishes Center for Health Related Informatics and Bioimaging
    University of Maryland Establishes Center for Health Related Informatics and Bioimaging News & Events UNIVERSITY OF MARYLAND ESTABLISHES CENTER FOR HEALTH CONTACT RELATED INFORMATICS AND BIOIMAGING Monday, June 10, 2013 Karen Robinson, Media Relations New Center, Led By Distinguished Bioinformatics Scientist Owen White, (410) 706-7590 Ph.D., Unites Scientists Across Disciplines to Integrate Genomics and Personalized Medicine into Research and Clinical Care [email protected] University of Maryland, Baltimore campus President Jay A. Perman, M.D., and Media Relations Team University of Maryland School of Medicine Dean E. Albert Reece, M.D., Ph.D., M.B.A., wish to announce the establishment of a new center to unite research scientists and physicians across disciplines. The center will employ these SEARCH ARTICLES interdisciplinary connections to enhance the use of cutting edge medical science such as genomics and personalized medicine to accelerate research discoveries and improve health care outcomes. Participants in the new News Archives University of Maryland Center for Health-Related Informatics and Bioimaging (CHIB) will collaborate with computer scientists, engineers, life scientists and others at a similar center at the University of Maryland, College Park campus, CHIB Co-Director Owen White, Ph.D. together forming a joint center supported by the M-Power Maryland initiative. LEARN MORE University of Maryland School of Medicine Dean E. Albert Reece, M.D., Ph.D., M.B.A., with the concurrence of President Perman, has appointed as co-director of the new center Owen White, Ph.D., Professor of Epidemiology and Public Health and Director of Bioinformatics at the University of Maryland School of Medicine Institute for Genome Sciences.
    [Show full text]
  • Computational Analysis and Predictive Cheminformatics Modeling of Small Molecule Inhibitors of Epigenetic Modifiers
    RESEARCH ARTICLE Computational Analysis and Predictive Cheminformatics Modeling of Small Molecule Inhibitors of Epigenetic Modifiers Salma Jamal1☯‡, Sonam Arora2☯‡, Vinod Scaria3* 1 CSIR Open Source Drug Discovery Unit (CSIR-OSDD), Anusandhan Bhawan, Delhi, India, 2 Delhi Technological University, Delhi, India, 3 GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India ☯ These authors contributed equally to this work. ‡ These authors are joint first authors on this work. * [email protected] a11111 Abstract Background The dynamic and differential regulation and expression of genes is majorly governed by the OPEN ACCESS complex interactions of a subset of biomolecules in the cell operating at multiple levels start- Citation: Jamal S, Arora S, Scaria V (2016) ing from genome organisation to protein post-translational regulation. The regulatory layer Computational Analysis and Predictive contributed by the epigenetic layer has been one of the favourite areas of interest recently. Cheminformatics Modeling of Small Molecule Inhibitors of Epigenetic Modifiers. PLoS ONE 11(9): This layer of regulation as we know today largely comprises of DNA modifications, histone e0083032. doi:10.1371/journal.pone.0083032 modifications and noncoding RNA regulation and the interplay between each of these major Editor: Wei Yan, University of Nevada School of components. Epigenetic regulation has been recently shown to be central to development Medicine, UNITED STATES of a number of disease processes. The availability of datasets of high-throughput screens Received: June 10, 2013 for molecules for biological properties offer a new opportunity to develop computational methodologies which would enable in-silico screening of large molecular libraries.
