Inertia, Forces, and Acceleration: the Legacy of Sir Isaac Newton

Total Page:16

File Type:pdf, Size:1020Kb

Inertia, Forces, and Acceleration: the Legacy of Sir Isaac Newton Newton's Laws 4/14/2008 UCSD Physics 10 UCSD Physics 10 Position is a “Vector” • Compare “A ball is 12 meters North of the Sun God” to Inertia, Forces, and Acceleration: “A ball is 10 meters from here” The Legacy of Sir Isaac Newton • A vector has both a direction and a value, or “magnitude” • Which of these descriptive properties are vectors? – Position –Mass – Color – Speed Used interchangeably in casual language, but not in physics – Velocity – Temperature Objects in Motion Spring 2008 2 UCSD Physics 10 UCSD Physics 10 Speed vs. Velocity Discussion Questions Speed is the rate of motion (how fast) See if you can come to a consensus on answers to these questions: Speed = distance / time 1. A yellow car is heading East at 100 km/h and a “The satellite has a speed of 15,000 mi/hr” red car is going North at 100 km/h. Do they “But officer, my speed was only 56 miles per hour!” have the same speed? Do they have the same velocity? Velocity is speed plus directional information: 2. A 16-lb bowling ball in a bowling alley in Del Mar heads due north at 10 m/s. At the same time, “The spacecraft is moving at 18 km/sec towards Jupiter” a purple 8-lb ball heads due north at 10 m/s in an alley in La Jolla. Do they have the same velocity? Spring 2008 3 Spring 2008 4 Lecture 6 1 Newton's Laws 4/14/2008 UCSD Physics 10 UCSD Physics 10 Approaching a Physics Question or Problem Newton Says 1. Extract relevant facts • A ball sitting still will stay that way, unless acted upon by a force. 2. Draw a sketch, if needed 3. Determine applicable reasoning Inertia Mass 4. Draw irrefutable conclusion An object that is not subjected to any outside forces 5. Perform a “sanity check”. Does your answer moves at constant velocity, covering equal make sense? distances in equal times, along a straight path, x(t) = x(0) + vt Newton’s 1st Law • This is not intuitively obvious. Spring 2008 5 Spring 2008 6 UCSD Physics 10 UCSD Physics 10 Sliding Book Demonstration Constant Velocity Motion – No Forces • If no external forces are acting, velocity is constant Why doesn’t it keep on going, like the Energizer Bunny? • Position changes, at a steady (constant) rate When are there forces acting on the book, and what is responsible for them? t=0 sec 1 sec 2 sec 3 sec 4 sec 5 sec 6 sec When is the speed a maximum? x =1 m 2 m 3 m 4 m 5 m 6 m 7 m When is the speed a minimum? v= 1 m/s 1 m/s 1 m/s 1 m/s 1 m/s 1 m/s to right How much force is acting on it after it stops? How does determination of velocity depend on choice x=0 and t=0? Spring 2008 7 Spring 2008 8 Lecture 6 2 Newton's Laws 4/14/2008 UCSD Physics 10 UCSD Physics 10 A Data Table Acceleration constant velocity • If an object’s velocity changes, it’s accelerating. Time Position Velocity • If an object’s velocity changes, it’s accelerating. 0 sec 1 meter = dist/time & direction • The change can be in the speed of motion, in the direction of motion, or both. 1 sec 2 meters 1 m/s to right • Acceleration is a generic term velocity change – includes “deceleration” 2 sec 3 meters 1 m/s to right • Can you feel if you’re moving with a constant velocity? 3 sec 4 meters 1 m/s to right • Can you feel being accelerated? Why? Spring 2008 9 Spring 2008 10 UCSD Physics 10 UCSD Physics 10 Acceleration is the rate of change of velocity Acceleration is a Vector too • A constant acceleration means that the object’s • Direction of acceleration = direction in which velocity velocity is changing at a constant rate changes – Example: if the acceleration is along the direction of motion, the speed grows by the same amount in each – Accel. in same direction as velocity speed increases time interval (e.g., second) – Accel. in direction opposite to velocity speed decreases • if the speed changes by 1 meter per second each second, the – Accel. at right angles to velocity direction changes acceleration is (1 meter per second) per second, or 1 m/s2. • Example: An unexpected shove from the side as you run straight down a if v = 15 m/s at time t = 0, and a = 1 m/s2, then hallway might send you careening into the wall. Lesson: you shouldn’t v = 16 m/s at t = 1 sec be running indoors. v = 17 m/s at t = 2 sec • Circular motion is produced by acceleration of v2/r (r is radius of curve) v = 20 m/s at t = 5 sec Spring 2008 11 Spring 2008 12 Lecture 6 3 Newton's Laws 4/14/2008 UCSD Physics 10 UCSD Physics 10 Discussion Questions, cont. Forces Cause Acceleration • Acceleration is proportional to the applied force: The 3. A sprinter who is running a 200 meter race covers the larger the force, the more an object will accelerate, in the second 100 meters in less time than it takes to cover the direction of the applied force. first 100 meters. Why? • Mass is inertia, i.e., reluctance to accelerate, so for the same force, more massive objects experience smaller 4. When you let go of a superball, does it accelerate? In acceleration than less massive ones. which direction? What about when it hits the floor? If you throw it upwards, does it accelerate then? Which Shorthand: direction? Force = mass acceleration, or 5. If you are driving East and apply the brakes to stop your F = ma car, in what direction are you accelerating? Newton’s 2nd Law Spring 2008 13 Spring 2008 14 UCSD Physics 10 UCSD Physics 10 0.4 sec -1.0 m 0.5 sec A Ball in Free Fall Questions on Newton’s Second Law 0.6 sec -2.0 m 6. If identical forces act on two objects, where object 0.7 sec • Is the ball’s direction of velocity constant? A is twice as massive as object B, how do their accelerations compare? -3.0 m 0.8 sec • Does it travel equal distances in equal times? 7. If I double the mass of an object, by what factor -4.0 m 0.9 sec • Is the ball accelerating? must I change the applied force to maintain a certain acceleration? -5.0 m 1.0 sec • What is the direction of the acceleration vector? 8. If one force pulls an object to the East, while a second force of equal magnitude pulls it to the • What is the direction of the force (F = ma)? -6.0 m 1.1 sec West, what is the object’s acceleration? • What’s responsible for the force on the ball? -7.0 m 1.2 sec Spring 2008 15 Spring 2008 16 Lecture 6 4 Newton's Laws 4/14/2008 UCSD Physics 10 UCSD Physics 10 Quantitative exercises, real numbers Another numerical example If you see an object with a mass of 1 kg increase its speed by On planet Splat, the acceleration due to gravity is 1m/s in each second, what force is acting on it? 40.0 m/s2. What would a rock’s velocity be 3 sec after you dropped it on Splat? (Initially at rest.) Is it accelerating? Yes! Velocity increases by 40 m/s in each second. How much is it accelerating? Starts from rest, i.e. v = 0 at t = 0 Velocity changing by 1m/s per sec is acceleration of 1 m/s/s =1 m/s2 So, v(0 s) = 0 m/s, v(1 s) = 40 m/s, What force is acting on it? 2 2 v(2 s) = 80 m/s, F = mass acceleration = 1 kg 1 m/s2 = 1 kg m/s2 = 1 Newton v(2 s) = 80 m/s, v(3 s) = 120 m/s. Spring 2008 17 Spring 2008 18 UCSD Physics 10 UCSD Physics 10 Summary Assignments • Mass is a property of objects, producing a reluctance to accelerate, called inertia – HW 2: due Friday (4/18): • Velocity refers to both speed and direction • Hewitt 11.E.16, 11.E.20, 11.E.32, 11.P.5, 2.E.6, 2.E.11, 2.E.14, 2.E.36, 2.E.38, 3.E.4, 3.E.5, 3.E.6, 3.E.19 • Acceleration means a change in velocity (either • turn in at lecture, or in box outside SERF 336 by 3PM magnitude, or direction or both) – Read Hewitt Chapters 2, 3, 4 • If an object is accelerating, it is being acted upon • suggested order/skipping detailed on website by a force, and F = ma. No exceptions. Spring 2008 19 Spring 2008 20 Lecture 6 5.
