bioRxiv preprint doi: https://doi.org/10.1101/054924; this version posted May 25, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 TITLE: The evolution of CHROMOMETHYLASES and gene body DNA 2 methylation in plants 3 4 RUNNING TITLE: CMT gene family in plants 5 6 Adam J. Bewick1∗, Chad E. Niederhuth1, Nicholas A. Rohr1, Patrick T. Griffin1, 7 Jim Leebens-Mack2, Robert J. Schmitz1 8 9 1Department of Genetics, University of Georgia, Athens, GA 30602, USA 10 2Department of Plant Biology, University of Georgia, Athens, GA 30602, USA 11 12 CO-CORRESPONDING AUTHORS: Adam J. Bewick,
[email protected] and 13 Robert J. Schmitz,
[email protected] 14 15 KEY WORDS: CHROMOMETHYLASE, Phylogenetics, DNA methylation, WGBS 16 17 WORD COUNT: ≈4582 18 19 TABLE COUNT: 0 main, 1 SI 20 21 FIGURE COUNT: 5 main, 5 SI 22 23 bioRxiv preprint doi: https://doi.org/10.1101/054924; this version posted May 25, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 24 ABSTRACT 25 26 The evolution of gene body methylation (gbM) and the underlying mechanism is 27 poorly understood. By pairing the largest collection of CHROMOMETHYLASE 28 (CMT) sequences (773) and methylomes (72) across land plants and green 29 algae we provide novel insights into the evolution of gbM and its underlying 30 mechanism.