Holger Zeltwanger the OSI Model

Total Page:16

File Type:pdf, Size:1020Kb

Holger Zeltwanger the OSI Model CAN Holger Zeltwanger A personal review and an outlook © CiA CAN The OSI model Text (application software) Vocabulary + phrases * Grammar rules (Translation services) Normally (Start and stop indications) not used in single- (Page numbering) segment networks (Routing) Character set Paper, pen, or laser-beam * Including “confirmation” and “encryption” procedures © CiA CAN First 11898 transceivers 15 of 35 is +16V. CAN_L and V members 6. Description of the MediumCAN_H Access Unit 6.1 Physical Medium Attachment Sublayer Specification (Transceiver) exhibited on See /3/. The maximum rating for V Galvanic isolation between the bus nodes is optional. the first CiA 6.2 Medium Dependent Interface Specification (Bus connector) joint booth 6.2.1 Electrical Parameters See /3/. The output voltage at pin 9 (external positive supply) shall be +7 V < V+ < +13 V at an output current of up to 100 mA (current consumption of module). Modules are not allowed to source current into this pin. The electrical parameters for pin 9 (V+) refer to the proposal of the working group "Physical Note: Layer". They are not yet agreed upon by the General Assembly of CAN in Automation. 6.2.2 Mechanical Parameters The connector used to plug electronic modules to the bus line is a 9-pin D-Sub connector according to /4/. Its pinning is fixed as follows Pin Signal Description 1 - Reserved 2 CAN_L CAN_L bus line (dominant low) 3 CAN_GND CAN Ground 4 - Reserved 5 (CAN_SHLD) Optional CAN Shield 6 (GND) Optional CAN Ground 7 CAN_H CAN_H bus line (dominant(dedicated high) for supply of transceiver and optocouplers, CANshow if galvanic isolation of the bus nodes applies) 8 - Reserved (error line) 9 (CAN_V+) Optional CAN external positive supply at Interkama 1992 CiA® 102 © CiA Each bus node has to provide a male connector, meeting the above-mentioned specification. Within the modules, pin 3 and pin 6 have to be interconnected. Inside of such electronic modules providing two bus connections, and inside the T-connectors, all the pins (including the reserved ones) have to be connected. The intention is, that there shall be no interruption of any of the wires in the bus cable, assuming a possible future specification of the use of the reserved pins. By using the pin V+ for supplying transceivers in case of galvanical isolation, the necessity of an extra local power isolation (e.g. DC/DC-converter) is avoided. If an error line is needed within a system, then pin 8 shall be used for this purpose. CAN CAN physical layer options 2 u ISO 11898:1993 – High-speed CAN transceiver u ISO 11519-2:1994 – Low-speed CAN transceiver u SAE J2411:2000 – Single-wire CAN transceiver u ISO 11898-2:2003 – High-speed CAN transceiver u ISO 11992-1:2003 – Truck/trailer CAN transceiver u ISO 11898-3:2006 – Low-power/low-speed CAN transceiver u ISO 11898-5:2007 – Low-power/high-speed CAN transceiver u ISO 11898-6:2013 – Selective wake-up CAN transceiver u ISO 11898-2:2016 – Up to 5-Mbit/s CAN transceiver Lessons learnt: (1) Separate strictly MAU (medium access unit) specifications from device and network system design recommendations or specifications. (2) Don’t specify additional functions in separate documents. © CiA CAN CAN (FD) network design u SAE J1939-1X – CAN high-speed (250 and 500 kbit/s) u SAE J2284-1 – CAN high-speed (125 kbit/s) u SAE J2284-2 – CAN high-speed (250 kbit/s) u SAE J2284-3 – CAN high-speed (500 kbit/s) u SAE J2284-4 – CAN high-speed (2 Mbit/s) u SAE J2284-5 – CAN high-speed (5 Mbit/s) u ISO 15765-4 – CAN diagnostic network requirements u ISO 11992-1 – Truck/trailer point-to-point network u ISO 11783-1 – ISOBUS network specification u CiA 301/303 – CANopen network design rules u IEC 62026-3 – DeviceNet network specification u Arinc 825 – CAN (FD) for airborne u CiA 601-3 – CAN FD recommendations u CiA 601-5 – CAN FD reference topology examples © CiA CAN What comes next? u “Smart” CAN transceivers with additional functions such as selective wake-up (already available), security, filtering of CAN FD frames, “dynamic” ringing suppression, etc. u CAN FD transceivers supporting bit-rates higher than 5 Mbit/s. u CAN FD network systems using bus-line topologies running at bit-rates higher than 2 Mbit/s. © CiA CAN CAN data link layer norm u ISO 11898:1993 – CAN data link layer with 11-bit IDs u