Recommended publications
  • Foundations of Newtonian Dynamics: an Axiomatic Approach For
    Foundations of Newtonian Dynamics: 1 An Axiomatic Approach for the Thinking Student C. J. Papachristou 2 Department of Physical Sciences, Hellenic Naval Academy, Piraeus 18539, Greece Abstract. Despite its apparent simplicity, Newtonian mechanics contains conceptual subtleties that may cause some confusion to the deep-thinking student. These subtle- ties concern fundamental issues such as, e.g., the number of independent laws needed to formulate the theory, or, the distinction between genuine physical laws and deriva- tive theorems. This article attempts to clarify these issues for the benefit of the stu- dent by revisiting the foundations of Newtonian dynamics and by proposing a rigor- ous axiomatic approach to the subject. This theoretical scheme is built upon two fun- damental postulates, namely, conservation of momentum and superposition property for interactions. Newton’s laws, as well as all familiar theorems of mechanics, are shown to follow from these basic principles. 1. Introduction Teaching introductory mechanics can be a major challenge, especially in a class of students that are not willing to take anything for granted! The problem is that, even some of the most prestigious textbooks on the subject may leave the student with some degree of confusion, which manifests itself in questions like the following: • Is the law of inertia (Newton’s first law) a law of motion (of free bodies) or is it a statement of existence (of inertial reference frames)? • Are the first two of Newton’s laws independent of each other? It appears that
    [Show full text]
  • Exercises in Classical Mechanics 1 Moments of Inertia 2 Half-Cylinder
    Exercises in Classical Mechanics CUNY GC, Prof. D. Garanin No.1 Solution ||||||||||||||||||||||||||||||||||||||||| 1 Moments of inertia (5 points) Calculate tensors of inertia with respect to the principal axes of the following bodies: a) Hollow sphere of mass M and radius R: b) Cone of the height h and radius of the base R; both with respect to the apex and to the center of mass. c) Body of a box shape with sides a; b; and c: Solution: a) By symmetry for the sphere I®¯ = I±®¯: (1) One can ¯nd I easily noticing that for the hollow sphere is 1 1 X ³ ´ I = (I + I + I ) = m y2 + z2 + z2 + x2 + x2 + y2 3 xx yy zz 3 i i i i i i i i 2 X 2 X 2 = m r2 = R2 m = MR2: (2) 3 i i 3 i 3 i i b) and c): Standard solutions 2 Half-cylinder ϕ (10 points) Consider a half-cylinder of mass M and radius R on a horizontal plane. a) Find the position of its center of mass (CM) and the moment of inertia with respect to CM. b) Write down the Lagrange function in terms of the angle ' (see Fig.) c) Find the frequency of cylinder's oscillations in the linear regime, ' ¿ 1. Solution: (a) First we ¯nd the distance a between the CM and the geometrical center of the cylinder. With σ being the density for the cross-sectional surface, so that ¼R2 M = σ ; (3) 2 1 one obtains Z Z 2 2σ R p σ R q a = dx x R2 ¡ x2 = dy R2 ¡ y M 0 M 0 ¯ 2 ³ ´3=2¯R σ 2 2 ¯ σ 2 3 4 = ¡ R ¡ y ¯ = R = R: (4) M 3 0 M 3 3¼ The moment of inertia of the half-cylinder with respect to the geometrical center is the same as that of the cylinder, 1 I0 = MR2: (5) 2 The moment of inertia with respect to the CM I can be found from the relation I0 = I + Ma2 (6) that yields " µ ¶ # " # 1 4 2 1 32 I = I0 ¡ Ma2 = MR2 ¡ = MR2 1 ¡ ' 0:3199MR2: (7) 2 3¼ 2 (3¼)2 (b) The Lagrange function L is given by L('; '_ ) = T ('; '_ ) ¡ U('): (8) The potential energy U of the half-cylinder is due to the elevation of its CM resulting from the deviation of ' from zero.