    [Show full text]
  • Teaching Bioinformatics and Neuroinformatics Using Free Web-Based Tools
    UCLA Behavioral Neuroscience Title Teaching Bioinformatics and Neuroinformatics Using Free Web-based Tools Permalink https://escholarship.org/uc/item/2689x2hk Author Grisham, William Publication Date 2009 Supplemental Material https://escholarship.org/uc/item/2689x2hk#supplemental Peer reviewed eScholarship.org Powered by the California Digital Library University of California – SUBMITTED – [Article; 34,852 Characters] Teaching Bioinformatics and Neuroinformatics Using Free Web-based Tools William Grisham 1, Natalie A. Schottler 1, Joanne Valli-Marill 2, Lisa Beck 3, Jackson Beatty 1 1Department of Psychology, UCLA; 2 Office of Instructional Development, UCLA; 3Department of Psychology, Bryn Mawr College Keywords: quantitative trait locus, digital teaching tools, web-based learning, genetic analysis, in silico tools DRAFT: Copyright William Grisham, 2009 Address correspondence to: William Grisham Department of Psychology, UCLA PO Box 951563 Los Angeles, CA 90095-1563 [email protected] Grisham Teaching Bioinformatics Using Web-Based Tools ABSTRACT This completely computer-based module’s purpose is to introduce students to bioinformatics resources. We present an easy-to-adopt module that weaves together several important bioinformatic tools so students can grasp how these tools are used in answering research questions. This module integrates information gathered from websites dealing with anatomy (Mouse Brain Library), Quantitative Trait Locus analysis (WebQTL from GeneNetwork), bioinformatics and gene expression analyses (University of California, Santa Cruz Genome Browser, NCBI Entrez Gene, and the Allen Brain Atlas), and information resources (PubMed). This module provides for teaching genetics from the phenotypic level to the molecular level, some neuroanatomy, some aspects of histology, statistics, Quantitaive Trait Locus analysis, molecular biology including in situ hybridization and microarray analysis in addition to introducing bioinformatic resources.
    [Show full text]
  • Gene Selection Using Gene Expression Data in a Virtual Environment
    276 Genome Informatics 13: 276-277 (2002) Gene Selection Using Gene Expression Data in a Virtual Environment Kunihiro Nishimura1 Shumpei Ishikawa2 [email protected] [email protected] Shuichi Tsutsumi2 Hiroyuki Aburatani2 [email protected] [email protected] Koichi Hirota2 Michitaka Hirose2 [email protected] [email protected] 1 Graduate School of Information Science and Technology , The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 2 Reseach Center for Advanced Science and Technology , The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan Keywords: gene selection, gene expression, virtual reality, visualization 1 Gene Selection for Drug Discovery The gene expression data of many normal and diseased tissues enables the selection of genes that satisfy the conditions for finding a new drug. In the process of selecting genes is required to determine many filtering parameters. The system of the selection of genes from all genes is required to have the following features: 1) visualization of the data to provide the users to grasp both holistic and detail views of the data, 2) interactivity to determine many filtering parameters, 3) provides spatial cue to understand intuitively because there are many filtering parameters. In order to visualize various information of large number of genes, the system also needs a wide field of view. Virtual reality technology satisfies these requirements above. 2 Virtual Reality Virtual reality technology can help improve genome data analysis by enabling interactive visualization and providing a three-dimensional virtual environment.
    [Show full text]
  • Cheminformatics Education
    Cheminformatics Education Introduction Despite some skepticism at the turn of the century1,2 the terms “cheminformatics” and “chemoinformatics” are now in common parlance. The term “chemical informatics” is used less. The premier journal in the field, the Journal of Chemical Information and Modeling, does not use any of these terms and its cheminformatics papers are scattered across multiple sections including “chemical Information”. Unfortunately it is not just the name of the discipline that is undefined: opinions also vary on the scope. Paris supplied the following definition1 (shortened here): “Chem(o)informatics is a generic term that encompasses the design, creation, organization, storage, management, retrieval, analysis, dissemination, visualization and use of chemical information, not only in its own right, but as a surrogate or index for other data, information and knowledge”. Brown3 says the discipline is “mixing of information resources to transform data into information, and information into knowledge, for the intended purpose of making better decisions faster in the arena of drug lead identification and optimization”. Gasteiger4 says that cheminformatics is the application of informatics methods to solve chemical problems and Bajorath5 agrees that a broad definition such as that is needed to cover all the different scientific activities that have evolved, or have been assimilated, under the cheminformatics umbrella. Varnek’s definition6,7 is rather different. He considers that cheminformatics is a part of theoretical chemistry based on its own molecular model; unlike quantum chemistry in which molecules are represented as ensemble of electrons and nuclei, or force fields molecular modeling dealing with classical “atoms” and “bonds”, cheminformatics considers molecules as objects (graphs and vectors) in multidimensional chemical space.