ISO 11898:1995 amendment – Extended frame format u ISO 11898-1:2003 – CAN data link layer u ISO 11898-1:2015 – CAN data link layer with CAN FD Lessons learnt: (1) Original names such as CAN 2.0 will survive for a long time. Official references such as ISO 11898-1 need a long time to be accepted and used in datasheets – some parties will never use them. (2) Even when submitted for international standardization, prove first the functionality and features before implement them (this is not just true for data link Standard CAN High-speed CAN High-speed CAN controller carrier modulated signal to generate baseband signal providing in- layer protocols). (3) To standardizecontroller the host interfacecontroller is nearly phase and quadrature components. Output of demodulator is applied High-speed CAN St andard CAN impossible, buttransmit the bits minimumtransmit bits functionalStandard CAN behavior High-speed is CAN standardized receive bits receive bits to equalizer for channel compensation. For the training of the (see CiA 601-2 andSymbol CiA 603). equalizer, simple LMS (least mean square) algorithm is considered generation [10]. Carrier High-speed modulation CAN controller Standard CAN High-speed CAN receiver receiver High-speed CAN signal © CiA generator High-speed CAN receive bits CAN Bus signal generator Slicer CAN_H CAN_L Equalizer Standard CAN CAN What comes next? received bits Figure 4. Proposed high-speed transmitter Standard CAN demodulator bit detector Sp(t) Standard CAN bits D DRDRR CAN bits Passband filter Ap Sp(t) Qs(t) A 1V P 1V Signal converter 3.5V Qd(t) 2.5V Closes for D bit 1.5V Figure 6. Proposed receiver Qs(t) Simulation Results FigureSome 5. High-speed South CAN Korean signal generation scientists have The receiver of the proposed scheme uses the bit pattern of the data introduced a multi-level modulation scheme field to run the receiver for the period of 5 bit durations and hold the Carrierto be frequencyused just selection in dominant bits. This operation for one bit period. This process is repeated until the end of approach allows bit-rates of over 100 Mbit/s data field. Figure 7 shows the simulation setup. Standard CAN frame As for carrier frequency selection of modulated signal Sp(t), usingand lower can carrier run frequency Classical can be CAN beneficial communication since attenuation is with data field bits set to all D’s is generated to make CAN signal lowersimultaneously in lower frequency region with in no CAN impacts. bus environment. However, while random bit generators are used to generate bits to be carried in this can cause high frequency noise generated from the transition of Sp(t). The combined signal Qd(t) passes dispersive channel experiencing© CiA frequency-dependent distortion. Additive white the standard CAN signal to interfere with Sp(t) especially in the start and end part of high-speed CAN signal. Setting carrier frequency Gaussian noise (AWGN) is added before the signal is input to higher will reduce interference but incur higher attenuation of receiver for demodulation. Carrier frequency of Sp(t) is set to 24MHz modulated signal. Carrier frequency is a parameter to be optimized and symbol rate of Sp(t) is 36MHz. 16QAM was used for symbol according to the channel characteristics and modulation schemes. generation. For the purpose of simplicity, the carrier frequency and timing of both transmitter and receiver is assumed to be perfectly Receiver matched. Figure 6 shows the proposed receiver. The differential signal received from the bus is converted to single-ended signal, using CAN frame Can signal With all 0 Receiver generator differential-to-single conversion device, which is applied to standard data field Proposed CAN bit detector and band-pass filter for high-speed signal channel Output SNR receiver Passband Random bit demodulation, respectively. Standard CAN detector monitors the bus signal generator and detects the start of recessive-to-dominant bit transition during generator AWGN data field and enables the high-speed CAN demodulator operation to run for the period of 5 D bits. Bandpass filter in the high-speed CAN Figure 7. Simulation setup receiver removes the interference from standard CAN signal as well as out-of-band noise, providing input to the demodulator and equalizer of the proposed scheme. The demodulator down-converts CAN Transport layer protocols u CCP (CAN Calibration Protocol) u