    [Show full text]
  • Post-Newtonian Approximation
    Post-Newtonian gravity and gravitational-wave astronomy Polarization waveforms in the SSB reference frame Relativistic binary systems Effective one-body formalism Post-Newtonian Approximation Piotr Jaranowski Faculty of Physcis, University of Bia lystok,Poland 01.07.2013 P. Jaranowski School of Gravitational Waves, 01{05.07.2013, Warsaw Post-Newtonian gravity and gravitational-wave astronomy Polarization waveforms in the SSB reference frame Relativistic binary systems Effective one-body formalism 1 Post-Newtonian gravity and gravitational-wave astronomy 2 Polarization waveforms in the SSB reference frame 3 Relativistic binary systems Leading-order waveforms (Newtonian binary dynamics) Leading-order waveforms without radiation-reaction effects Leading-order waveforms with radiation-reaction effects Post-Newtonian corrections Post-Newtonian spin-dependent effects 4 Effective one-body formalism EOB-improved 3PN-accurate Hamiltonian Usage of Pad´eapproximants EOB flexibility parameters P. Jaranowski School of Gravitational Waves, 01{05.07.2013, Warsaw Post-Newtonian gravity and gravitational-wave astronomy Polarization waveforms in the SSB reference frame Relativistic binary systems Effective one-body formalism 1 Post-Newtonian gravity and gravitational-wave astronomy 2 Polarization waveforms in the SSB reference frame 3 Relativistic binary systems Leading-order waveforms (Newtonian binary dynamics) Leading-order waveforms without radiation-reaction effects Leading-order waveforms with radiation-reaction effects Post-Newtonian corrections Post-Newtonian spin-dependent effects 4 Effective one-body formalism EOB-improved 3PN-accurate Hamiltonian Usage of Pad´eapproximants EOB flexibility parameters P. Jaranowski School of Gravitational Waves, 01{05.07.2013, Warsaw Relativistic binary systems exist in nature, they comprise compact objects: neutron stars or black holes. These systems emit gravitational waves, which experimenters try to detect within the LIGO/VIRGO/GEO600 projects.
    [Show full text]
  • Kinematics, Kinetics, Dynamics, Inertia Kinematics Is a Branch of Classical
    Course: PGPathshala-Biophysics Paper 1:Foundations of Bio-Physics Module 22: Kinematics, kinetics, dynamics, inertia Kinematics is a branch of classical mechanics in physics in which one learns about the properties of motion such as position, velocity, acceleration, etc. of bodies or particles without considering the causes or the driving forces behindthem. Since in kinematics, we are interested in study of pure motion only, we generally ignore the dimensions, shapes or sizes of objects under study and hence treat them like point objects. On the other hand, kinetics deals with physics of the states of the system, causes of motion or the driving forces and reactions of the system. In a particular state, namely, the equilibrium state of the system under study, the systems can either be at rest or moving with a time-dependent velocity. The kinetics of the prior, i.e., of a system at rest is studied in statics. Similarly, the kinetics of the later, i.e., of a body moving with a velocity is called dynamics. Introduction Classical mechanics describes the area of physics most familiar to us that of the motion of macroscopic objects, from football to planets and car race to falling from space. NASCAR engineers are great fanatics of this branch of physics because they have to determine performance of cars before races. Geologists use kinematics, a subarea of classical mechanics, to study ‘tectonic-plate’ motion. Even medical researchers require this physics to map the blood flow through a patient when diagnosing partially closed artery. And so on. These are just a few of the examples which are more than enough to tell us about the importance of the science of motion.
    [Show full text]
  • Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
    omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag.