    [Show full text]
  • Informatics and the Human Genome Project
    Invited manuscript: submitted to IEEE Engineering in Medicine and Biology for a special issue on genome informatics. INFORMATICS AND THE HUMAN GENOME PROJECT Robert J. Robbins US Department of Energy [email protected] David Benton National Center for Human Genome Research [email protected] Jay Snoddy US Department of Energy [email protected] TABLE OF CONTENTS INTRODUCTION 1 INFORMATION AND GENOME PROJECTS 3 THE NATURE OF INFORMATION TECHNOLOGY 4 MOORE’S LAW 5 INFORMATICS 6 INFORMATICS ENABLES BIG SCIENCE 6 THE INTELLECTUAL STANDING OF INFORMATICS 7 AGENCY COMMITMENTS 8 COMMUNITY RECOMMENDATIONS 8 OTA Report 9 Baltimore White Paper 9 GeSTeC Report 10 Workshop on Database Interoperability 11 Meeting on Interconnection of Molecular Biology Databases (MIMBD) 11 Interoperable Software Tools 12 SUMMARY NEEDS 12 CURRENT TRENDS 12 FUTURE SUPPORT 13 OPEN ISSUES 13 Invited manuscript: submitted to IEEE Engineering in Medicine and Biology for a special issue on genome informatics. INFORMATICS AND THE HUMAN GENOME PROJECT1 ROBERT J. ROBBINS, DAVID BENTON, AND JAY SNODDY INTRODUCTION Information technology is transforming biology and the relentless effects of Moore’s Law (discussed later) are transforming that transformation. Nowhere is this more apparent than in the international collaboration known as the Human Genome Project (HGP). Before considering the relationship of informatics to genomic research, let us take a moment to consider the science of the HGP. It has been known since antiquity that like begets like, more or less. Cats have kittens, dogs have puppies, and acorns grow into oak trees. A scientific basis for that observation was first provided with the development of the new science of genetics at the beginning of this century.
    [Show full text]
  • Introduction to Bioinformatics a Complex Systems Approach
    Introduction to Bioinformatics A Complex Systems Approach Luis M. Rocha Complex Systems Modeling CCS3 - Modeling, Algorithms, and Informatics Los Alamos National Laboratory, MS B256 Los Alamos, NM 87545 [email protected] or [email protected] 1 Bioinformatics: A Complex Systems Approach Course Layout 3 Monday: Overview and Background Luis Rocha 3 Tuesday: Gene Expression Arrays – Biology and Databases Tom Brettin 3 Wednesday: Data Mining and Machine Learning Luis Rocha and Deborah Stungis Rocha 3 Thursday: Gene Network Inference Patrik D'haeseleer 3 Friday: Database Technology, Information Retrieval and Distributed Knowledge Systems Luis Rocha 2 Bioinformatics: A Complex Systems Approach Overview and Background 3A Synthetic Approach to Biology Information Processes in Biology – Biosemiotics Genome, DNA, RNA, Protein, and Proteome – Information and Semiotics of the Genetic System Complexity of Real Information Proceses – RNA Editing and Post-Transcription changes Reductionism, Synthesis and Grand Challenges Technology of Post-genome informatics – Sequence Analysis: dynamic programming, simulated anealing, genetic algorithms Artificial Life 3 Information Processes in Biology Distinguishes Life from Non-Life Different Information Processing Systems (memory) 3 Genetic System Construction (expression, development, and maintenance) of cells ontogenetically: horizontal transmission Heredity (reproduction) of cells and phenotypes: vertical transmission 3 Immune System Internal response based on accumulated experience (information) 3
    [Show full text]
  • Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins, Second Edition Andreas D