SDO (Service Data Object) protocols (CANopen) u Explicit Messages (DeviceNet) u BAM and CTS (J1939-21) u ISO 15765-2 (ISO-TP) u XCP (Extended CAN Calibration Protocol) u etc. Lessons learnt: (1) Each application domain likes to re-invent transport layer protocols. This means, up to today this lesson has not been learnt (this is sometimes also true for other higher-layer protocols). (2) Specify a byte-oriented instead of a bit-oriented protocol overhead (see the new USDO protocol for CANopen FD), this simplifies implementations. © CiA CAN Migrating to CAN FD u ISO 15765-2:2016 – Transport protocol and network layer u ISO 22900-2:2016 – Diagnostic PDU API u ASAM XCP version 1.2 – Extended calibration protocol u CANopen FD – Universal Service Data Object (USDO) u Arinc 825 – CAN FD transport layer Lessons learnt: Migrating transport layer protocols from Classical CAN to CAN FD data link layer is not a big deal.
Recommended publications
  • J1939/J1708 to USB Adapter
    5940 South Ernest Drive Terre Haute, IN 47802 812-418-0526 wwww.simmasoftware.com Simma Software Introduces New Low Cost J1939/J1708 to USB Adapter Simma Software, Inc. 5940 South Ernest Drive Terre Haute, IN 47802 Heavy Duty Vehicle Network Adapter (VNA) Release date: November 7, 2011 March 17, 2011, Terre Haute, IN – Simma Software, Inc. announced today that they are introducing a new low cost high-performance J1939/J1708 Adapter for the heavy-duty and commercial vehicle market. The VNA product family supports dual J1939 networks and a single J1587/J1708 network. The VNA product will allow OEMs, fleets, and service providers, for heavy duty and commercial vehicles, to connect in real-time to their vehicle networks, allowing them to instantly gather critical information such as active diagnostic faults and fuel economy metrics. For connections back to the host computer, mobile computing device, or a handheld device, the VNA family supports USB, RS-232, and an Ethernet connection. To learn more, see our J1939 to USB Adapter page. Future devices planned for May of 2011 will support wireless connections such as Bluetooth and WiFi (802.11). "The industry loves our new VNA product line and its low price point. Typically devices of this class sell for around $750, but by using new technology and our proven J1939 software, we are able to reach a 5K price point as low as $74.95 depending on volume and options". said JR Simma, the President of Simma Software. About Simma Software, Inc. Simma Software, Inc. specializes in real-time embedded software for the automotive, military, and industrial automation industry.
    [Show full text]
  • Smartwire-DT Gateways – Canopen and PROFIBUS-DP
    09/11 MN05013002Z-EN Manual replaces 06/09 AWB2723-1612en SmartWire-DT Gateways All brand and product names are trademarks or registered trademarks of the owner concerned. Emergency On Call Service Please call your local representative: http://www.eaton.com/moeller/aftersales or Hotline of the After Sales Service: +49 (0) 180 5 223822 (de, en) [email protected] Original Operating Instructions The German-language edition of this document is the original operating manual. Translation of the original operating manual ) All editions of this document other than those in German language are translations of 2 the original German manual. 1st edition 2009, edition date 02/09 2nd edition 2009, edition date 06/09 3rd edition 2010, edition date 03/10 4th edition 2010, edition date 06/10 5th edition 2011, edition date 03/11 6th edition 2011, edition date 09/11 See revision protocol in the “About this manual“ chapter © 2009 by Eaton Industries GmbH, 53105 Bonn Production: René Wiegand Translation: globaldocs GmbH All rights reserved, including those of the translation. Rückenbreite festlegen! (1 Blatt = 0,106 mm, gilt nur für XBS) g/m 80 bei Digitaldruck Eberwein für mm = 0,080 Blatt (1 No part of this manual may be reproduced in any form (printed, photocopy, microfilm or any other process) or processed, duplicated or distributed by means of electronic systems without written permission of Eaton Industries GmbH, Bonn. Subject to alteration without notice. Danger! Dangerous electrical voltage! Before commencing the installation • Disconnect the power supply of the • Suitable safety hardware and device. software measures should be • Ensure that devices cannot be implemented for the I/O interface accidentally restarted.