    [Show full text]
  • The Newton-Leibniz Controversy Over the Invention of the Calculus
    The Newton-Leibniz controversy over the invention of the calculus S.Subramanya Sastry 1 Introduction Perhaps one the most infamous controversies in the history of science is the one between Newton and Leibniz over the invention of the infinitesimal calculus. During the 17th century, debates between philosophers over priority issues were dime-a-dozen. Inspite of the fact that priority disputes between scientists were ¡ common, many contemporaries of Newton and Leibniz found the quarrel between these two shocking. Probably, what set this particular case apart from the rest was the stature of the men involved, the significance of the work that was in contention, the length of time through which the controversy extended, and the sheer intensity of the dispute. Newton and Leibniz were at war in the later parts of their lives over a number of issues. Though the dispute was sparked off by the issue of priority over the invention of the calculus, the matter was made worse by the fact that they did not see eye to eye on the matter of the natural philosophy of the world. Newton’s action-at-a-distance theory of gravitation was viewed as a reversion to the times of occultism by Leibniz and many other mechanical philosophers of this era. This intermingling of philosophical issues with the priority issues over the invention of the calculus worsened the nature of the dispute. One of the reasons why the dispute assumed such alarming proportions and why both Newton and Leibniz were anxious to be considered the inventors of the calculus was because of the prevailing 17th century conventions about priority and attitude towards plagiarism.
    [Show full text]
  • New Rotational Dynamics- Inertia-Torque Principle and the Force Moment the Character of Statics Guagsan Yu* Harbin Macro, Dynamics Institute, P
    Computa & tio d n ie a l l p M Yu, J Appl Computat Math 2015, 4:3 p a Journal of A t h f e o m l DOI: 10.4172/2168-9679.1000222 a a n t r ISSN: 2168-9679i c u s o J Applied & Computational Mathematics Research Article Open Access New Rotational Dynamics- Inertia-Torque Principle and the Force Moment the Character of Statics GuagSan Yu* Harbin Macro, Dynamics Institute, P. R. China Abstract Textual point of view, generate in a series of rotational dynamics experiment. Initial research, is wish find a method overcome the momentum conservation. But further study, again detected inside the classical mechanics, the error of the principle of force moment. Then a series of, momentous the error of inside classical theory, all discover come out. The momentum conservation law is wrong; the newton third law is wrong; the energy conservation law is also can surpass. After redress these error, the new theory namely perforce bring. This will involve the classical physics and mechanics the foundation fraction, textbooks of physics foundation part should proceed the grand modification. Keywords: Rigid body; Inertia torque; Centroid moment; Centroid occurrence change? The Inertia-torque, namely, such as Figure 3 the arm; Statics; Static force; Dynamics; Conservation law show, the particle m (the m is also its mass) is a r 1 to O the slewing radius, so it the Inertia-torque is: Introduction I = m.r1 (1.1) Textual argumentation is to bases on the several simple physics experiment, these experiments pass two videos the document to The Inertia-torque is similar with moment of force, to the same of proceed to demonstrate.
    [Show full text]
  • Lecture Notes for PHY 405 Classical Mechanics
    Lecture Notes for PHY 405 Classical Mechanics From Thorton & Marion's Classical Mechanics Prepared by Dr. Joseph M. Hahn Saint Mary's University Department of Astronomy & Physics November 25, 2003 revised November 29 Chapter 11: Dynamics of Rigid Bodies rigid body = a collection of particles whose relative positions are fixed. We will ignore the microscopic thermal vibrations occurring among a `rigid' body's atoms. The inertia tensor Consider a rigid body that is composed of N particles. Give each particle an index α = 1 : : : N. Particle α has a velocity vf,α measured in the fixed reference frame and velocity vr,α = drα=dt in the reference frame that rotates about axis !~ . Then according to Eq. 10.17: vf,α = V + vr,α + !~ × rα where V = velocity of the moving origin relative to the fixed origin. Note that the particles in a rigid body have zero relative velocity, ie, vr,α = 0. 1 Thus vα = V + !~ × rα after dropping the f subscript 1 1 and T = m v2 = m (V + !~ × r )2 is the particle's KE α 2 α α 2 α α N so T = Tα the system's total KE is α=1 X1 1 = MV2 + m V · (!~ × r ) + m (!~ × r )2 2 α α 2 α α α α X X 1 1 = MV2 + V · !~ × m r + m (!~ × r )2 2 α α 2 α α α ! α X X where M = α mα = the system's total mass. P Now choose the system's center of mass R as the origin of the moving frame.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • A Short History of Physics (Pdf)