    BIOINFORMATICS A Practical Guide to the Analysis of Genes and Proteins SECOND EDITION Andreas D. Baxevanis Genome Technology Branch National Human Genome Research Institute National Institutes of Health Bethesda, Maryland USA B. F. Francis Ouellette Centre for Molecular Medicine and Therapeutics Children’s and Women’s Health Centre of British Columbia University of British Columbia Vancouver, British Columbia Canada A JOHN WILEY & SONS, INC., PUBLICATION New York • Chichester • Weinheim • Brisbane • Singapore • Toronto BIOINFORMATICS SECOND EDITION METHODS OF BIOCHEMICAL ANALYSIS Volume 43 BIOINFORMATICS A Practical Guide to the Analysis of Genes and Proteins SECOND EDITION Andreas D. Baxevanis Genome Technology Branch National Human Genome Research Institute National Institutes of Health Bethesda, Maryland USA B. F. Francis Ouellette Centre for Molecular Medicine and Therapeutics Children’s and Women’s Health Centre of British Columbia University of British Columbia Vancouver, British Columbia Canada A JOHN WILEY & SONS, INC., PUBLICATION New York • Chichester • Weinheim • Brisbane • Singapore • Toronto Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration. Copyright ᭧ 2001 by John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher.
    [Show full text]
  • Cheminformatics for Genome-Scale Metabolic Reconstructions
    CHEMINFORMATICS FOR GENOME-SCALE METABOLIC RECONSTRUCTIONS John W. May European Molecular Biology Laboratory European Bioinformatics Institute University of Cambridge Homerton College A thesis submitted for the degree of Doctor of Philosophy June 2014 Declaration This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation is not substantially the same as any I have submitted for a degree, diploma or other qualification at any other university, and no part has already been, or is currently being submitted for any degree, diploma or other qualification. This dissertation does not exceed the specified length limit of 60,000 words as defined by the Biology Degree Committee. This dissertation has been typeset using LATEX in 11 pt Palatino, one and half spaced, according to the specifications defined by the Board of Graduate Studies and the Biology Degree Committee. June 2014 John W. May to Róisín Acknowledgements This work was carried out in the Cheminformatics and Metabolism Group at the European Bioinformatics Institute (EMBL-EBI). The project was fund- ed by Unilever, the Biotechnology and Biological Sciences Research Coun- cil [BB/I532153/1], and the European Molecular Biology Laboratory. I would like to thank my supervisor, Christoph Steinbeck for his guidance and providing intellectual freedom. I am also thankful to each member of my thesis advisory committee: Gordon James, Julio Saez-Rodriguez, Kiran Patil, and Gos Micklem who gave their time, advice, and guidance. I am thankful to all members of the Cheminformatics and Metabolism Group.
    [Show full text]
  • |||GET||| Clinical Research Informatics 1St Edition
    CLINICAL RESEARCH INFORMATICS 1ST EDITION DOWNLOAD FREE Rachel L Richesson | 9781848824478 | | | | | Key Advances in Clinical Informatics If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website. Buy options. The AMIA Informatics Summit is a meeting dedicated peer-reviewed science and practice in bioinformatics, clinical research, implementation and data science. Powered by. Meystre, Ramkiran Gouripeddi. Conclusions Meredith Nahm Zozus, Michael G. View all volumes in this series: Translational and Applied Genomics. Clinical studies of investigational therapies 1. Coordination at the Point of Clinical Research Informatics 1st edition Abstract Clinical Research Informatics 1st edition. Thank you for posting a review! Institutional Subscription. Back Matter Pages Evaluation of medical software 1. This service is more advanced with JavaScript available. In MayDr. Patient-Reported Outcome Data. Share your review so everyone else can enjoy it too. Connect with:. Clinical Documentation 5. Database indexes 3. Artificial neural networks 4. Recommended for you. The purpose of the book is to provide an overview of clinical research typesactivities, and areas where informatics and IT could fit into various activities and business practices. Clinical Research Informatics presents a detailed review of using informatics in the continually evolving clinical research environment. Your review was sent successfully Clinical Research Informatics 1st edition is now waiting for our team to publish it. Her doctoral work in clinical psychology at the University of Vermont focused on delivering psychosocial interventions to breast cancer survivors and she completed her clinical internship at the Vanderbilt-VA Internship Consortium. Free Shipping Free global shipping No minimum order.