    [Show full text]
  • — PROFIBUS-Adapter
    — ABB MEASUREMENT & ANALYTICS | DATA SHEET PROFIBUS-Adapter — To find your local ABB contact visit: www.abb.com/contacts For more information visit: www.abb.com/measurement — We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document. We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB. © ABB 2019 3KXN631121R1001 10/63-6.31-EN Rev. G 05.2019 2 NDA121-NO PROFIBUS-ADAPTER | 10/63-6.31-EN REV. G NDA121-NO PROFIBUS-ADAPTER | 10/63-6.31-EN REV. G 7 — Measurement made easy — Profibus DP / PC Adapter • USB NDA121-NO PROFIBUS-ADAPTER | 10/63-6.31-EN REV. G 3 — NDA121-NO PROFIBUS DP / PC-USB adapter hange from one to two columns Adapter CommDTM Desktop PC’s as well as notebooks can be flexible connected The Device Type Manager CommDTM provides access to the in the field to a PROFIBUS® network via the adapter PROFIBUS® Master NDA121-NO. Within the FDT architecture, NDA121-NO. Thereby a parallel operation of up to 16 adapter the CommunicationDTM enables DeviceDTMs to connect to is possible. The adapter supports the Master functionality of their respective devices via PROFIBUS® DP/-V1. the PROFIBUS® Standards DP (class 1 and 2), DP-V1 (class 2).
    [Show full text]
  • Master Simulators
    Master simulators By using master simulators from HMS, you can set up and test slaves/adapters on PROFIBUS, PROFINET, CANopen, EtherNet/IP and DeviceNet without having a PLC in place. Simply connect to your computer and you have a very cost-efficient alternative to a PLC or PC-card. CANopen interface — powered by USB USB port on the PC RS-232 CANopen cable 9-pin D-Sub connector PROFIBUS interface Device under test Device under test DeviceNet interface USB (24V power supply required to connect and test a DeviceNet adapter —not included). DeviceNet cable with data and power lines Pluggable screw connector Ethernet cable with termination Device under test Device under test Available for: Test your device without an expensive PLC Key features Master simulators are ideal for test-wiring of inputs and ouputs • Easy-to-use test and diagnostics and reading and writing analog values. They are useful during tool. setup of slave/adapters in a network as well as during final • No programming required. inspection tests at the device manufacturer. • Auto-detects slaves/adapters Industrial Ethernet versions are software-only, while fieldbus (even when GSD/EDS file is not versions also include a converter interface which is used to available). connect the fieldbus cable to the PC. • Auto detection of I/O data size. No GSD/EDS files needed (not for EtherNet/IP) During setup and maintenance, there may not be GSD/EDS available making master simulators especially useful for this scenario. HMS provides a full 3 year product guarantee TECHNICAL SPECIFICATIONS Description Consists of a Windows-based Software only.
