1.1 the Integrated Digital Network 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Migration from Copper to Fiber Access Network Using Passive Optical Network for Green and Dry Field Areas of Pakistan
International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-5 Issue-4, September 2015 Migration from Copper to Fiber Access Network using Passive Optical Network for Green and Dry Field Areas of Pakistan Umar Farooq, Sajid Bashir, Tauseef Tasneem, A.Saboor, A.Rauf ABSTRACT—Passive Optical Networks (PON) technology for betterment of humanity [1], [4]-[5], [6]-[9].Broadband is brings an evolution in the industry of Telecommunication for the now regarded as essential to a country’s infrastructure, to provisioning of High Speed Internet (HSI) and Triple Play business and overall competitiveness and is gradually bundled Services that includes Voice, Data, and Video Streaming throughout the world. In Pakistan most of the service providers moving closer to being widely recognized as a human right are offering broadband services on traditional copper OSP [10]. (Outside Plant) network since 2000. Demand for the high speed Key focus of the new era content providers is to digitize internet and broadband is increasing rapidly, it is desired with the services and to create the rich online experience. There great need to migrate from traditional copper based OSP network are numerous technologies available in the world with to PON – FTTx (Fiber To The x) infrastructure. Considering the service providers who are competing fast rigorously to geographical requirements in Pakistan a scalable fiber network is required which can be optimized as per the user’s requirements provide high speed internet and multimedia broadband and demands with high speed bandwidth efficiency, involving the services with quality installations. minimum losses and with ideal capital expenditure (CAPEX). -
TECHNOLOGY MASTER PLAN PROJECT MEETING Information Gathering
STATE CENTER COMMUNITY COLLEGE DISTRICT TECHNOLOGY MASTER PLAN PROJECT MEETING Information Gathering Initial Background Information Data Dump – Current technology standards – Existing cable infrastructure CAD drawings and construction documents – Logical network design & as-built documentation Discovery – Electronic Questionnaires – Site Visits – Focus Group Discussion 5/14/2018 2 Information Gathering (cont…) Steering / Policy Committee (Provide oversight, leadership and direction on business objectives and priorities) • Departmental leadership • Project oversight • Departmental coordination • Budget & policy guidance • Final review / comment on standards and construction documents Technology Working Groups (Provide direction, technical and financial details, and other operational input) • SCCCD & tk1sc subject matter experts (SME’s) • Discuss technology baselines • Discuss technology issues, gaps, and priorities • Review / comment on working drafts of standards and construction documents 5/14/2018 3 Analysis & Prioritization Current State Where Are We Now? Desired State Where Do We Want To Go? What are the SCCCD priorities? What Do We Need To Do Get There? 5/14/2018 4 Recommendations & Consensus Working Group Outputs Recommendations for standards and technology updates Summarize findings into priority (High, Medium, Low) with respect to district goals and objectives Department / Location: District Wide Gap Analysis: Existing fiber backbone does not support 100gb networking and on demand provisioning. Recommendations: Upgrade to single -
Radio Signal Path Loss Model
Research in Modern Biological And Agricultural Technologies Ning Wang Dept. of Biosystems and Agricultural Engineering Oklahoma State University Stillwater, Oklahoma Oklahoma State University www.biosystems.okstate.edu Department of Biosystems and Agricultural Engineering Current Research Projects • Wireless sensor network (WSN) applications – Precision agriculture – Environmental monitoring – Study on critical issues on WSN applications Oklahoma State University www.biosystems.okstate.edu Department of Biosystems and Agricultural Engineering Research on WSN First generation of WSN (2007-2008) •Soil Moisture monitoring •Tmote system Second generation of WSN (2008-2010) •Soil property monitoring (Soil MC, EC, Temp) •Crossbow system Wireless camera sensor network (2008-2013) •Pecan weevil population monitoring •Janic system Radio propagation model for WSN used in crop field (2009-2013) •Second generation WSN •Wheat field •Corn Field Cattle monitoring (2005-2013) •Grazing activity Oklahoma State University www.biosystems.okstate.edu Department of Biosystems and Agricultural Engineering First Generation Soil Moisture Monitoring System Structure: Star-topology with 10 Sensor Nodes, one Central Node and one Base Node Oklahoma State University www.biosystems.okstate.edu Department of Biosystems and Agricultural Engineering Second Generation The WSN Conceptual Model Oklahoma State University www.biosystems.okstate.edu Department of Biosystems and Agricultural Engineering Second Generation Field Installation Sensor Node Components Oklahoma State -
Fiber Optic Communications