    [Show full text]
  • Bioinformatics in the Post-Sequence Era
    review Bioinformatics in the post-sequence era Minoru Kanehisa1 & Peer Bork2 doi:10.1038/ng1109 In the past decade, bioinformatics has become an integral part of research and development in the biomedical sciences. Bioinformatics now has an essential role both in deciphering genomic, transcriptomic and proteomic data generated by high-throughput experimental technologies and in organizing information gathered from tra- ditional biology. Sequence-based methods of analyzing individual genes or proteins have been elaborated and expanded, and methods have been developed for analyzing large numbers of genes or proteins simultaneously, such as in the identification of clusters of related genes and networks of interacting proteins. With the complete genome sequences for an increasing number of organisms at hand, bioinformatics is beginning to provide both conceptual bases and practical methods for detecting systemic functional behaviors of the cell and the organism. http://www.nature.com/naturegenetics The exponential growth in molecular sequence data started in The single most important event was the arrival of the Internet, the early 1980s when methods for DNA sequencing became which has transformed databases and access to data, publica- widely available. The data were accumulated in databases such as tions and other aspects of information infrastructure. The Inter- GenBank, EMBL (European Molecular Biology Laboratory net has become so commonplace that it is hard to imagine that nucleotide sequence database), DDBJ (DNA Data Bank of we were living in a world without it only 10 years ago. The rise of Japan), PIR (Protein Information Resource) and SWISS-PROT, bioinformatics has been largely due to the diverse range of large- and computational methods were developed for data retrieval scale data that require sophisticated methods for handling and and analysis, including algorithms for sequence similarity analysis, but it is also due to the Internet, which has made both searches, structural predictions and functional predictions.
    [Show full text]
  • Data Models in Neuroinformatics
    DOI: 10.5772/intechopen.73516 ProvisionalChapter chapter 8 Data Models in Neuroinformatics Elishai Ezra Tsur Additional information isis available atat thethe endend ofof thethe chapterchapter http://dx.doi.org/10.5772/intechopen.73516 Abstract Advancements in integrated neuroscience are often characterized with data-driven approaches for discovery; these progressions are the result of continuous efforts aimed at developing integrated frameworks for the investigation of neuronal dynamics at increas- ing resolution and in varying scales. Since insights from integrated neuronal models frequently rely on both experimental and computational approaches, simulations and data modeling have inimitable roles. Moreover, data sharing across the neuroscientific community has become an essential component of data-driven approaches to neurosci- ence as is evident from the number and scale of ongoing national and multinational projects, engaging scientists from diverse branches of knowledge. In this heterogeneous environment, the need to share neuroscientific data as well as to utilize it across different simulation environments drove the momentum for standardizing data models for neuro- nal morphologies, biophysical properties, and connectivity schemes. Here, I review existing data models in neuroinformatics, ranging from flat to hybrid object-hierarchical approaches, and suggest a framework with which these models can be linked to experi- mental data, as well as to established records from existing databases. Linking neuronal models and experimental results with data on relevant articles, genes, proteins, disease, etc., might open a new dimension for data-driven neuroscience. Keywords: databases, hierarchy-based data models, integrated neuroscience, LEMS, layer-oriented data models, NeuroML, object-based data models 1. Introduction Integrated neuroscience (IN) is an emerging field of research with implications that range from the derivation of neural networks motifs [1] to approaching one of the most important ques- tions ever tackled: the nature of consciousness [2].
    [Show full text]