    [Show full text]
  • The Role of CAN in the Age of Ethernet and IOT
    iCC 2017 CAN in Automation The role of CAN in the age of Ethernet and IOT Christian Schlegel, HMS Industrial Networks CAN technology was developed in the 1980s and became available in 1987, just as other industrial fieldbus systems like PROFIBUS or INTERBUS entered the stage of industrial communication. Beside the fact that CAN is a success in the automotive industry and used in all types of cars today, it has also made its way in many other industrial areas. About 15 years ago, new technologies based on Ethernet started to emerge, with ap- pealing and sometimes outstanding features. Some six years ago Ethernet also started to find its way into automobiles. Today, other new communication technologies are showing up on the horizon driven by the omnipresent Industrial Internet of Things. But even now, 30 years after their introduction, these “classic” fieldbus technologies are still alive – with varying success. Since CAN was initially developed with a focus for use in automobiles, CAN has certain features that still make it the best choice for many applications in automobiles and industrial areas – even when compared to the newer technologies. This paper discusses why CAN is still a valid or even better choice for certain applica- tion areas than Ethernet-based technologies, not just focusing on the advanced fea- tures provided by the enhanced capabilities of CAN FD but also highlighting how these applications benefit from the features of “classic” CAN. Looking back into history … the requirement to transmit data between … when CAN was born these ECUs but also to connect sensors and actuators to them.
    [Show full text]
  • Fieldbus Communication: Industry Requirements and Future Projection
    MÄLARDALEN UNIVERSITY SCHOOL OF INNOVATION, DESIGN AND ENGINEERING VÄSTERÅS, SWEDEN Thesis for the Degree of Bachelor of Science in Engineering - Computer Network Engineering | 15.0 hp | DVA333 FIELDBUS COMMUNICATION: INDUSTRY REQUIREMENTS AND FUTURE PROJECTION Erik Viking Niklasson [email protected] Examiner: Mats Björkman Mälardalen University, Västerås, Sweden Supervisor: Elisabeth Uhlemann Mälardalen University, Västerås, Sweden 2019-09-04 Erik Viking Niklasson Fieldbus Communication: Industry Requirements and Future Projection Abstract Fieldbuses are defined as a family of communication media specified for industrial applications. They usually interconnect embedded systems. Embedded systems exist everywhere in the modern world, they are included in simple personal technology as well as the most advanced spaceships. They aid in producing a specific task, often with the purpose to generate a greater system functionality. These kinds of implementations put high demands on the communication media. For a medium to be applicable for use in embedded systems, it has to reach certain requirements. Systems in industry practice react on real-time events or depend on consistent timing. All kinds are time sensitive in their way. Failing to complete a task could lead to irritation in slow monitoring tasks, or catastrophic events in failing nuclear reactors. Fieldbuses are optimized for this usage. This thesis aims to research fieldbus theory and connect it to industry practice. Through interviews, requirements put on industry are explored and utilization of specific types of fieldbuses assessed. Based on the interviews, guidelines are put forward into what fieldbus techniques are relevant to study in preparation for future work in the field. A discussion is held, analysing trends in, and synergy between, state of the art and the state of practice.
    [Show full text]
  • Profibus and Modbus: a Comparison
    James Powell, P. Eng. Profibus and Modbus: a comparison We live in a multi-protocol In this article, we will provide an overview col that only Modicon could use. However, of both protocols and discuss their key it was later published royalty-free so that world – and this will likely strengths and applications. Comparing the anyone could use it. Finally, Modicon made not change anytime soon. two, we’ll see that both protocols have their it an open protocol. When it was published, own particular strengths. We’ll also discuss a number of companies started using it, Different protocols work which one works best in which applications creating different interpretations and modi- better in different applica- – although there is some overlap in what fi cations of the original specifi cation. As a each can do. What’s more, they can com- result, there are now quite a few variations tions. I have not come to plement each other in joint applications. in the fi eld. bury Modbus or Profibus, Introduction to Modbus The specifi cation document is fewer than nor to praise them, but 100 pages in length, which is a good indica- rather to add some per- Modbus is the “granddaddy” of industrial tion of the protocol’s low level of complex- communication protocols. It was originally ity. In comparison, Profi bus’ specifi cation spective and knowledge. designed in the mid-1970s by Modicon as document is thousands of pages long. a way to link intelligent devices with PLCs using a simple master/slave concept. The term “Modbus” typically refers to one of three related protocols: Modbus ASCII, “Simple” is a key descriptor for Modbus – Modbus RTU, or Modbus TCP/IP:1 and also its biggest strength.