FIBER OPTIC COMMUNICATIONS EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and used to transmit signals over long distances. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Fiber Optic Data Transmission Systems Fiber optic data transmission systems send information over fiber by turning electronic signals into light. Light refers to more than the portion of the electromagnetic spectrum that is near to what is visible to the human eye. The electromagnetic spectrum is composed of visible and near -infrared light like that transmitted by fiber, and all other wavelengths used to transmit signals such as AM and FM radio and television. The electromagnetic spectrum. Only a very small part of it is perceived by the human eye as light. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Fiber Optics Transmission Low Attenuation Very High Bandwidth (THz) Small Size and Low Weight No Electromagnetic Interference Low Security Risk Elements of Optical Transmission Electrical-to-optical Transducers Optical Media Optical-to-electrical Transducers Digital Signal Processing, repeaters and clock recovery. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Types of Optical Fiber Multi Mode : (a) Step-index – Core and Cladding material has uniform but different refractive index. (b) Graded Index – Core material has variable index as a function of the radial distance from the center. Single Mode – The core diameter is almost equal to the wave length of the emitted light so that it propagates along a single path. -
Designing a Free Space Optical/Wireless Link
Session: 2247 Designing A Free-Space Optical/Wireless Link Jai P. Agrawal, Omer Farook and C.R. Sekhar Department of Electrical and Computer Engineering Technology Purdue University Calumet Abstract This paper presents the design of a very high-speed data link between two buildings in a University campus that will operate at gigabit rates. The project uses a cutting edge technology of eye-safe laser communication through free space. This is an all-optical design is future-proof in regards to technological advancement in the rate of data transmission and introduction of newer protocols. The two buildings are approximately 500 meters apart. The free-space optical link uses 1550 nm wavelength in normal usage but has a wireless link operating at 2.4 GHz as the back-up. The line of site alignment will be achieved using telescopes initially but will have automatic tracking alignment system. The wireless back-up link is used only in very dense fog conditions. This paper presents the design of only the free-space optical connection, some parts of which are implemented in laboratory setup. I. Introduction The technology of establishing a high-speed networking between two buildings or campuses is one of the three: 1) copper wire, 2) wireless and 2) optical fiber technology. The copper technology is low-speed, labor-intensive and requires a regime of permissions. The advantages are high reliability and full availability. The wireless technology uses a few GHz carrier, is medium speed (up to few Gigabits per second), has small link span and requires a regime of licenses. Advantage is the ease of deployment. -
Fiber Optics
FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 25 Fiber Optic Link Design Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering, IIT Bombay Page 1 The design criteria for a fiber optic link design procedure is mainly divided into broad categories which can be further subdivided as shown by the tree diagram below: Bit Rate (Dispersion Limitation) Primary Design Criteria Link Length (Attenuation Limitation) Modulation format eg. Analog/Digital Fiber Optic Link Design System Fidelity:BER, SNR Additional Design Cost: components, Parameters installation, maintainance Upgradeability Commercial Availability Figure 25.1: Fiber Optic Link Design Criteria The primary design criteria signify the most basic and fundamental information parameters to be made available by the user to the designer for designing a reliable fiber optic link. The first important information to be specified by the user is the desired bit rate of data transmission. However, the dispersion in the optical fiber exerts a limitation on the maximum achievable and realisable data rate of transmission. The next intricate information to be provided for the design process is the length of the optical link so as to enable the designer to ascertain the position of the optical repeaters along the link for a satisfactory optical data link. Along with the primary design criteria, there are some additional parameters which facilitate better design and quality analysis of the optical link. These factors consist of the scheme of modulation, the system fidelity, cost, upgradeability, commercial availability etc. A fundamental and very simple point-to-point optical communication link can be schematically drawn as shown in the figure below. -
Arctic Connect Project and Cyber Security Control, ARCY Informaatioteknologian Tiedekunnan Julkaisuja No