    A Short History of Physics Bernd A. Berg Florida State University PHY 1090 FSU August 28, 2012. References: Most of the following is copied from Wikepedia. Bernd Berg () History Physics FSU August 28, 2012. 1 / 25 Introduction Philosophy and Religion aim at Fundamental Truths. It is my believe that the secured part of this is in Physics. This happend by Trial and Error over more than 2,500 years and became systematic Theory and Observation only in the last 500 years. This talk collects important events of this time period and attaches them to the names of some people. I can only give an inadequate presentation of the complex process of scientific progress. The hope is that the flavor get over. Bernd Berg () History Physics FSU August 28, 2012. 2 / 25 Physics From Acient Greek: \Nature". Broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves. The universe is commonly defined as the totality of everything that exists or is known to exist. In many ways, physics stems from acient greek philosophy and was known as \natural philosophy" until the late 18th century. Bernd Berg () History Physics FSU August 28, 2012. 3 / 25 Ancient Physics: Remarkable people and ideas. Pythagoras (ca. 570{490 BC): a2 + b2 = c2 for rectangular triangle: Leucippus (early 5th century BC) opposed the idea of direct devine intervention in the universe. He and his student Democritus were the first to develop a theory of atomism. Plato (424/424{348/347) is said that to have disliked Democritus so much, that he wished his books burned.
    [Show full text]
  • NEWTON's FIRST LAW of MOTION the Law of INERTIA
    NEWTON’S FIRST LAW OF MOTION The law of INERTIA INERTIA - describes how much an object tries to resist a change in motion (resist a force) inertia increases with mass INERTIA EXAMPLES Ex- takes more force to stop a bowling ball than a basket ball going the same speed (bowling ball tries more to keep going at a constant speed- resists stopping) Ex- it takes more force to lift a full backpack than an empty one (full backpack tries to stay still more- resists moving ; it has more inertia) What the law of inertia says…. AKA Newton’s First Law of Motion An object at rest, stays at rest Because the net force is zero! Forces are balanced (equal & opposite) …an object in motion, stays in motion Motion means going at a constant speed & in a straight line The net force is zero on this object too! NO ACCELERATION! …unless acted upon by a net force. Only when this happens will you get acceleration! (speed or direction changes) Forces are unbalanced now- not all equal and opposite there is a net force> 0N! You have overcome the object’s inertia! How does a traveling object move once all the forces on it are balanced? at a constant speed in a straight line Why don’t things just move at a constant speed in a straight line forever then on Earth? FRICTION! Opposes the motion & slows things down or GRAVITY if motion is in up/down direction These make the forces unbalanced on the object & cause acceleration We can’t get away from those forces on Earth! (we can encounter some situations where they are negligible though!) HOW can you make a Bowling
    [Show full text]
  • Newton's First Law of Motion
    Mechanics 2.1. Newton’s first law of motion mc-web-mech2-1-2009 Sir Isaac Newton aimed to describe and predict the movement of every object in the Universe using his three laws of motion. Like many other ‘laws’ they give the right answers for the majority of the time. For example, the paths of planets, moons and satellites are all calculated using Newton’s laws. Newton’s first law of motion Newton’s first law of motion states that a body will stay at rest or move with constant velocity unless a resultant external force acts on it. Note: Moving in a straight line at a constant speed, in other words, moving at a constant velocity is commonly referred to as uniform motion. There are two consequences of this law: 1. If a body has an acceleration, then there must be a resultant force acting on it. 2. If a body has no acceleration, then the forces acting on it must be in equilibrium (have zero resultant force). At first glance this law would appear contrary to everyday experience: give an object a push to set it in motion - then, it will slow down and come to rest - it does not ‘continue in a state of uniform motion’. This is due to unseen resistive forces of friction and air resistance opposing the motion. (Figure 1). Figure 1: Resistive forces acting together to oppose motion Bodies resist changes to their motion. In mechanics, inertia is the resistance of a body to a change in its velocity. It is the property discussed in Newton’s first law, sometimes known as the principle of inertia.
    [Show full text]