    [Show full text]
  • Table of Contents
    Table of Contents Chapter 1 Bus Decode -------------------------------------------------------------- 1 Basic operation --------------------------------------------------------------------------------------------- 1 Add a Bus Decode ----------------------------------------------------------------------------------------------------- 1 Advance channel setting ---------------------------------------------------------------------------------------------- 2 Specially Bus Decode: ------------------------------------------------------------------------------------------------ 4 1-Wire ------------------------------------------------------------------------------------------------------------------- 7 3-Wire ------------------------------------------------------------------------------------------------------------------- 9 7-Segment -------------------------------------------------------------------------------------------------------------- 11 A/D Converter--------------------------------------------------------------------------------------------------------- 14 AcceleroMeter -------------------------------------------------------------------------------------------------------- 17 AD-Mux Flash -------------------------------------------------------------------------------------------------------- 19 Advanced Platform Management Link (APML) ---------------------------------------------------------------- 21 BiSS-C------------------------------------------------------------------------------------------------------------------ 23 BSD ---------------------------------------------------------------------------------------------------------------------
    [Show full text]
  • Profinet Vs Profibus
    Profinet vs Profibus Pouya Aminaie1 and Poorya Aminaie2 1Department of ECE, Shiraz University, Shiraz, Iran 2 Department of ECE, Shahid Beheshti University, Tehran, Iran E-mail: [email protected] Abstract We present a step by step definition of Profinet and Profibus. We introduced different types of each of the two communication protocols. We then described the topology and performance of each one individually. Finally, the properties of them have been compared to show that which one has better performance in the industry. Keywords: Profinet, Profibus, Industrial Ethernet and Communication Networks 1. Introduction 1.1. Profinet Profinet is the abbreviation for Process Field Net, which refers to technical standards for data communication through Ethernet in the industry. These types of standards are used for gathering data and controlling industrial equipment. As can be seen from Fig.1, Profinet satisfies all the needs of industrial technologies. Fig.1 Requirement of automation technology [1] 1 The need for Profinet is felt in production automation and processing automation sections, where its use can resolve many of these needs. Profinet can be divided into two main categories, as follows: • Profinet IO • Profinet CBA 1.2. Profibus The word Profibus is taken from the phrase Process Field Bus. The scope of this protocol covers from the field level to the control level. The advantages of Profibus are as follows: 1. Low noise acceptance due to twisted pair cable being the transmission interface. 2. Appropriate bandwidth due to the use of an appropriate transmission method such as RS485. 3. Secure and non-interfering data exchange for using the token pass access method.
    [Show full text]
  • PROFIBUS Modules with Plug-N-Play Connectivity Reduce Overall
    PROFIBUS Introduction Standardized Open Fieldbus System About Lumberg Automation PROFIBUS Products PROFIBUS (PROcess FIeld BUS) is a standardized, open Fieldbus in compliance with the To ensure the best application of PROFIBUS- international standard EN 50170. To meet DP in the decentralized sector, components PROFIBUS Modules various demands in automation technology, must meet maximum electromechanical PROFIBUS is subdivided into four different demands. Thanks to the materials used for the with Plug-N-Play profiles: housings and sealing technologies, Lumberg Automation’s PROFIBUS-DP components offer PROFIBUS-FMS (Field Message Specification) Connectivity Reduce excellent protection for electronic equipment in A protocol for communication between harsh environments. different control systems (PLCs or PCs). It Modules are available with M23 connection Overall Installation and was the first implementation of Profibus. This technology for hybrid cables (power supply and protocol is superseded by PROFInet.. Maintenance Costs. bus line in one cable) and M12 connectors with PROFINET external power supply. An Industrial Ethernet implementation of Transmission Media Profibus. PROFINET is designed to work everywhere: from communication with the • Shielded, twisted-pair, 2-wire cable corporate network over the data exchange (according to RS485) between PLC’s and IPC’s, to I/O and motion • Fiber optic cable control. • Hybrid cable for the transmission of data PROFIBUS-PA (Process Automation) and power supply. An intrinsically safe bus system for process technology. Network Topology PROFIBUS-DP (Decentral Periphery) • Line structure with active bus termination (resistance network) at both ends of a A transmission protocol for communication segment. between the control system and decentral input/output stations. • A segment is the bus sector between two terminating resistors.