Informaatioteknologian tiedekunnan julkaisuja No. 78/2019 Martti Lehto, Aarne Hummelholm, Katsuyoshi Iida, Tadas Jakstas, Martti J. Kari, Hiroyuki Minami, Fujio Ohnishi ja Juha Saunavaara Arctic Connect Project and cyber security control, ARCY Informaatioteknologian tiedekunnan julkaisuja No. 78/2019 Editor: Pekka Neittaanmäki Covers: Petri Vähäkainu ja Matti Savonen Copyright © 2019 Martti Lehto, Aarne Hummelholm, Katsoyoshi Iida, Tadas Jakstas, Martti J. Kari, Hiroyuki Minami, Fujio Ohnishi, Juha Saunavaara ja Jyväskylän yliopisto ISBN 978-951-39-7721-4 (verkkoj.) ISSN 2323-5004 Jyväskylä 2019 Arctic Connect Project and Cyber Security Control, ARCY Martti Lehto Aarne Hummelholm Katsuyoshi Iida Tadas Jakštas Martti J. Kari Hiroyuki Minami Fujio Ohnishi Juha Saunavaara UNIVERSITY OF JYVÄSKYLÄ FACULTY OF INFORMATION TECHNOLOGY 2019 EXECUTIVE SUMMARY The submarine communication cables form a vast network on the seabed and transmit massive amounts of data across oceans. They provide over 95% of international tele- communications—not via satellites as is commonly assumed. The global submarine network is the “backbone” of the Internet, and enables the ubiquitous use of email, social media, phone and banking services. To these days no any other technology than submarine cables systems has not been such a strategic impact to our society without being known it as such by the people. This also means that it is at the same time a very interesting destination for hackers, cyber attackers, terrorist and state actors. They seek to gain access to information that goes through the networks of these continents that are connected to each other with sea cables. The main conclusion Tapping fiber optic cables to eavesdrop the information is a conscious threat. -
The Truth About Wireless Broadband: the Myths and Challenges of Wireless Technology in Rural America
The TruTh abouT Wireless broadband: The MyThs and Challenges of Wireless TeChnology in rural AmeriCa Rural Telecom Educational Series The TruTh abouT Wireless broadband: The MyThs and Challenges of Wireless TeChnology in rural AmeriCa execuTive summary Today’s wireless networks would not work without a fiber or other wired network supporting them. although wireless signals can be transmitted through the air for a few miles, they are subject to interference from buildings, hills and mountains, trees, and other obstacles that interfere with the line of sight between antenna towers and other facilities. in addition, wireless services share the air, or spectrum, with each other, and an overflow of simultaneous users can crowd out or slow down other users and cause service degradation. for these reasons, as explained more fully in this paper, new 4g wireless networks will be designed to carry a wireless signal for only a relatively short distance before transferring it (whether it be a voice call, text message, or e-mail) to the wireline network buried underground or strung across utility poles. if the call or text message is directed to another wireless user, only when the signal reaches a wireless facility near the end-user’s device does the signal leave the wired network to complete its journey wirelessly. in urban areas, a relatively few number of antennas can reach many people; for example, an array of cell phone antennas atop a downtown office building can reach not only the people in the building but also numerous others nearby. in rural america, however, people live and work much farther apart from one another. -
TR-3552: Optical Network Installation Guide
Technical Report Optical network installation guide Prepared by Optellent Inc., NetApp May 2021 | TR-3552 Abstract This document is intended to serve as a guide for architecting and deploying fiber optic networks in a customer environment. This installation planning guide describes some basic fundamentals of fiber optic technology, considerations for deployment, and basic testing and troubleshooting procedures. TABLE OF CONTENTS Introduction ................................................................................................................................................. 4 General overview of SAN fiber network ................................................................................................... 4 Typical fiber optic network topologies for SAN ........................................................................................................4 Parts of a fiber optic link ..........................................................................................................................................6 Termination of optical fibers................................................................................................................................... 10 FC SFP transceivers ............................................................................................................................................. 11 Fabric extension overview ..................................................................................................................................... 13 Factors affecting -
Long-Reach Passive Optical Networks Russell P
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 27, NO. 1, JANUARY 1 2009 1 Long-Reach Passive Optical Networks Russell P. Davey, Daniel B. Grossman, Senior Member, IEEE, Michael Rasztovits-Wiech, David B. Payne, Derek Nesset, Member, IEEE, A. E. Kelly, Albert Rafel, Shamil Appathurai, and Sheng-Hui Yang, Member, IEEE Abstract—This paper is a tutorial reviewing research and devel- opment performed over the last few years to extend the reach of passive optical networks using technology such as optical ampli- fiers. Index Terms—Communication systems, networks, optical am- plifiers, optical fiber communications. I. INTRODUCTION HE rapid growth of Internet access and services such as T IP video delivery and voice-over IP (VoIP) is accelerating Fig. 1. Typical configuration for B-PON, GE-PON, and G-PON. demand for broadband access. While most broadband services around the world are delivered via copper access networks, op- tical access technology has been commercially available for sev- eral years and is being deployed in volume in some countries [1]. Where optical access is deployed, passive optical networks (PONs) are often the technology of choice because the trans- mission fiber and the central office equipment can be shared by a large number of customers. Early PON deployments were based on B-PON systems as standardized in the ITU-T G.983 series. Fig. 2. Mid-span GPON extension. Currently being installed in Asian countries such as Japan are Ethernet PON (GE-PON) with gigabit transmission capability operation is made possible using wavelength division multi- that complies with IEEE 802.3ah. Meanwhile, operators in the plexing (WDM) with upstream wavelengths in the 1310 nm United States and Europe are now focusing on gigabit-capable region (1260–1360 nm) and downstream wavelengths in the G-PON systems as standardized in ITU-T G.984 series, with 1490 nm region (1480–1500 nm). -
A Leading Mission-Critical & Technology-Systems Company
ConCor Networks A Leading Mission-Critical & Technology-Systems Company Providing clients a wide range of commercial low-voltage maintenance, repair and retrofit, voice/data, and network and structured-cabling solutions. Bringing Technology Systems from Mission Critical—to Mission Accomplished. ConCor Networks, Inc. (ConCor) is a leader in mission critical and technology systems, as well as low-voltage systems. Today’s low-voltage systems require increasing in- novation and more strategic ways of gathering and analyzing information. As a result, ConCor works with clients to help deliver innovative technology systems that are faster, better, and more efficient. ConCor experts design and build technology-rich, highly complex systems that are often completed within the constraints of demanding implementation schedules. Cli- Markets: ents can benefit from working closely with ConCor in the initial phase of low-voltage Commercial and structured-cabling systems design to identify and resolve conflicts early in the » Office Buildings process. And since ConCor prides itself on implementing green initiatives, the ConCor » Retail team strives to use only the most sustainable methods and materials. Education Innovative Solutions. Design/Build Services Entertainment/Hospitality When Downtime Isn’t An Option. » Arenas ConCor experts often get involved early in the When downtime isn’t an option, ConCor helps design/build process to help clients capture vital » Hotels/Casinos provide solutions that include fiber-optic un- information to incorporate into the final design. Health care shielded twisted pair (UTP), shielded twisted pair Using computer modeling to identify potential Manufacturing (STP) cabling, power distribution systems, UPS problems and test alternatives before conflicts Private Sector systems, cable tray installation services, and interfere, ConCor is well equipped to design and rack and cabinet installation services—for both build projects of nearly any scope and complexity. -
SIMATIC NET PROFIBUS, Optical Link Module
Preface 1 Introduction 2 Network Topologies 3 SIMATIC NET PROFIBUS Optical Link Module Product Characteristics 4 OLM / P11 V4.0 OLM / P12 V4.0 5 OLM / P22 V4.0 Installation and Maintenance OLM / P11 V4.0 6 OLM / G12 V4.0 Approvals and Marks OLM / G22 V4.0 OLM / G12-EEC V4.0 References 7 OLM / G11-1300 V4.0 OLM / G12-1300 V4.0 Drawings 8 Operating Instructions 01/2013 C79000-G8976-C270-03 Legal information Warning notice system This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger. Danger indicates that death or severe personal injury will result if proper precautions are not taken. Warning indicates that death or severe personal injury may result if proper precautions are not taken. Caution indicates that minor personal injury can result if proper precautions are not taken. Notice indicates that property damage can result if proper precautions are not taken. If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage. Copyright © Siemens AG 2007 - 2013. Disclaimer of Liability All rights reserved We have reviewed the contents of this publication to ensure consistency with the hardware The reproduction, transmission or use of this document or its contents is not permitted and software described.