    [Show full text]
  • Manual Absolute Encoder SAE J1939 (With Bus Cover)
    Manual Absolute Encoder SAE J1939 (with bus cover) 11.12 · 174.02.059/5 Subject to technical and design modifications www.baumer.com Errors and omissions excepted. Content Page 1 Introduction 3 1.1 Scope of delivery 3 1.2 Product assignment 4 2 Safety precautions and operating instructions 5 3 Product families 6 4 CAN-Bus 7 4.1 CAN-Bus 7 4.1.1 CAN bus properties 7 4.2 SAE J1939 8 4.2.1 PGN Definitions for SAE J1939 encoder 9 5 Commissioning 10 5.1 Mechanical assembly 10 5.2 Electrical connection 11 5.2.1 Attaching the bus cover 11 5.2.2 Terminal assignment 13 5.2.3 User address 13 5.2.4 Baudrate 13 5.2.5 Terminating resistor 13 6 SAE J1939 Operation 14 6.1 NAME-Field 14 6.2 PGN 65450 Cyclic Input Data 14 6.3 PGN 61184 encoder parameterization 15 6.3.1 Read parameter (read request) 15 6.3.2 Write parameter (write request) 16 6.3.3 Parameter Index Details 16 7 Diagnosis and additional information 18 7.1 Error diagnosis via fieldbus 18 7.2 Indicating elements (state indicators) 18 7.3 J1939 Glossary / Abbreviations 18 Manual_SAEJ1939_EN.docx 2/18 www.baumer.com 22.11.12 Disclaimer of liability The present manual was compiled with utmost care, errors and omissions reserved. For this reason Baumer IVO GmbH & Co. KG rejects any liability for the information compiled in the present manual. Baumer IVO nor the author will accept any liability for direct or indirect damages resulting from the use of the present information.
    [Show full text]
  • PROFIBUS the Perfect Fit for the Process Industry Technical Brochure · April 2008
    © Siemens AG 2008 PROFIBUS The perfect fit for the process industry Technical Brochure · April 2008 PROFIBUS www.siemens.com/profibus © Siemens AG 2008 Totally Integrated Automation ERP – Enterprise Resource Planning Ethernet Management Level MES – Manufacturing Execution Systems SIMATIC IT Ethernet Operations Level SIMATIC PCS 7 Process Control (DCS) Industrial Ethernet Industrial Software for • Design and Engineering • Maintenance • Installation and Commissioning • Modernization and Upgrade • Operation Control Level SINUMERIK SIMOTION SIMATIC NET SIMATIC Controllers SIMATIC HMI Computer Numeric Control Motion Control System Industrial Modular/Embedded/ Human Machine Communication PC-based Interface Field Level PROFIBUS PA AS-Interface SINAMICS Drive Systems Process Instrumentation SIMATIC Sensors SIMATIC Distributed I/O Totally HART Integrated IO-Link Automation Thanks to Totally Integrated Automation, Siemens is the only TIA is characterized by its unique continuity. provider of an integrated basis for implementation of custom- It provides maximum transparency at all levels with reduced ized automation solutions – in all industries from inbound to interfacing requirements – covering the field level, production outbound. control level, up to the corporate management level. With TIA you also profit throughout the complete life cycle of your plant – starting with the initial planning steps through operation up to modernization, where we offer a high measure of invest- ment security resulting from continuity in the further develop- ment of our products and from reducing the number of inter- faces to a minimum. 2 PROFIBUS © Siemens AG 2008 Contents text PROFIBUS PROFIBUS - an integrated fieldbus for the complete process automation . 4 Your advantages with PROFIBUS . 7 PROFIBUS - proven and future-oriented . 8 Technical basis General features and standards .
    [Show full text]